Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающим время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 11 з.п. ф-лы, 2 ил.

 

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям.

Известен двухконтурный, двухвальный турбореактивный двигатель (ТРД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва, изд. «Наука», 2011 г., стр.41-46, рис.1.24).

Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М., изд. Машиностроение, 1984, стр.17-120).

Известен способ испытания турбореактивного двигателя по определению ресурса и надежности работы, заключающийся в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С. Скубачевский. Испытание воздушно-реактивных двигателей. Москва, Машиностроение, 1972, с.13-15).

Известен способ испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации, вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Задача группы изобретений, связанных единым творческим замыслом, заключается в разработке способа серийного производства турбореактивного двигателя и выполненного заявляемым способом ТРД с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Поставленная задача решается тем, что в способе серийного производства турбореактивного двигателя, согласно изобретению, изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя; собирают модули в количестве не менее восьми - от компрессора низкого давления (КНД) до всережимного поворотного реактивного сопла; в процессе изготовления КНД собирают статор, в котором устанавливают входной, не более трех промежуточных направляющих аппаратов и выходной спрямляющий аппарат, а также собирают ротор, включая вал, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес с системой лопаток, при этом формируют кольцевые участки внутренней поверхности воздухозаборного канала проточной части КНД из профилированных в направлении потока воздуха элементов лопаток рабочих колес и направляющих аппаратов КНД; собирают, предпочтительно, помодульно двигатель, который выполняют двухконтурным, двухвальным, при этом устанавливают на технологическом стапеле промежуточный корпус; газогенератор, включая компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД, основную камеру сгорания и турбину высокого давления (ТВД); затем перед промежуточным корпусом устанавливают КНД, а за газогенератором последовательно соосно устанавливают турбину низкого давления (ТНД), смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло, включающее поворотное устройство, которое, предпочтительно, разъемно прикрепляют неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, которое аналогично прикрепляют к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; кроме того, в процессе изготовления КНД входной направляющий аппарат (ВНА) оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек, которые устанавливают равномерно распределение по кругу входного сечения ВНА и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА; причем после сборки не менее чем один ТРД из партии серийно произведенных ТРД, для репрезентативности, предпочтительно три-пять экземпляров двигателя, подвергают испытанию по многоцикловой программе, указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ТРД, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающим время полета в 5-6 раз; при этом различный размах диапазона изменения режимов работы двигателя реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.

При этом ось вращения поворотного устройства могут выполнять повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на 32÷34° по часовой стрелке (вид по н.п.) для правого двигателя и на угол не менее 30°, предпочтительно на 32÷34° против часовой стрелки (вид по н.п.) для левого двигателя.

При монтаже ось регулируемого реактивного сопла могут выполнять отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий (2°÷3°30′).

Промежуточный корпус могут наделять функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и устанавливают между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник, а над промежуточным корпусом на внешнем корпусе двигателя устанавливают коробку приводов двигательных агрегатов.

Статор КВД могут выполнять содержащим входной направляющий аппарат, не более восьми промежуточных направляющих аппаратов и выходной спрямляющий аппарат.

Радиальные стойки ВНА могут устанавливать равномерно распределенно по кругу входного сечения ВНА, преимущественно в плоскости, нормальной к оси двигателя, с угловой частотой 3,0÷4,0 ед./рад.

Входной направляющий аппарат компрессора низкого давления могут оснащать, предпочтительно, двадцатью тремя радиальными стойками, соединяющими наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем радиальные стойки выполняют состоящими из неподвижного полого и управляемого подвижного элементов, при этом, по меньшей мере, часть радиальных стоек совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.

В процессе монтажа, предпочтительно, разъемно могут объединять КНД с ТНД по валу ротора с возможностью передачи компрессору крутящего момента от указанной турбины, а КВД аналогично объединяют с ТВД с образованием общего вала ротора КВД-ТВД с возможностью получения крутящего момента компрессором высокого давления от указанной турбины высокого давления.

Вал ротора КВД-ТВД могут выполнять с большим диаметром и более коротким, чем объединенный вал КНД-ТНД, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и ТНД и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов.

Корпуса наружного и внутреннего контуров двигателя могут монтировать фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления, при этом в воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева ВНА КНД, подсистемы наддува опор роторов компрессоров и турбин.

Подсистему антиобледенительного обогрева ВНА могут сообщать с КВД каналом забора подогретого воздуха с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом указанного компрессора.

Часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.

Испытательный цикл могут формировать на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

Поставленная задача в части турбореактивного двигателя решается тем, что турбореактивный двигатель, согласно изобретению, выполнен описанным выше способом.

Технический результат, обеспечиваемый группой изобретений, связанных единым творческим замыслом, состоит в разработке способа серийного производства турбореактивного двигателя и выполненного заявляемым способом двигателя, имеющего совокупность модулей ТРД с приведенными в изобретении параметрами, с улучшенными эксплуатационными характеристиками, а именно тягой, экспериментально проверенным ресурсом, а также с повышенной надежностью двигателя в процессе эксплуатации. Повышение достоверности результатов испытаний, проводимых на этапе промышленного производства, достигается за счет разработанного в изобретении чередования режимов при выполнении этапов испытания, которые по длительности превышают программное время полета. При этом предварительно формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей и исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный, либо полный форсированный режим до полного останова двигателя и затем формируют репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов. Это позволяет повысить корректность и расширить репрезентативность оценки ресурса и надежности работы двигателя на этапах создания, доводки, серийного промышленного производства и летной эксплуатации ТРД и обеспечивает повышенный ресурс двигателя в условиях, характерных для последующей реальной многорежимной работы ТРД в полетных условиях на высокоманевренных самолетах.

Сущность изобретения поясняется чертежами, где:

на фиг.1 изображен турбореактивный двигатель, продольный разрез;

на фиг.2 - входной направляющий аппарат КНД, вид сверху.

Способ серийного производства турбореактивного двигателя

Изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Затем собирают модули в количестве не менее восьми - от компрессора 1 низкого давления (КНД) до всережимного поворотного реактивного сопла.

В процессе изготовления КНД 1 собирают статор, в котором устанавливают входной направляющий аппарат 2, не более трех промежуточных направляющих аппаратов 3 и выходной спрямляющий аппарат 4. Также собирают ротор, включая вал 5, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес 6 с системой лопаток 7. При этом из профилированных в направлении потока воздуха элементов лопаток 7 рабочих колес 6 и лопаток промежуточных направляющих аппаратов 3 формируют кольцевые участки внутренней поверхности воздухозаборного канала 8 проточной части КНД 1.

Собирают, предпочтительно, помодульно двигатель. ТДР выполняют двухконтурным, двухвальным. При этом устанавливают на технологическом стапеле промежуточный корпус 9, образующий газогенератор компрессор 10 высокого давления, а также основную камеру 11 сгорания и турбину 12 высокого давления. Компрессор 10 высокого давления включает статор, а также ротор с валом 13 и системой оснащенных лопатками 14 рабочих колес 15. Число рабочих колес 15 КВД 10 не менее чем в два раза превышает число рабочих колес 6 КНД 1. Перед промежуточным корпусом 9 устанавливают КНД 1, а за газогенератором последовательно соосно устанавливают турбину 16 низкого давления, смеситель 17, фронтовое устройство 18, форсажную камеру 19 сгорания и поворотное реактивное сопло. Поворотное реактивное сопло включает поворотное устройство 20, которое, предпочтительно, разъемно прикрепляют неподвижным элементом к форсажной камере 19 сгорания, и регулируемое реактивное сопло 21, которое аналогично прикрепляют к подвижному элементу поворотного устройства 20 с возможностью выполнения поворотов для изменения направления вектора тяги.

В процессе изготовления КНД 1 входной направляющий аппарат 2 оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек 22. Радиальными стойками 22 соединяют наружное и внутреннее кольца 23 и 24 соответственно ВНА 2 с возможностью передачи нагрузок от внешнего корпуса 25 двигателя на переднюю опору. Радиальные стойки 22 устанавливают равномерно распределенно по кругу входного сечения ВНА 2, преимущественно, в плоскости, нормальной к оси двигателя, с угловой частотой 3,0÷4,0 ед./рад, и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком 26 ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА 2.

После сборки не менее чем один ТРД из партии серийно произведенных ТРД, для репрезентативности, предпочтительно, три-пять экземпляров двигателя, подвергают испытанию по многоцикловой программе. Указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ТРД, превышающей программное время полета. Для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающим время полета в 5-6 раз. Различный размах диапазона изменения режимов работы двигателя реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ». В других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом.

Ось вращения поворотного устройства 20 выполняют повернутой относительно горизонтальной оси на угол не менее 30°, предпочтительно на 32÷34° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно, на 32÷34° против часовой стрелки (вид по направлению полета) для левого двигателя.

При монтаже ось регулируемого реактивного сопла 21 выполняют отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий (2°÷3°30′).

Промежуточный корпус 9 наделяют функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров 1, 10 и турбин 12, 16 с последующей передачей на внешние силовые элементы и устанавливают между КНД 1 и КВД 10, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры 27 и 28 соответственно. В наружном контуре 27 вокруг корпуса основной камеры 11 сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник 29. Над промежуточным корпусом 9 на внешнем корпусе 25 двигателя устанавливают коробку приводов двигательных агрегатов (на чертежах не показано).

Статор КВД 10 выполняют содержащим входной направляющий аппарат 30, не более восьми промежуточных направляющих аппаратов 31 и выходной спрямляющий аппарат 32.

Входной направляющий аппарат 2 КНД 1 содержит предпочтительно двадцать три радиальные стойки 22, состоящие из неподвижного полого и управляемого подвижного элементов. По меньшей мере, часть радиальных стоек 22 совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД 1.

В процессе монтажа, предпочтительно разъемно, объединяют КНД 1 с ТНД 16 по валу 5 ротора с возможностью передачи компрессору 1 крутящего момента от указанной турбины 16. КВД 10 аналогично объединяют с ТВД 12 с образованием общего вала 13 ротора КВД-ТВД с возможностью получения крутящего момента компрессором 10 высокого давления от турбины 12 высокого давления.

При этом вал 5 ротора КВД-ТВД выполняют с большим диаметром и более коротким, чем объединенный вал 13 КНД-ТНД, по меньшей мере, на совокупную осевую длину промежуточного корпуса 9, основной камеры 11 сгорания и ТНД 16 и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов 5 и 13.

Корпуса наружного и внутреннего контуров двигателя монтируют фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления. В воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева входного направляющего аппарата 2 КНД 1, подсистемы наддува опор роторов компрессоров и турбин.

Подсистему антиобледенительного обогрева ВНА 2 сообщают с КВД 10 каналом забора подогретого воздуха (на чертежах не показано) с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом 15 КВД 10.

Часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

Испытательный цикл формируют на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

Турбореактивный двигатель выполнен описанным выше способом производства.

Пример реализации испытания турбореактивного двигателя на этапе серийного производства ТРД.

Испытанию подвергают ТРД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 ч на максимальном режиме, из них 5 ч на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс.) и 300 с режима 0,8 Макс. до форсированного (Фор) режима.

Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки К=1,2.

Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний:

1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)*1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.

2. Принимают продолжительность этапа испытаний 5 ч и определяют количество пятичасовых этапов 600:5=120.

3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс. 400*1,2=480 и от 0,8 Макс. до Фор 300*1,2=360.

4. Каждый пятичасовой этап включает 840:120=7 приемистостей от режима МГ до Макс 480:120=4 и приемистостей с режима 0,8 Макс до Фор 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин 360:120=3 мин.

5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс и 0,8 Макс до Фор в пределах установленного выше объема испытательных этапов.

Выполняют испытания ТРД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.

1. Способ серийного производства турбореактивного двигателя (ТРД), характеризующийся тем, что изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя; собирают модули в количестве не менее восьми - от компрессора низкого давления (КНД) до всережимного поворотного реактивного сопла; в процессе изготовления КНД собирают статор, в котором устанавливают входной, не более трех промежуточных направляющих аппаратов и выходной спрямляющий аппарат, а также собирают ротор, включая вал, на котором устанавливают и жестко соединяют дисками не более четырех рабочих колес с системой лопаток, при этом формируют кольцевые участки внутренней поверхности воздухозаборного канала проточной части КНД из профилированных в направлении потока воздуха элементов лопаток рабочих колес и направляющих аппаратов КНД; собирают помодульно двигатель, который выполняют двухконтурным, двухвальным, при этом устанавливают на технологическом стапеле промежуточный корпус; газогенератор, включая компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД, основную камеру сгорания и турбину высокого давления (ТВД); затем перед промежуточным корпусом устанавливают КНД, а за газогенератором последовательно соосно устанавливают турбину низкого давления (ТНД), смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло, включающее поворотное устройство, которое, предпочтительно, разъемно прикрепляют неподвижным элементом к форсажной камере сгорания, и регулируемое реактивное сопло, которое аналогично прикрепляют к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги; кроме того, в процессе изготовления КНД входной направляющий аппарат (ВНА) оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек, которые устанавливают равномерно распределенно по кругу входного сечения ВНА и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком ВНА, составляющим менее 30% от полной площади входного круга, очерченного внешним радиусом проточной части ВНА; причем после сборки не менее чем один ТРД из партии серийно произведенных ТРД, для репрезентативности, три-пять экземпляров двигателя подвергают испытанию по многоцикловой программе, указанная программа испытаний включает чередование режимов при выполнении этапов испытания длительностью работы ТРД, превышающей программное время полета, для чего сначала формируют типовые полетные циклы и определяют повреждаемость наиболее нагруженных деталей, исходя из этого определяют необходимое количество циклов нагружения при испытании, а затем формируют и производят полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающим время полета в 5-6 раз; при этом различный размах диапазона изменения режимов работы двигателя реализуют, изменяя уровень перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществляют в темпе приемистости с последующим сбросом, а ось вращения поворотного устройства выполняют повернутой относительно горизонтальной оси на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя.

2. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что при монтаже ось регулируемого реактивного сопла выполняют отклоненной вниз от нейтрального положения оси двигателя на угол, составляющий 2°÷3° 30′.

3. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что промежуточный корпус наделяют функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и устанавливают между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания собирают не менее чем из шестидесяти трубчатых блок-модулей кольцевой воздухо-воздушный теплообменник, а над промежуточным корпусом на внешнем корпусе двигателя устанавливают коробку приводов двигательных агрегатов.

4. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что статор КВД выполняют содержащим входной направляющий аппарат, не более восьми промежуточных направляющих аппаратов и выходной спрямляющий аппарат.

5. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что радиальные стойки ВНА устанавливают равномерно распределенно по кругу входного сечения ВНА, в плоскости, нормальной к оси двигателя, с угловой частотой 3,0÷4,0 ед./рад.

6. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления оснащают двадцатью тремя радиальными стойками, соединяющими наружное и внутреннее кольца ВНА с возможностью передачи нагрузок от внешнего корпуса двигателя на переднюю опору, причем радиальные стойки выполняют состоящими из неподвижного полого и управляемого подвижного элементов, при этом, по меньшей мере, часть радиальных стоек совмещают с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.

7. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что в процессе монтажа разъемно объединяют КНД с ТНД по валу ротора с возможностью передачи компрессору крутящего момента от указанной турбины, а КВД аналогично объединяют с ТВД с образованием общего вала ротора КВД-ТВД с возможностью получения крутящего момента компрессором высокого давления от указанной турбины высокого давления.

8. Способ серийного производства турбореактивного двигателя по п.8, отличающийся тем, что вал ротора КВД-ТВД выполняют с большим диаметром и более коротким, чем объединенный вал КНД-ТНД, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и ТНД и устанавливают с коаксиальным охватом последнего с возможностью автономного вращения указанных валов.

9. Способ серийного производства турбореактивного двигателя по п.4, отличающийся тем, что корпуса наружного и внутреннего контуров двигателя монтируют фрагментами с возможностью частичного совмещения с монтажом воздушной, электрической, гидравлических систем и системы управления, при этом в воздушной системе выделяют подсистемы охлаждения перегреваемых узлов, а также антиобледенительного обогрева ВНА КНД, подсистемы наддува опор роторов компрессоров и турбин.

10. Способ серийного производства турбореактивного двигателя по п.10, отличающийся тем, что подсистему антиобледенительного обогрева ВНА сообщают с КВД каналом забора подогретого воздуха с возможностью забора последнего из полости, расположенной не менее чем за седьмым рабочим колесом указанного компрессора.

11. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что часть испытательных циклов осуществляют без прогрева на режиме «малый газ» после запуска.

12. Способ серийного производства турбореактивного двигателя по п.1, отличающийся тем, что испытательный цикл формируют на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

13. Турбореактивный двигатель, характеризующийся тем, что выполнен по любому из пп.1-12.



 

Похожие патенты:

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства газотурбинного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) типа АЛ-31Ф перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем, на завершающей стадии капитального ремонта после сборки двигатель подвергают испытаниям на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором, включающим отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, и определяют запасы газодинамической устойчивости компрессора двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения. В способе капитального ремонта турбореактивного двигателя (ТРД), вариантно осуществляемого способами, изложенными в группе изобретений, связанных единым творческим замыслом, последовательно выполняют операции, в совокупности вариантно позволяющие уменьшить трудозатраты, энергоемкость и длительность капитального ремонта, а также повысить эксплуатационные качества и надежность определения влияния климатических условий, оказываемого на изменение эксплуатационных характеристик ТРД.

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и обслуживание модулей, узлов и коммуникационных систем, на завершающей стадии капитального ремонта после сборки двигатель подвергают испытаниям на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором, включающим отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, и определяют запасы газодинамической устойчивости компрессора двигателя.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя.

Изобретение может быть использовано для усовершенствованной диагностики двигателя внутреннего сгорания (ДВС). При реализации способа получают сигналы от датчика угла поворота коленчатого вала (ДУПКВ) ДВС, датчика логической метки (ДЛМ) и датчика вибрации (ДВ). При каждом сигнале ДЛМ разделяют сигнал ДВ на множество циклов, причем каждый цикл соответствует углу 720° поворота коленчатого вала (КВ). Проверяют, что из указанного множества циклов исключены циклы с переменными параметрами. Определяют фактическое положение КВ с использованием стохастической фильтрации и квазинепрерывного представления сигнала ДУПКВ. Определяют фактическое положение КВ с использованием адаптивного фильтра Калмана или нелинейного стохастического фильтра. Определяют порождающую функцию базиса Рисса на основании характеристик ДУПКВ и аппроксимации импульсной характеристики ДВ. Обеспечивают вторичную дискретизацию сигналов с заменой аргумента; дискретизацию обратной функции; получение дискретного вейвлет-преобразования (ВП); получение непрерывного ВП; получение дискретного ВП обратной функции и вычисление выходных данных. Двумерные массивы разделяют по предварительно определенным индексам в дискретных преобразованиях и вычисляют эмпирическую функцию распределения вероятностей. Технический результат - повышение точности диагностирования. 2 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в диагностике эффективности охладителя рециркуляции выхлопного газа (EGR) в дизельном двигателе. Способ диагностики эффективности охладителя системы (EGR) в дизельном двигателе заключается в том, что определяют значение температуры газа и давления в выпускном и впускном трубопроводах, осуществляют построение посредством управляющего блока двигателя модели для определения снижения температуры y=ΔТ в охладителе EGR, причем модель имеет параметр вектора θ и входной вектор x. Выполняют посредством управляющего блока двигателя фазу калибровки модели для оценки смещения h0 системы и расчет посредством управляющего блока двигателя группы первичных невязок ε (θ0, x, ΔТ), начиная от формулы модели и с использованием результатов фазы калибровки. Расчет группы улучшенных невязок εN (θ0) осуществляют по математическому выражению в зависимости от количества образцов, на которых выполняются диагностические испытания. Осуществляют расчет посредством управляющего блока двигателя диагностического показателя S по математическому выражению, использующему корреляционную матрицу R0, рассчитанную по исправной системе. Диагностический показатель S используют для диагноза эффективности охладителя EGR. Технический результат заключается в отказе от использования датчиков температуры в охладителе EGR. 5 з.п. ф-лы, 3 ил.,1 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ГТД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или не соответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного поворотного реактивного сопла, включающего регулируемое реактивное сопло и разъемно прикрепленное к форсажной камере сгорания поворотное устройство, ось вращения которого выполнена повернутой относительно горизонтальной оси на угол не менее 30°. В программу доводочных испытаний с последующей доводочной доработкой включают испытания двигателя на газодинамическую устойчивость работы компрессора. Опытный двигатель испытан на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на стадии доводки ГТД при повышении достоверности определения границ допустимого диапазона варьирования тяги. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит коробку приводов двигательных агрегатов. Двигатель проверен на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в повышении основных эксплуатационных характеристик двигателя, объемности и надежности обеспечения газодинамической устойчивости работы ГТД, основанной на высокой статической достоверности данных о допустимых границах частотных режимов вращения роторов компрессора, с одновременным упрощением технологии и сокращением трудо- и энергоемкости процесса испытания двигателя. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретные или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ГТД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ГТД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 10 з.п. ф-лы, 4 ил.
Изобретение может быть использовано для диагностики топливной аппаратуры высокого давления дизельных автотракторных двигателей в условиях эксплуатации. Способ определения технического состояния топливной аппаратуры дизельного двигателя, заключается в том, что на работающем двигателе получают зависимости изменения давления топлива в топливопроводе высокого давления и сравнивают эти зависимости с эталонными. Для получения зависимости изменения давления на работающем при минимально устойчивой частоте вращения двигателе резко увеличивают до максимума подачу топлива и в процессе свободного разгона получают искомые зависимости. Технический результат заключается в повышении точности технического состояния топливной аппаратуры.

Изобретение может быть использовано для диагностики двигателей внутреннего сгорания (ДВС). Способ заключается в записи шумов в цилиндре ДВС. Запись осуществляется при прокручивании вала ДВС в течение 1-2 секунд от постороннего источника с выключенной топливоподачей. Датчик рабочих шумов (микрофон) размещается в цилиндре ДВС и измеряет девять известных составляющих. Способ основан на сравнении формы импульса спектра рабочих шумов диагностируемого ДВС и формы эталона импульса спектра рабочих шумов. Приведена последовательность операций диагностирования для двухтактного и четырехтактного ДВС. Технический результат заключается в повышении достоверности диагностических данных. 2 н.п. ф-лы, 17 ил.

Изобретение относится к техническому обслуживанию автотранспортных машин, в частности к способам определения экологической безопасности технического обслуживания автомобилей, тракторов, комбайнов и других самоходных машин. Способ определения экологической безопасности технического обслуживания машин включает фиксацию используемого материала на экран и его оценку. Фиксацию материала, попадающего при выполнении смазочно-заправочных операций, осуществляют на экран, размещенный под обслуживаемой машиной, при проведении каждой смазочно-заправочной операции. Экран взвешивают до и после проведения каждой операции, после чего производят оценку наличия материала на экране. Способ позволяет определить по массе материала на экране экологическую безопасность выполнения каждой смазочно-заправочной операции при техническом обслуживании машины. 1 ил.

Изобретение может быть использовано в топливных системах двигателей внутреннего сгорания транспортных средств. Транспортное средство содержит топливную систему (31), имеющую топливный бак (32) и бачок (30), диагностический модуль, имеющий контрольное отверстие (56), датчик (54) давления, клапан-распределитель (58), насос (52) и контроллер. Диагностический модуль связывает топливную систему с атмосферой для обеспечения первой конфигурации, в которой клапан-распределитель (58) находится в первом положении, соединяющем по текучей среде бачок (30) и атмосферу с незадействованными насосом (52) и отверстием (56). Диагностический модуль связывает топливную систему с атмосферой для обеспечения второй конфигурации, в которой клапан-распределитель (58) находится в первом положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52). Диагностический модуль связывает топливную систему с атмосферой для обеспечения третьей конфигурации, в которой клапан-распределитель (58) находится во втором положении, а отверстие (56) соединяет по текучей среде бачок (30) и атмосферу с задействованным насосом (52), при этом отверстие (56) обеспечивает независимый проток из бачка (30) в атмосферу по сравнению с клапаном-распределителем, когда модуль находится во втором и третьем положениях. Контроллер выполнен с возможностью измерения контрольного давления на отверстии (56) для выдачи динамически установившегося порогового значения, изолирования топливной системы в состояние низкого давления, измерения нескольких давлений в системе и выдачи кода в ответ на сравнение указанных нескольких давлений с динамически установившемся пороговым значением. Раскрыты варианты выполнения транспортных средств. Технический результат заключается в улучшении точности диагностирования. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к области диагностики, а именно к способам оценки технического состояния роторных агрегатов, и может быть использовано при оценке состояния подшипниковых узлов, например колесно-моторных блоков (КМБ) подвижного состава железнодорожного транспорта. Согласно способу диагностики технического состояния роторных агрегатов задают величины вероятностей ложной тревоги и пропуска дефекта, устанавливают нижнее и верхнее критические значения, ограничивающие зону неопределенности, измеряют параметры вибрации узлов роторных агрегатов и значение сопутствующего фактора, например частоты вращения вала. Затем определяют значения диагностических признаков, сравнивают их с критическими значениями. В случае попадания диагностического признака в зону неопределенности проводят дополнительное испытание при другом значении сопутствующего фактора, например на повышенной частоте вращения. По результатам сравнения измеренных значений диагностических признаков с соответствующими критическими значениями определяют техническое состояние роторных агрегатов. В результате повышается достоверность диагностирования технического состояния роторных агрегатов. 2 ил.
Наверх