Устройство для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий

Изобретение относится к строительству, а именно к устройству для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий в качестве теплоизоляционного элемента наружных ограждающих конструкций зданий и сооружений. Устройство для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий включает воздушную прослойку, заполненную каркасом и образованную наружной стеной и облицовкой, покрытой с наружной стороны отражательным материалом в виде алюминиевой фольги. Каркас выполнен из листовой волнообразной алюминиевой фольги, расположенной волнами горизонтально по всему объему прослойки и прикрепленной к облицовке гребнями волн. Облицовка выполнена из композиционного материала, включающего твердый материал, например алюминиевую пластину, теплоизоляционное волокно из базальтового материала и алюминиевую фольгу. Твердый материал со стороны помещения покрыт теплоизоляционным волокном, прикрепленным к алюминиевой фольге. Композиция алюминиевой фольги с высоким коэффициентом теплопроводности и волокна из базальтового материала с низким коэффициентом теплопроводности создают биматериал по ходу движения теплового потока. Теплоизоляционные волокна из базальтового материала расположены на алюминиевой фольге в виде ряда пучков, вытянутых снизу вверх. Каждый ряд пучка базальтового волокна имеет вид зигзагообразный и попарно составляют последовательно чередующиеся диффузоры и конфузоры. Изобретение позволяет снизить тепловые потери из помещения через наружные стены. 4 ил.

 

Изобретение относится к строительству, а именно к устройству для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий в качестве теплоизоляционного элемента наружных ограждающих конструкций зданий и сооружений.

Известно устройство дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий (см. патент РФ №2126872, МПК E04B 1/76. Опубл. 27.02.1999), включающее воздушную прослойку, заполненную каркасом и образованную наружной стеной и облицовкой, с наружной стороны покрытой отражательным материалом в виде алюминиевой фольги, причем каркас выполнен из листовой волнообразной алюминиевой фольги, расположенной волнами горизонтально по всему объему прослойки, прикрепленной к облицовке гребнями волн.

Недостатком является невысокая теплозащитная эффективность из-за преимущественного использования в элементах устройства алюминия, обладающего высоким коэффициентом теплопроводности, равным 204 Вт/(м·град), что при низкой теплопроводности неподвижного воздуха в сумме элементов устройства приводит к существенным потерям теплоты как через листовую волнообразную алюминиевую фольгу, так и через алюминиевую фольгу, покрывающую твердый материал облицовки.

Известно устройство дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий (см. патент РФ номер 2126872, МПК E04B 1/76. Опубл. 27.02.1999), включающее воздушную прослойку, заполненную каркасом и образованную наружной стеной и облицовкой, с наружной стороны покрытой отражательным материалом в виде алюминиевой фольги, причем каркас выполнен из листовой волнообразной алюминиевой фольги, расположенной волнами горизонтально по всему объему прослойки, прикрепленной к облицовке гребнями волн по ходу движения теплового потока.

Недостатком являются потери тепла из отапливаемого здания теплопроводностью через тонкий пограничный слой, образованный у облицовки при ламинарном движении внутри воздуха помещения, создающим малое термическое сопротивление конвективными теплопотерями наружных стен.

Технической задачей предлагаемого изобретения является снижение энергозатрат системы отопления путем уменьшения тепловых потерь через пограничный слой, образованный у облицовки за счет увеличения его термического сопротивления посредством турбулизации перемещающегося по высоте воздушной прослойки нагреваемого внутреннего воздуха помещения отопительным прибором при расположении волокон базальтового материала на алюминиевой фольге в виде зигзагообразных попарно закрепленных пучков, составляющих последовательно чередующиеся диффузоры и конфузоры. Наличие диффузоров и конфузоров приводит к пульсирующему изменению скорости перемещения нагреваемого внутреннего воздуха помещения в воздушной прослойке, способствуя турбулизации пограничного слоя на алюминиевой фольге и, соответственно, возрастанию его термического сопротивления и уменьшению потерь тепла через наружные стены.

Технический результат по снижению тепловых потерь через пограничный слой нагреваемого воздуха и образованный у облицовки, достигается тем, что устройство для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий включает воздушную прослойку, заполненную каркасом и образованную наружной стеной и облицовкой, покрытой с наружной стороны отражательным материалом в виде алюминиевой фольги, причем каркас выполнен из листовой волнообразной алюминиевой фольги, расположенной волнами горизонтально по всему объему прослойки и прикрепленной к облицовке гребнями волн, при этом облицовка выполнена из композиционного материала, включающего твердый материал, например алюминиевую пластину, теплоизоляционное волокно из базальтового материала и алюминиевую фольгу, причем твердый материал со стороны помещения покрыт теплоизоляционным волокном, прикрепленным к алюминиевой фольге, кроме того, композиция алюминиевой фольги с высоким коэффициентом теплопроводности и волокна из базальтового материала с низким коэффициентом теплопроводности создают биматериал по ходу движения теплового потока, диффузоры и конфузоры.

На фиг.1 представлено схематическое изображение устройства для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий, на фиг.2 - разрез по А-А устройства, на фиг.3 - разрез облицовки, выполненной в виде композиционного материала, на фиг.4 - расположение волокон базальтового волокна.

Устройство включает в себя воздушную прослойку, заполненную каркасом 1; каркас представляет собой листовую волнообразную алюминиевую фольгу. Волны фольги закреплены к облицовке 2, изготовленной из любого твердого материала. Обечайка 3 выполнена из деревянных реек или из другого материала. Между обечайкой 3 и перекрытием размещены уплотнительные полосы 4. Облицовка 2 выполнена из композиционного материала, включающего твердый материал 5, например алюминиевую пластину, теплоизоляционное волокно 6 из базальтового материала и алюминиевую фольгу 7.

Теплоизоляционное волокно 6 из базальтового материала расположено на алюминиевой фольге 7 в виде ряда пучков 8, вытянутых снизу вверх, причем каждый ряд 9 пучка 8 базальтового волокна 10 имеет вид зигзагообразный, и попарно составляют последовательно чередующиеся диффузоры 11 и конфузоры 12.

Устройство для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий работает следующим образом.

При нагреве внутреннего воздуха отопительным прибором воздушный поток, контактируемый с алюминиевой фольгой 7, поднимается снизу (от пола помещения) вверх, перемещается между пучками 8 теплоизоляционного волокна 6 из базальтового материала, расположенными таким образом, что обеспечивается равномерная эпюра скоростей воздушного потока нагреваемого внутреннего воздуха у наружных стен, поддерживающийся за счет «живого» сечения входных отверстий диффузоров 11 и конфузоров 12. Нагретый поток с оптимальной эпюрой скоростей, обеспечивающий рациональный контакт воздуха зигзагообразными рядами 9 пучков 8, проходит последовательно участки диффузоров 11 (происходит увеличение давления и уменьшение скорости, движущегося потока воздуха, см., например, стр.180. Нащокин В.В. Техническая термодинамика и теплопередача. М., 1980-469 с., ил.) и конфузоров 12 (происходит уменьшение давления и увеличение скорости, движущегося потока воздуха, см. там же), непрерывно меняет свою скорость, что приводит к турбулизации потока и, соответственно, возрастанию толщины пограничного слоя на алюминиевой фольге 7 (см., например, Бакластов A.M. и др. Промышленные тепломассообменные процессы и установки. М.: Энергоатомиздат, 1986. - 328 стр.). Следовательно, наблюдается увеличение термического сопротивления пограничного слоя внутреннего воздуха помещения в воздушной прослойке и сокращаются тепловые потери через наружные стены и, соответственно, энергозатраты системы отопления.

Тепловой поток (см. фиг.3) из помещения, особенно при размещении у наружной стены источника тепла в виде отопительного нагревательного прибора, контактирует с алюминиевой фольгой 7, которая частично отражает лучистое тепло и, нагреваясь, посредством теплопроводности передает тепло теплоизолирующему волокну 6 из базальтового материала ((λ=0,0037 Вт/(м·град) см., например, ТУ 5769-002-134-325-86-004, г. Курск 2002 г.). В результате наблюдается уменьшение потока теплоты до минимальной величины, остаточное значение которой теплопроводностью через твердый материал в виде алюминиевой пластины 5 передается конвекцией неподвижным слоям воздуха, имеющим малое значение коэффициента теплопроводности ((λ=0,0026 Вт/(м·град) см., например, там же) и находящимся в виде замкнутых воздушных прослоек, образованных волнообразной алюминиевой фольгой, обладающей значительным коэффициентом теплопроводности (λ=204 Вт/(м·град), что в соответствии с прототипом в конечном итоге снижает теплоизоляционное свойство неподвижных слоев воздуха. Однако использование в заявленном техническом решении теплоизоляционного волокна 6 до поступления теплового потока к каркасу 1 практически устраняет этот недостаток путем снижения до минимального значения величины теплового потока перед контактом его с неподвижными слоями воздуха, которые в заключительной стадии и устраняют теплопотери наружных стен.

Жесткое соединение волокна 6, имеющего низкое значение коэффициента теплопроводности, с алюминиевой фольгой 7, имеющей высокое значение коэффициента теплопроводности, посредством клея приводит к образованию конструкции из биматериала, которая при прохождении теплового потока создает на поверхности алюминиевой фольги 7 микротермовибрации (см., например, Дмитриев В.П. Биметаллы. Пермь. 1990 г. - 368 с. ил.). В результате твердые частицы пыли, преимущественно находящиеся в воздушном объеме между облицовкой 2 и отопительным нагревательным прибором, будут непрерывно стряхиваться на пол. Это не только поддерживает постоянство теплоизоляционного действия (отсутствие загрязнений на поверхности алюминиевой фольги обеспечивает ее максимальную отражающую способность) алюминиевой фольги 7 при противодействии передачи тепла тепловым излучением от отопительного нагревательного прибора, т.е. теплопотерям через наружные стены, но и обеспечивается экологическая чистота как устройства для дополнительной теплоизоляции, так и внутри помещения в целом.

Оригинальность предлагаемого технического решения по снижению тепловых потерь наружными стенами отапливаемых помещений обеспечивается увеличением термического сопротивления конвективно на воздушной прослойке, путем турбулизации пограничного слоя внутреннего воздуха за счет расположения на алюминиевой фольге теплоизоляционного волокна из базальтового материала в виде ряда зигзагообразных пучков, вытянутых снизу вверх и попарно составляющих последовательно чередующихся диффузоров и конфузоров.

Устройство для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий включает воздушную прослойку, заполненную каркасом и образованную наружной стеной и облицовкой, покрытой с наружной стороны отражательным материалом в виде алюминиевой фольги, причем каркас выполнен из листовой волнообразной алюминиевой фольги, расположенной волнами горизонтально по всему объему прослойки и прикрепленной к облицовке гребнями волн, при этом облицовка выполнена из композиционного материала, включающего твердый материал, например алюминиевую пластину, теплоизоляционное волокно из базальтового материала и алюминиевую фольгу, причем твердый материал со стороны помещения покрыт теплоизоляционным волокном, прикрепленным к алюминиевой фольге, кроме того, композиция алюминиевой фольги с высоким коэффициентом теплопроводности и волокна из базальтового материала с низким коэффициентом теплопроводности создают биматериал по ходу движения теплового потока, отличающееся тем, что теплоизоляционные волокна из базальтового материала расположены на алюминиевой фольге в виде ряда пучков, вытянутых снизу вверх, причем каждый ряд пучка базальтового волокна имеет вид зигзагообразный и попарно составляют последовательно чередующиеся диффузоры и конфузоры.



 

Похожие патенты:

Изобретение относится к системе и способу дополнительной изоляции фасада. Система дополнительной изоляции исходного фасада содержит две или более секции, при этом каждая секция содержит устойчивый к сжатию изолирующий материал, прикрепленный по меньшей мере к одному несущему нагрузку элементу, причем каждая секция имеет внутреннюю сторону, выполненную с возможностью размещения в направлении исходного фасада, и наружную сторону, выполненную с возможностью размещения с обращением от исходного фасада; промежуточный изолирующий материал, выполненный с возможностью размещения в одном или более промежутках между указанными секциями; средство прикрепления системы к исходному фасаду, причем поперечное сечение по меньшей мере одного несущего нагрузку элемента имеет Т-образную форму, поддерживающую крепежное средство.

Изобретение относится к теплоизоляции стыков строительных конструкций. Способ включает установку на стык строительных конструкций теплоизолирующих накладок.

Дюбель для изоляционного материала, предназначенный для монтажа тепло- и звукоизоляционного материала, имеет распорный пластмассовый штырь, который размещен в пластмассовой оболочке, которая на своей наружной поверхности имеет направляющие, распорные и крепежные элементы, которые разделены на отдельные зоны (А, В, С, D).

Изобретение относится к области строительства, а именно к способу утепления и защиты от атмосферных осадков наружных стен жилых и промышленных зданий и сооружений.

Изобретение относится к области строительства, а именно к конструкциям ограждений зданий, сооружений различного назначения, и может быть использовано в качестве стеновых и других ограждений для жилых, общественных и производственных зданий с пользой экономии энергии в отоплении и экологии.

Изобретение относится к области строительства, а именно к способам теплоизоляции балконов и лоджий. .

Изобретение относится к устройству мало- и среднеэтажных зданий в зонах холодного климата и направлено на уменьшение сжигаемого для обогрева здания топлива и экологически вредных газовоздушных выбросов; повышение уровня комфортности помещений здания; повышение долговечности несущих частей ограждающих конструкций здания; поддержание необходимого технического и санитарного уровня влажности в ограждающих конструкциях и в теплоинерционном пространстве под зданием.

Изобретение относится к области промышленного гражданского строительства, а именно к способам наружной теплоизоляции зданий при ремонте или реконструкции старого жилого фонда и к системам для их осуществления.

Изобретение относится к строительству, а именно к устройству для дополнительной теплоизоляции наружных стен помещений эксплуатируемых зданий в качестве теплоизоляционного элемента наружных ограждающих конструкций зданий и сооружений.

Изобретение относится к способу строительства и эксплуатации мало- и среднеэтажных зданий в зонах холодного, умеренного климата. .

Изобретение относится к наружным изоляционным системам зданий. Изоляционная система содержит изоляционные элементы (1), покрытые отделочными плитами (2), закрепленными на совокупности профилей (5), установленных на подлежащей изоляции стене (0). Изоляционные элементы (1) и профили (5) удерживаются консолями (3), содержащими по существу плоскую первую часть (31) опоры и крепления к подлежащей изоляции стене (0) и по существу плоскую вторую часть (32) опоры, удержания и крепления на регулируемом расстоянии от указанной стены для первой по существу плоской части (51) профилей, которые содержат вторую по существу плоскую часть (52) опоры для отделочных плит (2). Консоли выполнены из материала с термической проводимостью, самое большее 0,5 B/(м·К). Изобретение также относится к консоли (3) для этой изоляционной системы. Изобретение позволяет упростить монтаж изоляционной системы и улучшить энергетические свойства фасада здания. 2 н. и 13 з.п. ф-лы, 2 ил.

Изобретение относится к строительству, а именно к конструкциям ограждающих элементов с солнечным коллектором, и может быть использовано в строительстве различных отапливаемых зданий, преимущественно сельскохозяйственных. Технический результат: поддержание заданных теплоизоляционных свойств ограждающего элемента с солнечным коллектором, как при наличии солнечной радиации, так и после ее воздействия. Ограждающий элемент с солнечным коллектором включает герметичные воздушные наклоненные щели по его высоте, восходящие от наружной к внутренней поверхности элемента, причем каждая герметичная наклонная щель имеет переменное поперечное сечение, которое уменьшается к внутренней поверхности. Элемент снабжен теплоизоляционным слоем, выполненным в виде витых пучков, расположенных вертикально между наружной и внутренней поверхностями элемента и с различной длиной от наклонных поверхностей герметичных воздушных наклонных щелей. 1 ил.

Изобретение относится к эластичному изоляционному материалу на основе каучуковой смеси со стойкостью к действию высоких температур. Изоляционный материал для применения при температурах выше 130°C, который легко наносится на сложные компоненты, для которых необходима изоляция, а также заполняет внутренние пазы, является изоляционным материалом, в котором по меньшей мере часть каучуковой смеси не сшита и может пластически деформироваться, где вязкость по Муни ML(1+4) смеси при 23°C, определенной в соответствии с частью 3 стандарта DIN 53523, составляет от 5 до 20 ед. Муни. При этом каучуковая смесь обладает пористой структурой и содержит от 2 до 100 масс.ч. микросфер на 100 масс.ч. каучука для образования пористой структуры. 7 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к способу гидрофобизации микропористого содержащего гидрофильную кремниевую кислоту теплоизоляционного формованного изделия и может быть использовано при создании теплоизоляционных прослоек в пустотелых строительных камнях и многослойных теплоизоляционных системах. Способ включает обработку микропористого перфорированного формованного изделия, содержащего кремниевую кислоту, по меньшей мере одним органосиланом. При этом в камеру, в которой находится изделие, подают один или несколько парообразных в условиях реакции органосиланов до тех пор, пока разность давлений Δр не составит более 20 мбар. Разность давлений Δр=р1-р2, где р1 обозначает давление в камере перед подачей органосилана, а р2 обозначает давление в камере, при котором прекращают подачу органосилана. Технический результат изобретения - повышение водоотталкивающих свойств изделий простым и рентабельным способом. 14 з.п. ф-лы, 2 пр.

Изобретение относится к композитным системам теплоизоляции внешней стены здания. Композитная система теплоизоляции прикреплена к поверхности внешней стены здания, обращенной в сторону, противоположную зданию. Композитная система теплоизоляции содержит по меньшей мере двухслойное теплоизоляционное покрытие, по меньшей мере с двумя слоями, каждый из которых включает от 25 до 95% от массы аэрогеля, от 5 до 75% от массы неорганических волокон и от 0 до 70% от массы неорганических наполнителей. Слои теплоизоляционного покрытия соединены друг с другом посредством неорганического вяжущего вещества. Композитная система теплоизоляции имеет суммарный тепловой потенциал, составляющий меньше чем 3 МДж на килограмм. Изобретение позволяет повысить механическую устойчивость системы теплоизоляции и улучшить ее теплотехнические характеристики. 13 з.п. ф-лы, 1 ил., 4 табл.
Наверх