Устройство для измерения рабочих характеристик теплообменников

Изобретение относится к теплотехнике и может быть использовано для измерения рабочих характеристик теплообменников. Заявлено устройство для измерения рабочих характеристик теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами. Устройство также содержит циркуляционный насос, выход которого связан со входом теплообменника, а вход циркуляционного насоса связан с выходом парогенератора, расходомеры жидкости и газа, установленные на входных трубопроводах, датчики давления и температуры теплоносителей, установленные на входе и выходе теплообменника, функционально соединенные с измерительно-вычислительным блоком. Выход теплообменника связан со входом парогенератора. Технический результат изобретения - увеличение диапазонов измеряемых величин и расширение функциональных возможностей устройства. 1 ил.

 

Изобретение относится к теплотехнике и может быть использовано для измерения рабочих характеристик теплообменников.

Известен электродный котел (см. патент РФ №2279605, опуб. 10.07.2006. Бюл. №19), включающий теплоизолированный корпус с крышкой, изоляторы с электродами, теплообменник с трубопроводами и расширительную емкость с манометром, соединенную патрубком с нижней частью электродного котла. Измерение теплового потока производится измерительным прибором (амперметром) при стационарной теплоотдаче в условиях баланса генерируемого и рассеиваемого теплового потока. Для повышения точности измерений производится компенсация падения давления в системе посредством компрессора. Недостатком данного изобретения является низкая производительность процесса измерения и вычисления параметров теплопередачи и ограниченность измеряемых им параметров и диапазонов.

Известно устройство для измерения теплоэффективности теплообменников (Патент на изобретение РФ №2352925 C1, 20.04.2009, Бюл. №11), включающее теплоизолированный корпус с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса, расширительную и нагревательную емкости, измерительно-вычислительный блок, соединенный с электродами и датчиком давления, установленным в теплоизолированном корпусе, причем теплоизолированный корпус является расширительной емкостью, в которой расположена нагревательная емкость с возможностью перетока жидкости.

Недостатком данного изобретения также является ограниченность измеряемых им параметров и диапазонов.

Технический результат изобретения - повышение производительности процесса, увеличение диапазонов измеряемых величин и расширение функциональных возможностей устройства.

Поставленная задача решается тем, что устройство для измерения рабочих характеристик теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами содержит циркуляционный насос, выход которого связан со входом теплообменника, а вход циркуляционного насоса связан с выходом парогенератора, расходомеры жидкости и газа, установленные на входных трубопроводах, датчики давления и температуры теплоносителей, установленные на входе и выходе теплообменника, функционально соединенные с измерительно-вычислительным блоком, причем выход теплообменника связан со входом парогенератора.

На чертеже изображена принципиальная схема устройства для измерения рабочих характеристик теплообменников.

Устройство содержит корпус парогенератора 1 с крышкой 2, покрытые слоем теплоизоляции 3, электроды 4 с проходными изоляторами 5, теплообменник 6, вход которого соединен трубопроводом 7 с выходом корпуса парогенератора 1, а выход - трубопроводом 8 со входом корпуса парогенератора 1. К нижней части корпуса парогенератора 1 присоединена расширительная емкость 9 с вентилями для заправки контура водой 10.1 и подачи или выпуска воздуха 10.2. Расширительная емкость 9 расположена выше уровня спускного воздушного вентиля 10.3, расположенного на теплообменнике 6. Нижняя часть корпуса парогенератора 1 снабжена вентилем 10.4 для слива воды из контура, а крышка 2 имеет отверстие, соединенное с вентилем 10.5 для спуска воздуха из верхней части корпуса парогенератора 1. Электропитание и управление элементов устройства, а именно: электродов 4, циркуляционного насоса 11, вентилятора 12, осуществляется со шкафа управления 13, а регистрация и вычисление параметров рабочего процесса теплообменника 6 осуществляется посредством измерительно-вычислительного блока 14, соединенного электрически со шкафом управления 13, электродами 4, датчиками давления 15.1-15.5, датчиками температуры 16.1-16.4, расходомерами теплоносителей 17.1 и 17.2. Датчики давления 15.1-15.5 и датчики температуры 16.1-16.4 установлены на входе и выходе теплообменника 6.

Устройство для измерения рабочих характеристик теплообменников работает следующим образом. Перед началом работы с помощью вентиля 10.1 систему, состоящую из элементов 1, 6, 7, 8, и 9, заполняют водой, причем вентили 10,2, 10.3 и 10,5 остаются в открытом состоянии. Сливной вентиль 10.4 при этом закрыт. После вытеснения воздуха водой из элементов системы вентили в последовательности - 10.5, 10.3, 10.1 и 10.2 закрывают. Вентиль 10.6 остается открытым и служит для регулирования давления в системе в зависимости от требуемого давления (разрежения), которое достигается при помощи внешних устройств (на чертеже не указаны). Электропитание (переменное напряжение 220 (380) В) со шкафа управления 13 подают на электроды 4 и электропривод циркуляционного насоса 11, в результате чего происходит нагрев воды в замкнутом контуре и элементов конструкции. Электрическая мощность (тепловой поток), развиваемая электродным узлом, должна быть больше, чем максимальная тепловая нагрузка на теплообменнике 6 (вентилятор 12 включен с максимальной производительностью). После прогрева устройства для измерения рабочих характеристик теплообменников до температуры кипения происходит парообразование, в результате чего паровая фаза П (тепловая нагрузка минимальная, вентилятор 12 выключен) вытесняет жидкую фазу воды Ж в расширительную емкость 9 (объем которой существенно больше объема образовавшейся паровой фазы). Постоянство тепловой нагрузки на теплообменнике 6 предлагаемого устройства приводит к установлению баланса генерируемой и рассеиваемой мощности (теплового потока) в условиях стационарной теплоотдачи при постоянной разности температур между достаточно большим объемом охлаждаемой среды (замеры можно проводить на открытом воздухе, вне помещения) и нагретыми до рабочей температуры поверхностями устройства.

Для измерения теплового потока при изменении характера движения охлаждающей среды, происходящего при моделировании заданной тепловой нагрузки посредством вентилятора 12, необходимо включить привод вентилятора (это может быть двигатель постоянного тока или другой привод с возможностью изменения частоты вращения), выдержать предлагаемое устройство до момента достижения им баланса рассеиваемой и генерируемой мощности и произвести регистрацию полученных значений q1=P1.

Посредством измерительно-вычислительного блока 14 производят измерение и регистрацию значения теплового потока q0=P0, q11 рассеиваемого теплообменником 6 по показанию ваттметра W; значение гидравлического и аэродинамического напоров теплоносителей ΔpW и ΔpL; температур: воды на входе t W вх и выходе t W вых , а также охлаждающего воздуха на входе t L вх и выходе t L вых теплообменника 6. Дополнительно измеряют и регистрируют значения расходов воды GW и воздуха GL.

Измерение значений тепловых потоков и других параметров при других тепловых нагрузках и режимах движения теплоносителей производится аналогично.

Таким образом, по сравнению с прототипом заявляемое устройство позволяет повысить производительность процесса за счет регистрации параметров и их обработку измерительно-вычислительным блоком, увеличить диапазон измеряемых величин и расширить функциональные возможности устройства, т.е. измерить тепловой поток при различных режимах гидравлического и аэродинамического движения теплоносителей и в интервалах исследуемых характеристик.

Устройство для измерения рабочих характеристик теплообменников, включающее теплоизолированный корпус парогенератора с крышкой, изоляторы, электроды, теплообменник, соединенный трубопроводом с крышкой и нижней частью корпуса парогенератора, расширительную емкость, измерительно-вычислительный блок, соединенный с электродами, отличающееся тем, что устройство содержит циркуляционный насос, выход которого связан со входом теплообменника, а вход циркуляционного насоса связан с выходом парогенератора, расходомеры жидкости и газа, установленные на входных трубопроводах, датчики давления и температуры теплоносителей, установленные на входе и выходе теплообменника, функционально соединенные с измерительно-вычислительным блоком, причем выход теплообменника связан со входом парогенератора.



 

Похожие патенты:

Изобретение относится к тепловым измерениям и может быть использовано при измерениях мощности тепловых потерь, а также для определения зависимости тепловых потерь в приборах от параметров протекающего тока.

Изобретение относится к технике измерений на СВЧ. .

Изобретение относится к влагометрии. .

Устройство относится к области измерительной техники и может быть использовано для теплового контроля материалов. Устройство содержит источник импульсного нагрева, четыре термопары, четыре усилителя, дифференциатор, семь интеграторов, пять компараторов, шесть масштабных усилителей, датчик длительности импульса нагрева, четыре блока деления, три блока умножения, экстрематор, переключатель, два делителя частоты, четыре блока памяти, шесть сумматоров, источник опорного напряжения, пять блоков вычитания, блок управления, шесть блоков памяти, переключатель, четыре блока деления и два квадратора.

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов.

Изобретение относится к области исследования теплофизических характеристик материалов и может быть использовано при тепловых испытаниях твердых материалов. Заявлен способ измерения теплофизических свойств твердых материалов методом плоского мгновенного источника тепла, заключающийся в том, что образец исследуемого материала изготавливают в виде трех пластин.

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и угловому отклонению вектора температурного градиента от вектора ускорения свободного падения, совпадающего с вектором силы тяжести.

Изобретение предназначено для комплексного определения основных теплофизических свойств твердого тела и может применяться в строительстве и теплоэнергетике. Устройство состоит из источника инфракрасного излучения, твердого тела и системы охлаждения твердого тела, работающей с помощью вентиляционных отверстий на крышке устройства и перфорированной перегородки.

Изобретение относится к области теплофизики и может быть использовано при проведении мероприятий неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов.

Изобретение относится к текстильной и легкой промышленности и может быть использовано для определения теплозащитных свойств материалов и пакетов одежды. Сущность изобретения заключается в измерении времени остывания аккумулятора тепла, помещенного внутрь материала, пакета одежды, в заданном интервале температур и определении суммарного теплового сопротивления образца.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для определения теплового сопротивления и теплопроводности строительных конструкций.

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов, и может быть использовано для определения удельной теплоемкости материалов.

Изобретение относится к области исследования изменения теплофизических свойств конструкционных материалов при нанообработке нестационарным методом неразрушающего контроля.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого и эталонного материала с постоянной скоростью по криволинейной траектории. При этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими. После чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 6 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Осуществляют непрерывный равномерный нагрев поверхности эталонного/исследуемого изотропного материала от перемещаемого инфракрасного источника нагрева. При этом с началом перемещения радиационную температуру измеряют на поверхности эталонного изотропного материала с известными теплофизическими параметрами в одной точке пространственной сетки поверхности эталонного изотропного материала, попадаемой в объектив тепловизионного приемника. После чего радиационную температуру измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала в процессе остывания. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения теплофизических параметров исследуемого изотропного материала. Технический результат - повышение точности получаемых данных. 7 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта. Располагают тепловизионный приемник на заданном расстоянии d от оси геометрического центра исследуемого объекта и совершают тепловизионным приемником круговое движение с постоянной скоростью относительно геометрического центра объекта, либо тепловизионный приемник, размещают неподвижно на заданном расстоянии d от оси геометрического центра исследуемого объекта, осуществляя вращения с постоянной скоростью исследуемого изотропного объекта и фона относительно оси поворотной конструкции, на которой они расположены. Формируют набор термограмм круговых разверток радиационных инфракрасных изображений объекта и фона, полученных в разные моменты времени. Применяют разностную модель с использованием неявных схем. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 5 ил.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Устройство применимо при нагреве поверхности образца и регистрации радиационной температуры от образцов с покрытием известного значения степени черноты и без покрытия. Устройство обеспечивает локализацию области измеряемого участка посредством специального защитного экрана от воздействия помех, а также создание локальной области нагрева, стабильной по температуре и площади от специального источника тепла. Также предусматривается применение ИК-метки для предварительной идентификации параметров теплового поля и работы с наименьшими потерями. Технический результат - повышение достоверности определения степени черноты поверхности материалов. 6 з. п. ф-лы, 5 ил.

Изобретение относится к способам определение теплопроводности и температуропроводности материалов. В соответствии с предлагаемым способом регистрируют электрические сигналы, соответствующие начальным температурам поверхностей исследуемого образца материала по меньшей мере двух эталонных образцов с известными теплопроводностью и температуропроводностью. Осуществляют нагрев поверхностей исследуемых и эталонных образцов оптическим источником тепла и регистрируют электрические сигналы, соответствующие температурам нагретых поверхностей исследуемых и эталонных образцов по линии нагрева, а также параллельно линии нагрева на расстоянии от нее. Теплопроводность и температуропроводность исследуемого образца определяют на основе разности выходных электрических сигналов, соответствующих нагретым и ненагретым поверхностям исследуемых и эталонных образцов. Технический результат - повышение точности определения теплопроводности, температуропроводности и объемной теплоемкости материалов без предварительной обработки поверхности материалов для выравнивания их оптических характеристик. 6 з.п. ф-лы, 1 ил.

Изобретение относится к теплофизике и может быть использовано для определения степени черноты поверхности композитных и тонкопленочных материалов. Способ основан на применении нагрева поверхности образца и регистрации радиационной температуры от образца с покрытием известного значения степени черноты и от образца без покрытия. Заявляемое решение обеспечивает локализацию области измеряемого участка посредством специального экрана от воздействия помех, а также создание локальной области нагрева, стабильной по температуре и площади от специального источника тепла направленного действия. Также предусматривается применение ИК-метки для предварительной идентификации параметров теплового поля и работы с наименьшими потерями. Технический результат - повышение достоверности определения степени черноты поверхности материалов. 10 з.п. ф-лы, 4 ил.

Изобретение относится к бесконтактным методам исследований теплофизических характеристик твердых тел и может быть использовано для исследований теплофизических характеристик изделий, используемых в авиакосмической, машиностроительной и энергетической промышленности. Устройство для бесконтактного определения коэффициента температуропроводности твердых тел содержит плоский оптический нагреватель и тепловизор, подключенные к компьютеру, оптически непрозрачную маску для формирования пространственного поля нагрева. Устройство также дополнительно содержит оптический объектив, предназначенный для фокусирования теплового излучения плоского оптического нагревателя и оптически непрозрачную шторку, позволяющую открывать и закрывать тепловое излучение плоского оптического нагревателя в определенные моменты времени. Технический результат - повышение точности бесконтактного определения коэффициента температуропроводности твердых тел. 1 ил.
Наверх