Способ измерения прямых потерь ферритового циркулятора на высоком уровне мощности



Способ измерения прямых потерь ферритового циркулятора на высоком уровне мощности
Способ измерения прямых потерь ферритового циркулятора на высоком уровне мощности

 


Владельцы патента RU 2544782:

Открытое акционерное общество "Государственный Рязанский приборный завод" (RU)

Изобретение относится к технике СВЧ и может использоваться при испытаниях ферритовых циркуляторов. Технический результат - расширение функциональных возможностей путем оценки роста прямых потерь ферритовых приборов при высоких уровнях мощности. Для этого измерение прямых потерь ферритовых циркуляторов производится на высоком уровне мощности при помощи подачи на вход первого канала ферритового циркулятора СВЧ-сигнала, величину которого выбирают равной 0,25÷0,33 от уровня рабочей мощности, второй канал ферритового циркулятора закорачивают, а значение прямых потерь измеряют отношением мощностей в третьем и первом каналах ферритового циркулятора, деленным пополам. 2 ил.

 

Предлагаемое изобретение относится к технике СВЧ. Предлагаемый способ используется для испытаний ферритовых приборов в процессе их разработки, изготовления и исследований.

Разработка, исследование и изготовление ферритовых циркуляторов требует длительных энергоемких испытаний, связанных с необходимостью иметь источник СВЧ-сигнала высокого уровня мощности. В процессе испытаний разработчик не всегда располагает источником СВЧ-мощности с необходимым уровнем сигнала, поэтому при испытаниях ферритовых циркуляторов используют различные методы имитации высоких уровней мощности.

Известен метод сложения мощности нескольких генераторов, параллельно работающих, на одну нагрузку. Основными недостатками данного метода являются сложность создания установки с двумя и более генераторами СВЧ, обеспечение их работы на одну нагрузку, а также большие энергетические затраты.

Наиболее близким по технической сущности, прототипом для предлагаемого изобретения, является способ испытаний ферритовых фазовращателей (авторское свидетельство СССР №1777523, МПК H01P 1/19, 1990). В основе данного изобретения использован способ имитации высоких уровней мощности, в котором фазовращатель нагревают до среднеобъемной температуры ферритового вкладыша предварительно определенной при рабочем уровне мощности и величиной СВЧ-сигнала, равной 0,01% от уровня рабочей мощности.

Однако данный способ не предназначен для оценки потерь ферритовых приборов, связанных с зависимостью параметров феррита от напряженности высокочастотного магнитного поля, например, при увеличении падающей мощности.

Технический результат предлагаемого изобретения направлен на расширение функциональных возможностей, а именно оценки роста прямых потерь ферритовых приборов при высоких уровнях мощности.

Достигается технический результат тем, что измерение прямых потерь ферритовых циркуляторов производится на высоком уровне мощности при помощи подачи на первый канал ферритового циркулятора СВЧ-сигнала, величину которого выбирают равной 0,25÷0,33 от уровня рабочей мощности, а второй канал ферритового циркулятора закорачивают. За счет отраженной волны амплитуда электрического поля удваивается, что эквивалентно увеличению мощности до четырех раз. Значение прямых потерь измеряют отношением мощностей в третьем и первом каналах ферритового циркулятора, деленным пополам:

α п р = 1 2 10 lg P K I I I P K I ,

где αпр - прямые потери;

P K I I I - мощность в третьем канале ферритового циркулятора;

P K I - мощность в первом канале ферритового циркулятора.

Способ измерения прямых потерь ферритового циркулятора на высоком уровне мощности осуществляется следующим образом: в испытуемом ферритовом циркуляторе создают режим короткого замыкания во втором канале, что при подаче в первый канал СВЧ-сигнала приводит к возникновению режима стоячих волн и удвоению амплитуды электрического поля в каналах ферритового циркулятора, которое эквивалентно увеличению СВЧ-мощности до четырех раз, по измеренным значениям мощностей в первом и третьем каналах вычисляются прямые потери ферритового циркулятора. Таким образом, испытания ферритового циркулятора можно проводить с уровнем СВЧ-генератора, составляющим 0,25÷0,33 от уровня рабочей мощности циркулятора.

Достоверность предложенного способа оценивается по результатам измерения прямых потерь ферритового циркулятора на высоком уровне мощности и их зависимостью от уровня мощности.

На фиг.1 представлен график зависимости значений прямых потерь от уровня мощности при отсутствии роста прямых потерь, на фиг.2 представлен график зависимости значений прямых потерь от уровня мощности при наличии роста прямых потерь.

Предложенный способ использовался для измерения прямых потерь ферритовых циркуляторов сантиметрового диапазона волн.

На вход первого канала ферритового циркулятора поочередно подается СВЧ-сигнал средней мощности 500 Вт и 2000 Вт, при этом во втором канале ферритового циркулятора создают режим короткого замыкания.

В первом случае испытывается ферритовый циркулятор с кондиционными ферритовыми вкладышами. Прямые потери составили 0,3 дБ при средней мощности 500 Вт и 0,32 дБ при средней мощности 2000 Вт. Увеличение роста прямых потерь не установлено.

Во втором случае испытывается ферритовый циркулятор с некондиционными ферритовыми вкладышами. Прямые потери составили 0,31 дБ при средней мощности 500 Вт и 0,97 дБ при средней мощности 2000 Вт. Измерения четко зафиксировали увеличение прямых потерь.

Использование данного способа позволяет определить прямые потери ферритового циркулятора на рабочей СВЧ-мощности с источником СВЧ-сигнала, составляющим 0,25÷0,33 от рабочей мощности ферритового циркулятора.

Способ измерения прямых потерь ферритового циркулятора на высоком уровне мощности при помощи подачи на первый канал СВЧ- сигнала, отличающийся тем, что величину СВЧ-сигнала выбирают равной 0,25÷0,33 от уровня рабочей мощности, при этом второй канал ферритового циркулятора закорачивают, а значение прямых потерь измеряют отношением мощностей в третьем и первом каналах ферритового циркулятора, деленным пополам:
,
где αпр - прямые потери;
- мощность в третьем канале ферритового циркулятора;
- мощность в первом канале ферритового циркулятора.



 

Похожие патенты:

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Достигаемый технический результат - расширение полосы рабочих частот и улучшение селективных свойств.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления СВЧ сигнала большой мощности в широкой полосе рабочих частот.

Изобретение относится к области измерительной техники, электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов, измерительных приборах, быстродействующих аналого-цифровых (АЦП) и цифроаналоговых (ПАП) преобразователях.

Изобретение относится к радиоэлектронике, в частности к аттенюаторным устройствам. Технический результат заключается в расширении диапазона регулировки мощности выходного сигнала за счет использования двухканальной системы регулировки мощности.

Изобретение относится к высокочастотным аттенюаторам. Технический результат заключается в расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными сигналами большой амплитуды.

Изобретение относится к области электронной техники. Диодная сборка относится к элементам, предназначенным для использования в сверхвысокочастотных защитных устройствах.

Изобретение относится к устройству дифференциального аттенюатора. Техническим результатом является повышение быстродействия устройства при работе с импульсными противофазными сигналами большой амплитуды.

Изобретение относится к технике СВЧ. Технический результат - увеличение крутизны ската амплитудно-частотной характеристики фильтра.

Изобретение относится антенной технике и может быть использовано в радиоприемных и радиопередающих устройствах систем связи, в том числе в аппаратуре потребителей спутниковых радионавигационных систем Glonass, GPS для разделения сигналов, принятых общей антенной приемника.

Изобретение относится к области спутниковых телекоммуникаций. Техническим результатом является уменьшение плотности теплового потока на поверхности раздела канала, работающего в режиме вне полосы.

Изобретение относится к области радиотехники и электроники и может быть использовано, в частности, для поглощения электромагнитной волны на выходе СВЧ-волноводного тракта. Технический результат - расширение рабочей полосы частот и уменьшение продольных размеров согласованной нагрузки. Для этого микрополосковая согласованная нагрузка, состоящая из последовательно соединенных отрезков микрополосковой линий передачи, содержит не менее семи чередующихся отрезков микрополосковой линии передачи с различным поверхностным сопротивлением, крайними из которых являются отрезки с малым поверхностным сопротивлением, и не менее двух пар разомкнутых шлейфов, расположенных симметрично по разные стороны от микрополосковой линии, каждый из которых выполнен в виде двух последовательно соединенных отрезков микрополосковой линии передачи с большим и малым поверхностным сопротивлением. Поглощающие свойства согласованной нагрузки определяются совокупностью как поглощающих свойств отрезков микрополосковой линии и шлейфов с большим поверхностным сопротивлением, так и топологией структуры. Количество отрезков полосковых линий, их топология и электрические параметры выбираются таким образом, чтобы в выбранном частотном диапазоне величины коэффициентов стоячей волны и прохождения были меньше заданных значений. 19 ил.

Изобретение относится к волноводным аттенюаторам и может быть использовано в волноводной, антенной и СВЧ измерительной технике. Технический результат - уменьшение массы поглощающего сопротивления при работе в низкочастотных диапазонах и обеспечение оптимального согласования входа и выхода аттенюатора. Волноводный аттенюатор состоит из отрезка прямоугольного волновода и помещенного в него объемного поглощающего сопротивления, состоящего из основной прямоугольной призмы и согласующих элементов в виде дополнительных прямоугольных призм. Основная прямоугольная призма и согласующие элементы могут быть выполнены в виде одной детали, причем объемное поглощающее сопротивление выполнено в виде основной прямоугольной призмы, при этом основная призма хотя бы с одной из сторон, параллельной поперечному сечению прямоугольного волновода, сопряжена с согласующим элементом в виде дополнительной прямоугольной призмы, конструктивно объединенным с основной призмой и выполненным из материала основной призмы, при этом плоскость основания дополнительной призмы совпадает с плоскостью сопряжения основной призмы с волноводом. 4 з.п. ф-лы, 2 ил.

Изобретение относится к устройству беспроводной связи. Технический результат состоит в уменьшении энергопотребления, уменьшении количества составных частей и улучшении производительности при приеме сигнала, что достигается отсутствием модуля переключения антенны. Для этого устройство беспроводной связи включает в себя усилитель мощности (31), который усиливает сигнал передачи, схему (37) передачи, которая обрабатывает усиленный сигнал передачи, антенну (13) и блок (10e) управления, который поочередно активирует и деактивирует усилитель мощности (31), причем схема (37) передачи сконфигурирована для согласования импеданса между схемой (37) передачи и антенной (13), когда активируется усилитель мощности (31), и приведения импеданса, наблюдаемого от антенны (13) в направлении схемы (37) передачи, в высокоимпедансное состояние, когда деактивируется усилитель мощности (31). 4 н. и 14 з.п. ф-лы, 52 ил.

Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах. Технический результат - снижение прямых потерь СВЧ и расширение функциональных возможностей за счет увеличения количества уровней затухания. Для этого аттенюатор СВЧ содержит линии передачи на входе и выходе с одинаковым волновым сопротивлением, шесть резисторов, четыре полевых транзистора с барьером Шотки, два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе либо на выходе, два источника постоянного управляющего напряжения. 3 ил.

Изобретение относится к области радиотехники, а именно к волноводной и антенной технике, и может быть использовано в качестве устройства в длинных магистральных волноводных линиях связи. Техническим результатом заявляемого возбудителя волны H01 является его конструктивное упрощение при одновременном улучшении его технических характеристик. Для этого возбудитель волны H01 состоит из Е-плоскостного Т-образного разветвления 1, боковые плечи 2 которого изогнуты в Е-плоскости по окружности, центр которой совпадает с осью отрезка круглого волновода 3. Каждое из боковых плеч 2 Е-плоскостного Т-образного разветвления 1 соединено с отрезком круглого волновода 3 через прямоугольные волноводы 4, расположенные с шагом λв. С одного конца отрезка круглого волновода 3 установлен короткозамыкатель 5. В отрезок круглого волновода 3 установлен модовый фильтр 6. Размеры узких стенок прямоугольных волноводов 4 выбраны из условия равноамплитудного возбуждения элементов питания отрезка круглого волновода 3. Для данной реализации возбудителя волны H01: b1=1.2b, b2=b, где b - размер узкой стенки бокового плеча 2 Е-плоскостного Т-образного разветвления 1. 5 з.п. ф-лы, 2 ил.

Изобретение относится к микрополосковому двухполосному полосно-пропускающему фильтру, предназначенному для частотной селекции сигналов на двух несущих частотах и используемому в технике сверхвысоких частот в селективных трактах приемных и передающих систем. Техническим результатом является более высокая технологичность за счет отсутствия емкости на крайних резонаторах. Для этого фильтр содержит диэлектрическую подложку (1), на одну сторону которой нанесено заземляемое основание (2), а на вторую сторону нанесены полосковые проводники, электромагнитно связанные между собой и расположенные в два параллельных друг другу ряда, причем проводники первого (3) и второго (5) рядов отличаются между собой длиной. Центральные проводники (4, 6) в каждом ряде отличаются длиной и шириной от проводников своего ряда, при этом длина отрезков крайних проводников (7), взаимодействующих с проводниками каждого ряда, различна. 3 ил.

Изобретение относится к радиоэлектронной аппаратуре. Технический результат заключается в обеспечении возможности оперативного монтажа и демонтажа волноводов с различной геометрией фланцев в условиях ограниченного доступа. Для этого фланцевое соединение волноводов содержит волноводы с плоскими фланцами, между которыми установлена контактная прокладка с прямоугольным окном, по контуру которого выполнены прорези. Контактная прокладка выполнена с возможностью осуществления стыковки волноводов с различной конфигурацией фланцев, посредством установки и фиксации ее на внутренней боковой поверхности паза, выполненного в центральной части контактирующей поверхности одного из фланцев. Фиксацию контактной прокладки осуществляют при помощи фиксирующих элементов, выполненных с внешней стороны контактной прокладки и являющихся продолжением ребер ее основания, направленных в одну сторону и выполненных с некоторым внутренним уклоном к основанию, а также дополнительным фиксированием герметизирующей прокладкой, размещенной внутри данного паза. В контактной прокладке по контуру окна прорези образуют лепестки, поочередно отогнутые в противоположные стороны на равный угол. 6 з.п. ф-лы, 10 ил.

Изобретение относится к области создания полупроводниковых изделий, а именно к мощному переключателю СВЧ на основе соединения галлия, содержащему подложку, поверх которой размещена эпитаксиальная гетероструктура и барьер Шоттки. Технический результат заключается в уменьшении теплового сопротивления мощных переключателей, повышении уровня допустимой входной мощности, повышении скорости переключения, повышении надежности приборов, уровня радиационной стойкости и в снижении утечки тока затвора и уровня деградации. Для этого переключатель СВЧ изготовлен на нитриде галлия, где в качестве подложки использован сапфир. Затем последовательно размещены: буферный слой AlN, буферный слой из GaN, второй буферный слой из нелегированного нитрида галлия (i-тип), твердый раствор AlXGa1-XN, и в интерфейсе GaN/AlXGa1-XN гетероструктуры образован двумерный электронный газ высокой плотности, который служит нижней обкладкой конденсатора, поверх твердого раствора AlXGa1-XN размещен химически устойчивый сглаживающий слой из нитрида галлия, поверх которого нанесен диэлектрик, содержащий слой из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора, при этом переключатель содержит два конденсатора, образующие двойные ВЧ-ключи. 1 з.п. ф-лы, 1 ил.

Использование: для настройки трехплечевого ферритового циркулятора с согласующим трансформатором. Сущность изобретения заключается в том, что осуществляют подачу измерительного сигнала в каждое плечо трехплечевого ферритового циркулятора, измерение электромагнитных характеристик каждого плеча, определение плеча трехплечевого ферритового циркулятора, электромагнитные характеристики которого не соответствуют заданным значениям, и доведение электромагнитных характеристик этого плеча до заданных значений изменением конфигурации электромагнитного поля в трехплечевом ферритовом циркуляторе, при этом изменение конфигурации электромагнитного поля в трехплечевом ферритовом циркуляторе осуществляют постепенным заполнением области плеча трехплечевого ферритового циркулятора, электромагнитные характеристики которого не соответствуют заданным значениям, диэлектрической пастой, содержащей 50-60 мас.% кремнийорганического герметика и 40-50 мас.% двуокиси титана TiO2, при этом количество вводимой диэлектрической пасты увеличивают до тех пор, пока электромагнитные характеристики плеча трехплечевого ферритового циркулятора не достигнут заданного значения, и затем введенную диэлектрическую пасту высушивают. Технический результат: обеспечение возможности сокращения времени настройки трехплечевого ферритового циркулятора с согласующим трансформатором. 6 з.п. ф-лы, 9 ил.

Изобретение относится к электронной технике, а именно к полосно-пропускающим перестраиваемым фильтрам СВЧ. Технический результат заключается в расширении полосы пропускания частот и снижении коэффициента стоячей волны напряжения при сохранении низких потерь СВЧ в полосе пропускания частот полосно-пропускающего перестраиваемого фильтра. Технический результат достигается за счет полосно-пропускающего перестраиваемого фильтра СВЧ, который содержит две линии передачи с одинаковыми волновыми сопротивлениями, одна предназначена для входа СВЧ-сигнала, другая - для выхода, по меньшей мере одно резонансное звено с полевым транзистором с барьером Шотки, отрезок линии передачи, при этом затвор полевого транзистора с барьером Шотки соединен с источником постоянного управляющего напряжения, при этом в каждое резонансное звено дополнительно введены два элемента, каждый на двух связанных линиях передачи, и индуктивность. 3 ил.
Наверх