Теплопередающая текучая среда, заменяющая r-410а

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей. Описывается применение трехкомпонентной композиции 2,3,3,3-тетрафторпропена в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A. Указанная композиция содержит от 40 до 58 мас. % 2,3,3,3-тетрафторпропена, от 2 до 10 мас. % 1,1-дифторэтана и от 40 до 50 мас. % дифторметана. Описывается также способ теплопередачи с использованием указанной композиции. Изобретение обеспечивает нулевое значение истощения озонового слоя (ODP) и пониженное по сравнению с R-410A значение потенциала потепления (GWP) при повышенном коэффициенте полезного действия. 2 н. и 7 з.п. ф-лы, 3 табл.

 

Настоящее изобретение относится к применению трехкомпонентных композиций 2,3,3,3-тетрафторпропена в качестве теплопередающих текучих сред, заменяющих R-410A.

Проблемы, которые вызваны веществами, обладающими потенциалом истощения озонового слоя (ODP), обсуждались в Монреале, где был подписан протокол с требованием о сокращении производства и применении хлорфторуглеродов (CFC). В данный протокол внесены изменения с требованием о запрещении CFC и распространении его положений на другие продукты, включая хлорфторуглеводороды (HCFC).

Производители холодильников и кондиционеров воздуха произвели значительные капиталовложения для замены данных хладагентов и, соответственно, выпустили на рынок фторуглеводороды (HFC).

Хлорфторуглеводороды, используемые в качестве пенообразователей или растворителей, также были заменены HFC.

В автомобильной промышленности производители автомобильных систем кондиционирования воздуха, продаваемых во многих странах, перешли с хлорфторуглеродного хладагента (CFC-12) на фторуглеводородный хладагент 1,1,1,2-тетрафторэтан (HFC-134a), который является менее вредным для озонового слоя. Однако в отношении целей, которые поставил Киотский протокол, HFC-134a (GWP = 1300) считается имеющим более высокий потенциал потепления. Вклад текучей среды в парниковый эффект количественно оценивает критерий GWP (потенциал глобального потепления), который суммирует потенциал потепления по сравнению с диоксидом углерода, потенциал которого принят как единичный.

Поскольку диоксид углерода не является токсичным, не воспламеняется и имеет очень низкий GWP, его предложили в качестве хладагента для систем кондиционирования воздуха вместо HFC-134a. Однако применение диоксида углерода имеет несколько недостатков, в особенности связанных с очень высоким давлением для его применения в качестве хладагента в существующих устройствах и технологиях.

Кроме того, смесь R-410A, состоящую из 50 мас.% пентафторэтана и 50 мас.% HFC-134a, широко используют в качестве хладагента в стационарных кондиционерах воздуха. Однако у данной смеси значение GWP составляет 2100.

Документ JP 4110388 описывает применение фторпропенводородов (hydrofluorepropenes) формулы C3HmFn, где m и n представляют собой целые числа от 1 до 5 включительно, и m+n=6, в частности, тетрафторпропена и трифторпропена в качестве теплопередающих текучих сред.

Документ WO 2004/037913 описывает применение композиций, включающих, по меньшей мере, один фторалкен, содержащий три или четыре атома углерода, в частности пентафторпропен и тетрафторпропен, у которых значение GWP предпочтительно составляет не более чем 150, в качестве теплопередающих текучих сред.

Документ WO 2005/105947 описывает добавление к тетрафторпропену, предпочтительно 1,3,3,3-тетрафторпропену, дополнительного пенообразователя, включая дифторметан, пентафторэтан, тетрафторэтан, дифторэтан, гептафторпропан, гексафторпропан, пентафторпропан, пентафторбутан, воду и диоксид углерода.

Документ WO 2006/094303 описывает азеотропную композицию, содержащую 7,4 мас.% 2,3,3,3-тетрафторпропена (HFO-1234yf) и 92,6 мас.% дифторметана (HFC-32). Данный документ также описывает азеотропную композицию, содержащую 91 мас.% 2,3,3,3-тетрафторпропена и 9 мас.% дифторэтана (HFC-152a).

Теплообменник представляет собой устройство для передачи тепловой энергии от одной текучей среды к другой без их перемешивания. Поток тепла проходит через поверхность теплообмена, которая разделяет текучие среды. Главным образом, данный способ используют для охлаждающих или нагревающих жидкостей или газов, которые невозможно охлаждать или нагревать непосредственно.

В компрессорных системах теплообмен между хладагентом и источниками тепла происходит через теплопередающие текучие среды. Эти теплопередающие текучие среды существуют в газообразном состоянии (воздух в системах кондиционирования воздуха и охлаждения непосредственным испарением хладагента), в виде жидкости (вода в бытовых тепловых насосах, раствор гликоля) или двухфазной системы.

Существуют разнообразные режимы теплопередачи:

- две текучие среды идут параллельно в одном направлении: прямоточный режим (антиметодический);

- две текучие среды идут параллельно, но в противоположных направлениях: противоточный режим (методический);

- две текучие среды идут в перпендикулярных направлениях: перекрестный режим. Перекрестное течение может иметь прямоточную или противоточную тенденцию;

- одна из двух текучих сред делает поворот на 180 градусов в более широком трубопроводе, через который проходит вторая текучая среда. Такая конфигурация сопоставима с прямоточным теплообменником на одной половине своей длины и с противоточным теплообменником на другой половине: режим булавочной головки.

Заявитель обнаружил в настоящее время трехкомпонентные композиции 2,3,3,3-тетрафторпропена, 1,1-дифторэтана и дифторметана, которые являются особенно полезными в качестве теплопередающей текучей среды.

Данные композиции одновременно имеют нулевой ODP и значение GWP ниже GWP существующих теплопередающих текучих сред, включая R-410A.

Кроме того, их коэффициент полезного действия ((КПД): определенный как соотношение полезной энергии, вырабатываемой системой, и энергии, переданной системе или потребленной ею, превышает КПД существующих теплопередающих текучих сред, включая R-410A.

Композиции, используемые в качестве теплопередающей текучей среды в настоящем изобретении, имеют критическую температуру выше 87°C (критическая температура R-410A составляет 70,5°C). Данные композиции можно использовать в бытовых тепловых насосах для подачи тепла при температурах до 65°C, но также при повышенных температурах до 87°C (в данном интервале температур невозможно использовать R-410A).

Композиции, используемые в качестве теплопередающей текучей среды в настоящем изобретении, имеют температуры на выходе из компрессора, которые эквивалентны значениям, обеспечиваемым в случае R-410A. Значения давления в конденсаторе ниже, чем соответствующие значения в случае R-410A, и коэффициенты сжатия также ниже. Данные композиции можно использовать в такой же компрессорной технологии, в которой используют R-410A.

Композиции, используемые в качестве теплопередающей текучей среды в настоящем изобретении, имеют значения плотности насыщенного пара ниже соответствующих значений R-410A. Значения объемной производительности, обеспечиваемой данными композициями, эквивалентны соответствующим значениям в случае R-410A (составляют от 91 до 95%). Благодаря таким свойствам данные композиции используют в трубопроводах меньшего диаметра и, следовательно, с меньшей потерей в паровых трубопроводах, что повышает КПД установок.

Данные композиции являются подходящими предпочтительно в холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Таким образом, данные композиции можно использовать в качестве теплопередающей текучей среды в бытовых тепловых насосах, необязательно реверсивных, в системах кондиционирования воздуха и в системах низкотемпературного и среднетемпературного охлаждения, использующих компрессорные системы с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией. Таким образом, настоящее изобретение относится к применению трехкомпонентных композиций 2,3,3,3-тетрафторпропена, 1,1-дифторэтана и дифторметана в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A.

Предпочтительно данные композиции используют в холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Предпочтительно композиции, используемые в настоящем изобретении, содержат в основном от 5 до 83 мас.% 2,3,3,3-тетрафторпропена, от 2 до 50 мас.% 1,1-дифторэтана и от 15 до 75 мас.% дифторметана.

Преимущественно используемые композиции содержат в основном от 5 до 63 мас.% 2,3,3,3-тетрафторпропена, от 2 до 25 мас.% дифторэтана и от 35 до 70 мас.% дифторметана.

Композиции, которые являются особенно предпочтительными, содержат в основном от 40 до 58 мас.% 2,3,3,3-тетрафторпропена, от 40 до 50 мас.% дифторметана и от 2 до 10 мас.% 1,1-дифторэтана.

Композиции, используемые в настоящем изобретении, можно стабилизировать. Стабилизатор предпочтительно составляет не более чем 5 мас.% в расчете на полную массу композиции.

В качестве стабилизаторов можно отметить, в частности, нитрометан, аскорбиновую кислоту, терефталевую кислоту, азолы, в том числе толилтриазол или бензотриазол, фенольные соединения, в том числе токоферол, гидрохинон, трет-бутил гидрохинон, 2,6-ди-трет-бутил-4-метилфенол, эпоксиды (алкильные, необязательно фторированные или перфторированные, или алкенильные, или ароматические), в том числе н-бутилглицидиловый простой эфир, гександиолдиглицидиловый простой эфир, аллилглицидиловый простой эфир, бутилфенилглицидиловый простой эфир, фосфиты, фосфаты, фосфонаты, тиолы и лактоны.

Другая цель настоящего изобретения относится к способу теплопередачи, в котором вышеупомянутые трехкомпонентные композиции 2,3,3,3-тетрафторпропена, 1,1-дифторэтана и дифторметана используют в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A.

Предпочтительно данный способ используют в холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Способ согласно настоящему изобретению можно осуществлять в присутствии смазочных материалов, включая минеральное масло, алкилбензол, полиалкиленгликоль и поливиниловый простой эфир.

Композиции, используемые в настоящем изобретении, являются подходящими для замены R-410A в системах охлаждения, кондиционирования воздуха и бытовых тепловых насосах с существующими установками.

Экспериментальная часть

Вычислительные средства

Уравнение RKS используют для вычисления значений плотности, энтальпии, энтропии и параметров равновесия жидкости и пара смесей. Чтобы использовать данное уравнение, необходимо знать свойства чистых веществ, которые составляют рассматриваемые смеси, а также коэффициенты взаимодействия для каждой двухкомпонентной смеси.

Для каждого чистого вещества требуются следующие данные: температура кипения, критическая температура и давление, кривая давления как функции температуры от температуры кипения до критической температуры, плотность насыщенной жидкости и плотность насыщенного пара как функция температуры.

HFC-32, HFC-152a:

Данные для данных продуктов опубликованы в главе 20 справочника ASHRAE 2005 г. и также доступны при применении программного обеспечения REFROP, разработанного в NIST для вычисления свойства хладагентов.

HFO-1234yf:

Данные для кривой зависимости давления от температуры HFO-1234yf измеряли статическим способом. Критическую температуру и давление измеряли с помощью калориметра C80 (поставщик Setaram). Значения плотности при насыщении как функцию температуры измеряли, используя технологию пикнометра с вибротрубкой, разработанную в лабораториях Парижской горной школы (Ecole de Mines).

Коэффициент взаимодействия двухкомпонентных смесей

В уравнении RKS используют коэффициенты взаимодействия в двухкомпонентной системе, чтобы представить поведение веществ в смесях. Коэффициенты вычисляют как функцию экспериментальных данных для равновесия жидкости и пара.

Способ, используемый для измерений равновесия жидкости и пара, представляет собой способ со статической аналитической ячейкой. Равновесная ячейка включает сапфировую трубку и снабжена двумя электромагнитными пробоотборниками ROLSI™. Она погружена в баню криотермостата HUBER HS40. Магнитную мешалку, приводимую в движение полем, вращающимся с переменной скоростью, используют для ускорения достижения равновесия. Образцы анализируют с помощью газового хроматографа HP5890 серии II с катарометром (TCD).

HFC-32/HFO-1234yf и HFC-152a/HFO-1234yf:

Измерения равновесия жидкости и пара в двухкомпонентной смеси HFC-32/HFO-1234yf проводили для следующих изотерм: -10°C, 30°C и 70°C.

Измерения равновесия жидкости и пара в двухкомпонентной смеси HFC-152a/HFO-1234yf проводили для следующих изотерм: 10°C.

HFC-32/HFO-152a:

Данные о равновесии жидкости и пара для двухкомпонентной смеси HFC-152a/HFC-32 можно получить с помощью REFPROP. Две изотермы (-20°C и 20°C) и две изобары (1 бар (0,1 МПа) и 25 бар (2,5 МПа)) используют для вычисления коэффициентов взаимодействия в данной двухкомпонентной смеси.

Компрессорная система

Рассмотрим компрессорную систему, снабженную испарителем и противоточным конденсатором, винтовым компрессором и понижающим давление клапаном.

Данная система работает с перегревом на 15°C и переохлаждением на 5°C. Минимальная разность температур между вторичной текучей средой и хладагентом считается составляющей приблизительно 5°C.

Изоэнтропический КПД компрессоров является функцией коэффициента сжатия. Данный КПД вычисляют по следующему уравнению:

Для винтового компрессора константы a, b, c, d и e уравнения (1) изоэнтропического КПД вычисляют на основании стандартных данных, которые содержит опубликованный «Справочник по кондиционированию воздуха и охлаждению», с. 11.52.

%ОП представляет собой процентное соотношение объемной производительности, обеспечиваемой данным продуктом, и объемной производительности, обеспечиваемой R-410A.

Коэффициент полезного действия (КПД) определяют как соотношение полезной энергии, выработанной системой, и энергии, переданной системе или потребленной ею.

Коэффициент полезного действия в цикле Лоренца (КПДLorenz) представляет собой эталонный коэффициент полезного действия. Он является функцией температуры и используется для сравнения КПД различных текучих сред.

Коэффициент полезного действия в цикле Лоренца определяют следующим образом:

(Температуры T выражены в K)

КПД в цикле Лоренца в случае кондиционирования воздуха и охлаждения:

КПД в цикле Лоренца в случае нагревания:

Для каждой композиции коэффициент полезного действия в цикле Лоренца вычислен как функция соответствующих температур.

Соотношение %КПД/КПДLorenz представляет собой соотношение КПД системы и КПД соответствующего цикла Лоренца.

Результаты работы в режиме охлаждения или кондиционирования воздуха

В режиме охлаждения компрессорная система работает в интервале между температурой хладагента на впуске в испаритель (-5°C) и температурой хладагента на впуске в конденсатор (50°C). Система производит холод при 0°C.

Параметры композиций согласно настоящему изобретению в условиях работы в режиме охлаждения представлены в таблице 1. Содержание компонентов (HFO-1234yf, HFC-32, HFC-152a) для каждой композиции представлено в виде массовой процентной доли.

Результаты работы в режиме нагревания

В режиме нагревания компрессорная система работает в интервале между температурой хладагента на впуске в испаритель (-5°C) и температурой хладагента на впуске в конденсатор (50°C). Система производит тепло при 45°C.

Параметры композиций согласно настоящему изобретению в условиях работы в режиме нагревания представлены в таблице 2. Содержание компонентов (HFO-1234yf, HFC-32, HFC-152a) для каждой композиции представлено в виде массовой процентной доли.

Результаты работы в режиме низкотемпературного охлаждения

В режиме низкотемпературного охлаждения компрессорная система работает в интервале между температурой хладагента на впуске в испаритель (-30°C) и температурой хладагента на впуске в конденсатор (40°C). Система производит холод при -25°C.

Параметры композиций согласно настоящему изобретению в условиях работы в режиме низкотемпературного охлаждения представлены в таблице 3. Содержание компонентов (HFO-1234yf, HFC-32, HFC-152a) для каждой композиции представлено в виде массовой процентной доли.

1. Применение трехкомпонентной композиции, содержащей от 40 до 58 мас. % 2,3,3,3-тетрафторпропена, от 2 до 10 мас. % 1,1-дифторэтана и от 40 до 50 мас. % дифторметана, в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A.

2. Применение по п. 1, отличающееся тем, что композиция стабилизирована.

3. Применение по п. 1, отличающееся тем, что холодильные системы относятся к компрессорному типу.

4. Применение по п. 2, отличающееся тем, что холодильные системы относятся к компрессорному типу.

5. Применение по п. 3, отличающееся тем, что системы работают с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

6. Применение по п. 4, отличающееся тем, что системы работают с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

7. Способ теплопередачи, в котором трехкомпонентные композиции, содержащие от 40 до 58 мас. % 2,3,3,3-тетрафторпропена, от 2 до 10 мас. % 1,1-дифторэтана и от 40 до 50 мас. % дифторметана, используют в качестве теплопередающей текучей среды в холодильных системах вместо смеси R-410A.

8. Способ по п. 7, отличающийся тем, что холодильные системы представляют собой холодильные системы компрессорного типа, предпочтительно работающие с теплообменниками в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

9. Способ по п. 7 или 8, отличающийся тем, что его осуществляют в присутствии смазочного материала.



 

Похожие патенты:

Изобретение относится к составу хладагента, состоящему по существу из гидрофторуглеродного компонента, состоящего из: ГФУ 134а 15-45%, ГФУ 125 20-40%, ГФУ 32 25-45%, ГФУ 227еа 2-12%, ГФУ 152а 2-10% вместе с необязательным углеводородным компонентом; где количество приведено по весу и в сумме составляет 100%.

Изобретение может быть использовано в холодильных системах компрессорного типа. Способ теплопередачи с использованием трехкомпонентных композиций, содержащих 2,3,3,3-тетрафторпропен, 1,1-дифторэтан и дифторметан, в качестве теплопередающей текучей среды в холодильных системах, включающих теплообменники, работающие в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Изобретение относится к газовым микрокриогенным машинам, а именно к регенеративным теплообменникам. В комбинированном регенеративном теплообменнике, включающем теплоизоляционный корпус, насадку, находящуюся внутри корпуса, насадка состоит из двух частей: со стороны "теплого" конца регенеративного теплообменника насадка выполнена из плетеной металлической сетки, со стороны "холодного" конца регенеративного теплообменника заполнена свинцовыми наношариками, между частями насадки установлена защитная сетка, предотвращающая проникновение свинцовых наношариков в область плетеной металлической сетки.

Изобретение относится к спиртовой промышленности, в частности к устройствам для получения пищевого ректификованного спирта. .

Изобретение относится к многофункциональным энергетическим установкам, в которых в качестве рабочего вещества используют сжатый газ или жидкость под высоким давлением.

Изобретение относится к композициям хладагента, которые применяются в качестве теплопередающих композиций, используемых в холодильном оборудовании. .

Изобретение относится к области холодильной техники и может быть использовано в различных криогенных устройствах. .

Изобретение относится к области холодильной техники и может быть использовано в различных криогенных устройствах. .

Изобретение относится к нефтяной промышленности. .

Изобретение относится к композициям, содержащим 2,3,3,3-тетрафторпропен, и их применению в качестве жидких теплоносителей, агентов расширения, растворителей и аэрозолей.

Изобретение относится к применению в качестве теплопередающей текучей среды в компрессорных системах с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, двухкомпонентной композиции 2,3,3,3-тетрафторпропена и дифторметана.

Изобретение относится к составу хладагента, состоящему по существу из гидрофторуглеродного компонента, состоящего из: ГФУ 134а 15-45%, ГФУ 125 20-40%, ГФУ 32 25-45%, ГФУ 227еа 2-12%, ГФУ 152а 2-10% вместе с необязательным углеводородным компонентом; где количество приведено по весу и в сумме составляет 100%.

Изобретение может быть использовано в холодильных системах компрессорного типа. Способ теплопередачи с использованием трехкомпонентных композиций, содержащих 2,3,3,3-тетрафторпропен, 1,1-дифторэтан и дифторметан, в качестве теплопередающей текучей среды в холодильных системах, включающих теплообменники, работающие в противоточном режиме или в перекрестном режиме с противоточной тенденцией.

Настоящее изобретение относится к применению трехкомпонентной композиции, в содержащей 2,3,3,3-тетрафторпропен, 1,1,12-тетрафторэтан (ГФУ-134а) и дифторметан (ГФУ-32), в качестве жидкого теплоносителя в компрессионных холодильных установках, содержащих теплообменники, работающие в противоточном режиме или в поперечном режиме с уклоном в противоточный режим.

Изобретение относится к использованию двухкомпонентных композиций 2,3,3,3-тетрафторпропена и дифторметана в качестве теплопередающей текучей среды в низкотемпературных и среднетемпературных холодильных системах компрессорного типа с теплообменниками, работающими в противоточном режиме или в режиме разделенного потока с противоточной тенденцией, а также к способу теплопередачи.
Изобретение относится к теплопередающей композиции, содержащей E-1,3,3,3-тетрафторпроп-1-ен (R1234ze(E)), 3,3,3 трифторпропен (R-1243zf) и дифторметан (R32). Описывается использование указанной композиции в теплообменнике, в составе вспениваемой композиции, распыляемой композиции, для охлаждения или нагрева изделия, в способах очистки или экстракции материалов, снижения воздействия на окружающую среду продукта эксплуатации существующего хладагента.

Изобретение относится к вариантам композиции для передачи тепла. Один из вариантов композиции содержит (i) от около 20 до около 90% масс.
Настоящее изобретение относится к композиции рабочей жидкости для холодильной машины, при этом она содержит масло для холодильных машин, содержащее смесь по меньшей мере двух сложных эфиров, выбранных из группы сложных эфиров по меньшей мере одного многоатомного спирта, и жирной кислоты с содержанием C5-C9 жирной кислоты 50-100% мол., фторпропеновый хладагент и/или трифторйодметановый хладагент (варианты).
Изобретение относится к охлаждающей композиции для применения в холодильной установке, обеспеченной мерой противодействия для предотвращения тепловых потерь вследствие температурного скольжения в теплообменнике.

Изобретение относится к композициям, способам и системам, используемым во многих областях, включая в частности системы теплопереноса, например системы охлаждения, пенообразователи, пенные композиции, пены и изделия, включающие пены или изготовленные из пены, способы получения пен, в том числе и однокомпонентных, аэрозоли, пропелленты, очищающие композиции. Композиции, используемые для указанных систем, содержат, по меньшей мере, около 5 мас.% 1-хлор-3,3,3-трифторпропена (HFCO-1233zd) и 1,3,3,3-тетрафторпропен (HFO-1234ze). Предложенные композиции имеют преимущества для широкого спектра применений и свободны от недостатков известных композиций. 16 н. и 70 з.п. ф-лы, 14 табл., 54 пр.
Наверх