Мобильная автономная солнечная электростанция

Мобильная автономная солнечная электростанция (МАСЭС) предназначена для снабжения электроэнергией боевых позиций и командных пунктов ракетно-артиллерийских подразделений, пограничных застав, блокпостов и других удаленных объектов полевого базирования различного назначения. МАСЭС относится к области возобновляемых источников энергии и, в частности, предназначена для получения электроэнергии от воздействия солнечной радиации на фотоэлектронные модули (ФЭМ). МАСЭС содержит: одноосный прицеп, на котором размещена квадратная в поперечном сечении световодная труба; четырехгранный оптически активный купол; криволинейный отражатель лучей солнечной радиации; вращающийся цилиндр, на образующей которого размещены ФЭМ, полуцилиндрическая сложная собирающая линза; вал цилиндра; подшипники вала цилиндра; микродвигатель; вентилятор; датчик температуры; блок аккумуляторных батарей (БАКБ); контроллер заряда-разряда (КЗР); инвертор. Положительный эффект достигается за счет сбора лучей солнечной радиации независимо от угла солнцестояния четырехгранным оптически активным куполом; дополнительной концентрации лучей криволинейным отражателем на поверхность четырехгранного оптически активного купола; транспортировки лучей солнечной радиации от четырехгранного оптически активного купола по квадратной световодной трубе на полуцилиндрическую сложную собирающую линзу; вращения цилиндра, на образующей поверхности которого размещены ФЭМ, воспринимающие периодическую концентрацию лучей солнечной радиации от полуцилиндрической сложной собирающей линзы. Технический результат: устойчивое получение электроэнергии от солнечной радиации без применения приборов слежения за солнцем, повышение надежности и эффективности выработки электроэнергии. 12 з.п. ф-лы, 6 ил.

 

Изобретение Мобильная автономная солнечная электростанция (далее МАСЭС) предназначена для снабжения электроэнергией боевых позиций и командных пунктов ракетно-артиллерийских подразделений, пограничных застав, блокпостов и других удаленных объектов полевого базирования различного назначения. МАСЭС относится к области возобновляемых источников энергии и, в частности, предназначена для получения электроэнергии от воздействия солнечной радиации на фотоэлектронные модули. Известен патент RU 95900 U1, H01L 31/042 от 10.07.2010 Солнечная электростанция [1], включающая в себя вал с приводом азимутального поворота, на котором закреплена солнечная батарея, снабженная системой автоматики азимутального поворота, а с обратной стороны установлена система автоматического разворота электростанции с запада на восток, отличающаяся тем, что солнечная батарея закреплена на горизонтальном валу под углом к плоскости горизонта, равным максимальному зенитальному углу солнца в полдень, при этом активная поверхность солнечной батареи направлена на солнце, а вал размещен на стойках, высота которых соответствует, по крайней мере, половине ширины солнечной батареи. Недостатком данного патента является наличие системы автоматического азимутального поворота электростанции с запада на восток, что усложняет конструкцию. Кроме того, из-за отсутствия системы охлаждения солнечных батарей существует возможность их нагрева до 70°C и более, что приводит к снижению эффективности выработки электроэнергии солнечными батареями. Известно изобретение RU 2476783 C1, F24J 2/42, F24J 2/10, от 27.02.2013 Солнечная энергетическая установка [2], содержащая: солнечную батарею, набранную из концентраторных фотоэлектрических модулей, размещенных на механической системе ориентации на Солнце, содержащей приводы зенитального и азимутального вращения, снабженные шаговыми мотор-редукторами, линейные фотоприемники, находящиеся в фокусах цилиндрических линз Френеля, а по бокам длинной стороны фотоприемников, вплотную к ним, под углом расположены отражатели, микропроцессоры, служащие для управления приводами и содержащие информацию о географической широте местонахождения установки, а также электронные часы, снабженные календарем, по сигналам которых через равные промежутки времени включаются шаговые мотор-редукторы, поворачивающие солнечную батарею на зенитальные и азимутальные углы в соответствии с уравнением движения Солнца на небосводе, при этом величины достигнутых зенитальных и азимутальных углов определяются с помощью соответствующих датчиков, и их значения сравниваются со значениями, полученными из уравнения движения Солнца на текущий момент времени. Основным недостатком изобретения является сложность конструкции и перегруженность электронными устройствами, что снижает надежность и увеличивает стоимость Солнечной энергетической установки. Известно также изобретение Модуль солнечной электростанции патент RU 2437036 C1, F24J 2/42, F24J 2/54 от 20.12.2011 [3], содержащий параболоцилиндрический концентратор солнечной энергии, несущую конструкцию с фотоэлектрическим датчиком и фотоэлектрическим преобразователем, расположенным по фокусной линии параболоцилиндрического концентратора, и поворотный механизм с возможностью поворота вокруг оси на угол не менее 180°, вход которого соединен с выходом фотоэлектрического датчика. Поворотный механизм соединен с затеняющей пластиной, имеющей форму и размеры входа параболоцилиндрического концентратора и снабженной отверстиями, равномерно расположенными по всей плоскости пластины, а ось поворотного механизма расположена в плоскости входа параболоцилиндрического концентратора. При этом отношение суммарной площади отверстий на затеняющей пластине к площади входа параболоцилиндрического концентратора может быть равно коэффициенту концентрации солнечного излучения. Изобретение позволяет увеличить надежность и кпд фотоэлектрических преобразователей благодаря исключению перегрева. Известно также изобретение RU 2431787 C1, F24J 2/42, F24J 2/06 от 20.12.2011 Солнечная электростанция [4], содержащая концентратор, выполненный в виде линейной одноосной концентрирующей системы, систему слежения и фотоприемник с p-n переходами в фокальной области, фотоприемник выполнен в виде одной или более секций твердотельной матрицы из последовательно коммутированных миниатюрных солнечных элементов с диодными структурами и с p-n переходами, плоскости которых параллельны двум из четырех боковых граней матрицы, и имеет защитное прозрачное покрытие на двух рабочих поверхностях матрицы, которые перпендикулярны плоскости p-n переходов, оптическая ось и фокальная плоскость концентратора перпендикулярна плоскости p-n переходов приемника, фотоприемник установлен в прозрачной цилиндрической оболочке вдоль ее оси и снабжен устройством для прокачки охлаждающей жидкости через прозрачную цилиндрическую оболочку и теплообменником для отвода теплоты, а плоскости p-n переходов перпендикулярны оси цилиндрической оболочки. Недостатком данной конструкции является невозможность ее использования в мобильном варианте исполнения, сложность конструкций слежения за Солнцем и системы охлаждения. Известна конструкция конусной солнечной батареи, созданная инженерами компании Nectar Design и V3 Spin Cell [5], собранная из двух независимых конусов внутреннего и внешнего. На поверхности вращающегося внутреннего конуса расположены солнечные ячейки. Внешний же конус неподвижен и покрыт трубчатыми линзами, которые предназначены для концентрации пучка солнечного света, чтобы достичь максимальной эффективности каждой ячейки. В обычной практике применение линз вызвало бы перегрев и быстрый выход из строя солнечных элементов, но благодаря их постоянному вращению подобная ситуация абсолютно исключена. Так, температура фотоэлементов не превышает 35°C, что не выходит за рамки допустимых пределов. Отметим, что вращающийся конус парит в магнитном поле и тратит для поддержания движения немного генерируемой им самим электроэнергии. Управляет скоростью движения и другими параметрами системы электронная схема, точность которой также способствует получению максимального эффекта от всей системы [5]. Основным недостатком рассмотренного изобретения является неприспособленность конструкции V3 Spin Cell к установке на одноосном прицепе и использованию по назначению в процессе транспортирования. Из уровня техники также известен Автономный мобильный комплекс жизнеобеспечения [6], патент на полезную модель RU 74348, B60P 3/00 от 26.06.2008, состоящий из мобильного транспортного средства или выполненный на базе грузового прицепа, содержащий насос для закачки воды, заборный шланг, очистные фильтры, отличающийся тем, что дополнительно содержит не менее одного ветрогенератора и/или мобильную солнечную электростанцию, не менее одного аккумулятора, выполненного с возможностью накапливать электрическую энергию от ветрогенератора и/или солнечной электростанции. Основным недостатком Автономного мобильного комплекса жизнеобеспечения является зависимость солнечной электростанции от угла положения Солнца над горизонтом, а также не учтен тот факт, что аккумуляторная батарея имеет ограничения на возможность накапливать электроэнергию, поэтому зарядка аккумуляторных батарей должна быть контролируемой во избежание их выхода из строя. Известна Мобильная солнечная электростанция [7], патент на изобретение SU 1670055, E04B 1/343, E04/02 от 15.08.1991, содержащая контейнерный модуль из подвижно соединенных вдоль ребра блоков 2 и 3, образованных из треугольных призм со смежными гранями 6 в виде параболоцилиндрических концентраторов, телескопических стоек 8 с возможностью поворота относительно горизонтальной оси в режиме слежения за солнцем и гелиоприемников линейного типа, закрепленных на телескопических стойках. В транспортном положении гелиоприемники расположены между параболоцилиндрическими концентраторами. В рабочем положении концентраторы установлены на южную сторону. Недостатком данного изобретения является сложность конструкции при приведении ее в рабочее положение и наличие устройства для слежения за Солнцем, вероятно стоимость производства и эксплуатации также будет высокой. В качестве прототипа принято изобретение [5] как наиболее близкое по сути и способу выработки электроэнергии ФЭМ под воздействием лучей солнечной радиации. Технический результат заявленного изобретения МАСЭС, отличающий его от цитированных прототипа и аналогов, достигается следующими инженерными решениями: с целью обеспечению мобильности световодная труба размещена на одноосном прицепе; использование квадратной в поперечном сечении световодной трубы, ширина которой равна поперечному размеру кузова одноосного прицепа. Указанное решает задачу максимально увеличить площадь приема лучей солнечной радиации; применение оптически активного купола обеспечивает максимальный сбор и направление лучей солнечной радиации в квадратную световодную трубу независимо от угла солнцестояния; с целью дополнительной концентрации лучей солнечной радиации на поверхность четырехгранного оптически активного купола в его основании закреплен параболический круговой отражатель, который на 25-35% увеличивает эффективность использования лучей солнечной радиации для выработки электрической энергии, причем образующая параболического кругового отражателя в поперечном сечении имеет вид параболы; использование в конструкции МАСЭС полуцилиндрической сложной собирающей линзы, размещенной внутри квадратной световодной трубы в нижней ее части с целью увеличения плотности лучей солнечной радиации, воздействующих на ФЭМ, которые расположены на внешней поверхности вращающегося цилиндра, причем поверхность его размещена на фокусных линиях полуцилиндрической сложной собирающей линзы.

Кроме того, применение полуцилиндрической сложной собирающей линзы вместо указанного в прототипе Nectar Design и V3 Spin Cell [5] неподвижного конуса с трубчатыми линзами увеличивает площадь поверхности, воспринимающей солнечную радиацию, а вместо указанного в прототипе Nectar Design и V3 Spin Cell[5] вращающегося конуса с расположенными на его поверхности солнечными ячейками в представленном изобретении используется вращающийся цилиндр с расположенными на его поверхности ФЭМ, что также увеличивает площадь поверхности, воспринимающей солнечную радиацию от полуцилиндрической сложной собирающей линзы; организацией принудительной автоматической воздушной вентиляции пространства под поверхностью вращающегося цилиндра с целью охлаждения ФЭМ, расположенных на его поверхности; наличие датчика температуры обеспечивает нормальный режим и долговечность эксплуатации ФЭМ; наличие прочного корпуса, выполненного из стеклопластика и защищающего МАСЭС от воздействия внешней среды. Конструкция МАСЭС и его составные части показаны на следующих рисунках. На фигуре 1 изображен общий вид МАСЭС сбоку. На фигуре 2 изображен общий вид МАСЭС сверху. На фигуре 3 изображен общий вид МАСЭС сбоку в разрезе, а также показана схема хода и воздействия лучей солнечной радиации на ФЭМ. На фигуре 4 изображен вид МАСЭС по стрелке А-А (поперечный разрез). На фигуре 5 показан вид секторных плоско-выпуклых линз. На фигуре 6 приведена общая схема управления технологией выработки электроэнергии. МАСЭС содержит следующие составные части. Одноосный автомобильный прицеп 1, на котором размещен цельнометаллический кузов 2, в передней и задней частях которого имеются входное 3 и выходное 4 вентиляционные отверстия цельнометаллического кузова (фигуры 1, 2), причем входное 3 вентиляционное отверстие имеет воздушный фильтр 5. Входная 6 и выходная 7 воздушные трубы (фигуры 1, 2), на концах которых установлены стандартные уплотнения (не показаны). Четырехгранный оптически активный купол 8, включающий горизонтальную плоско-выпуклую линзу 9 и круговую составную конусную плоско-выпуклую линзу 10, которая, в свою очередь, состоит из сопряженных между собой секторных плоско-выпуклых линз 11. Внутри оптически активного купола 8 в его основании расположена рассеивающая линза 12. К основанию оптически активного купола 8 снаружи крепится параболический круговой отражатель 13, в нижней части которого имеются отверстия для слива дождевой воды 14. Четырехгранную световодную трубу 15. Внутренняя зеркальная поверхность 16 четырехгранной световодной трубы 15, в верхней части которой находится верхний квадратный обод 17, служащий для соединения оптически активного купола 8 и параболического кругового отражателя 13 с верхней частью четырехгранной световодной трубы 15. Сложная полуцилиндрическая линза 18 имеет продольные двояковыпуклые собирающие линзы 19, встроенные вдоль сложной полуцилиндрической линзы 18 на расстоянии, равном ширине продольных двояковыпуклых собирающих линз 19. Полка 20, служащая для крепления сложной полуцилиндрической линзы 18 к стенкам четырехгранной световодной трубы 15. Вращающийся цилиндр 21, на внешней поверхности которого расположены фотоэлектрические модули (ФЭМ) 22 (Фигуры 3, 4). Датчик температуры 23 ФЭМ 22 (Фигура 3). Вал 24 вращающегося цилиндра 21. Подшипники качения 25 вала 24 вращающегося цилиндра 21. Приводной электродвигатель постоянного тока (ПЭДПТ) 26 с регулятором скорости вращения, устанавливаемый в положение min или в положение max, причем вал 24 вращающегося цилиндра 21 неподвижно соединен с валом приводного электродвигателя постоянного тока 26 (Фигура 4). Вентиляционные отверстия - соответственно входное 27 и выходное 28 четырехгранной световодной трубы 15, причем эти отверстия расположены на уровне нижнего края вращающегося цилиндра 21 (фигура 3). Вытяжной электрический вентилятор 29, размещенный в выходном вентиляционном отверстии 28. Нижний четырехгранный обод 30, служащий для крепления четырехгранной световодной трубы 15 к днищу одноосного автомобильного прицепа 1. Блок аккумуляторных батарей (БАКБ) 31, размещенный в передней части цельнометаллического кузова 2. Контроллер заряда-разряда (КЗР) 32, БАКБ 31, Инвертор (ИНВ) 33, пульт управления (ПУ) 34 МАСЭС (фигура 3), размещенные в передней части цельнометаллического кузова 2. МАСЭС функционирует следующим образом. Лучи солнечной радиации попадают на оптически активный купол 8, проходят через горизонтальную плоско-выпуклую линзу 9, параллельными пучками попадают на рассеивающую линзу 12. Одновременно эти лучи также проходят через круговые конусные плоско-выпуклые линзы 10, которые состоят из сопряженных между собой секторных плоско-выпуклых линз 11 и далее параллельными пучками попадают на рассеивающую линзу 12 (Фигура 3). Лучи солнечной радиации также одновременно попадают на параболический круговой отражатель 13, который направляет отраженные лучи на оптически активный купол 8, тем самым увеличивается интенсивность солнечной радиации. Собранные оптически активным куполом 8 лучи солнечной радиации с помощью рассеивающей линзы 12 под острым углом попадают на внутреннюю зеркальную поверхность 16 четырехгранной световодной трубы 15 и без возможности обратного отражения достигают поверхности сложной полуцилиндрической линзы 18 (фигура 4). Таким образом, система из оптически активного купола 8, параболического кругового отражателя 13 и рассеивающей линзы 12 обеспечивает прием и подачу лучей солнечной радиации через четырехгранную световодную трубу 15 на поверхность сложной полуцилиндрической линзы 18 независимо от угла солнцестояния над горизонтом (фигуры 3, 4). Лучи солнечной радиации проходят через сложную полуцилиндрическую линзу 18 и с помощью продольных двояковыпуклых собирающих линз 19 формируют на поверхности вращающегося цилиндра 21 фокусные линии лучей солнечной радиации высокой плотности. Расположенные на поверхности вращающегося цилиндра 21 фотоэлектрические модули (ФЭМ) 22, находясь на фокусной линии, при вращении цилиндра 21 периодически воспринимают воздействие лучей солнечной радиации высокой плотности, в результате чего ФЭМ 22 максимально эффективно вырабатывают электрический ток. Причем вращение цилиндра 21 осуществляется с помощью приводного электродвигателя постоянного тока 26 (ПЭДПТ). Следует отметить, что с целью повышения эффективности выработки ФЭМ 22 электрического тока в пасмурную погоду регулятор скорости вращения приводного электродвигателя постоянного тока 26 устанавливается в положение min. Выработанный ФЭМ 22 электрический ток по проводам через ПУ 34 поступает на вход контролера заряда-разряда 32, выход заряда-разряда 32 подключен к БАКБ 31, который, в свою очередь, подключен к инвертору 33. Инвертор 33 преобразует постоянный ток в переменный ток 220B 50 Гц, Подключение потребителей электроэнергии осуществляется с пульта управления 34 (фигура 5). Организация принудительной автоматической воздушной вентиляции пространства под поверхностью вращающегося цилиндра с целью охлаждения ФЭМ 22 осуществляется следующим образом.

При достижении температуры поверхности ФЭМ 22 более чем 40°С датчик температуры 23 через ПУ 34 подключает вытяжной электрический вентилятор (ВЭВ) 29, установленный на выходном отверстии 28 четырехгранной световодной трубы 15 к БАКБ 31 (фигура 3). Работающий вытяжной электрический вентилятор 29 втягивает наружный воздух через воздушный фильтр 5, установленный на входном вентиляционном отверстии 3 цельнометаллического кузова 2, входную воздушную трубу 6, соединяющую входное вентиляционное отверстие 3 с входным вентиляционным отверстием 27 четырехгранной световодной трубы 15. Вытяжной электрический вентилятор (ВЭВ) 29, установленный на выходном отверстии 28 подает воздух из пространства под вращающимся цилиндром 21 в выходную воздушную трубу 7, соединенную с выходным отверстием 4 цельнометаллического кузова 2. Следует отметить, что охлаждение ФЭМ обеспечивается при надежной герметизации входной 6 и выходной 7 воздушных труб. Таким образом, происходит охлаждение ФЭМ 22, расположенных на поверхности вращающегося цилиндра 21, что обеспечивает надежную работу МАСЭС по выработке экологически чистой электроэнергии.

Литература

1. Солнечная электростанция, патент RU 95900 U1 H01L 31/042 от 10.07.2010.

2. Солнечная энергетическая установка, патент на изобретение RU 2476783 C1, F24J 2/42, F24J 2/10, от 27.02.2013.

3. Модуль солнечной электростанции, патент на изобретение RU 2437036 C1, F24J 2/42, F24J 2/54 от 20.12.2011.

4. Солнечная электростанция, патент на изобретение RU 2431787 C1, F24J 2/42, F24J 2/06 от 20.12.2011.

5. Конусная солнечная батарея, компании Nectar Design и V3 Spin Cell. Портал infuture.ru. компании Nectar Design, Гаджеты и технологии, http://24Gadget.Ru: http://24gadget.ru/rss.xm, http://tecvesti.ru/rss.xml; новости технологий RSS, а также канал сервера INFUTURE.RU http://www.http://infuture.ru.rss.php.

6. Автономный мобильный комплекс жизнеобеспечения, патент на полезную модель RU 74348, B60P 3/00 от 26.06.2008.

7. Мобильная солнечная электростанция, патент на изобретение SU 1670055, E04B 1/343, E04/02 от 15.08.1991

1. Мобильная автономная солнечная электростанция (МАСЭС) содержит одноосный автомобильный прицеп, цельнометаллический кузов, входную и выходную воздушные трубы, оптически активный купол, включающий горизонтальную плоско-выпуклую линзу и круговую конусную плоско-выпуклую линзу, параболический круговой отражатель, образующая которого в поперечном сечении имеет вид параболы, четырехгранную световодную трубу с внутренней зеркальной поверхностью, рассеивающую линзу, сложную полуцилиндрическую линзу, которая имеет продольные двояковыпуклые собирающие линзы, встроенные вдоль сложной полуцилиндрической линзы на расстоянии, равном ширине продольных двояковыпуклых собирающих линз, полки для крепления сложной полуцилиндрической линзы, вращающийся цилиндр, на внешней поверхности которого расположены фотоэлектрические модули, датчик температуры фотоэлектрических модулей, вал вращающегося цилиндра, приводной электродвигатель постоянного тока с регулятором скорости вращения, устанавливаемый в положение min или в положение max, входное и выходное вентиляционные отверстия четырехгранной световодной трубы, вытяжной электрический вентилятор, размещенный в выходном вентиляционном отверстии четырехгранной световодной трубы.

2. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что в передней и задней частях цельнометаллического кузова имеются входное и выходное вентиляционные отверстия.

3. Мобильная автономная солнечная электростанция по п.2, отличающаяся тем, что входное вентиляционное отверстие цельнометаллического кузова имеет воздушный фильтр.

4. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что круговая конусная плоско-выпуклая линза состоит из сопряженных между собой секторных плоско-выпуклых линз.

5. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что к основанию оптически активного купола снаружи крепится параболический круговой отражатель.

6. Мобильная автономная солнечная электростанция по п.1,. отличающаяся тем, что параболический круговой отражатель в нижней части имеет отверстия для слива дождевой воды.

7. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что рассеивающая линза установлена в основании оптически активного купола.

8. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что верхний квадратный обод служит для соединения оптически активного купола и параболического кругового отражателя с верхней частью четырехгранной световодной трубы.

9. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что вал вращающегося цилиндра имеет подшипники качения.

10. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что вал вращающегося цилиндра неподвижно соединен с валом приводного электродвигателя постоянного тока.

11. Мобильная автономная солнечная электростанция по п. 1, отличающаяся тем, что вентиляционные отверстия четырехгранной световодной трубы расположены на уровне нижнего края вращающийся цилиндра.

12. Мобильная автономная солнечная электростанция по п.1, отличающаяся тем, что входная и выходная воздушные трубы соединены с входным и выходным отверстиями световодной трубы.

13. Мобильная автономная солнечная электростанция по п. 1, отличающаяся тем, что блок аккумуляторных батарей размещен в передней части цельнометаллического кузова, а контроллер заряда-разряда, блок аккумуляторных батарей, инвертор и пульт управления МАСЭС размещены в задней части цельнометаллического кузова.



 

Похожие патенты:

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов.

Система автономного электро- и теплоснабжения жилых и производственных помещений. Источником электроэнергии является фотоэлектрическая батарея (16), бесперебойность питания обеспечивается аккумуляторной батареей (21) и ветрогенераторной установкой (17), заряд батареи (21) от них происходит через коммутатор (20); источниками тепла являются блок солнечных коллекторов (10) и ветрогенераторная установка (17), соединенная с электронагревателем (19) в тепловом аккумуляторе (3), нагреваемый в коллекторе (10) воздушный поток передает теплоту через контур (12) в помещение и/или в теплообменник (13) в аккумуляторе (3) с водой, подача тепла в отопительные приборы помещения регулируется вентилями (34) и (35), насосом (25) и тепловым насосом (1), который поддерживает температуру на выходе его конденсатора, а поток теплоносителя регулируется насосом (25) и вентилями (34) и (35), контроль подачи тепла потребителям ведется датчиками температуры.

Изобретение относится к регулирующей/контрольной аппаратуре автоматического отслеживания солнечной энергии системы генерирования солнечной энергии. Заявленная регулирующая/контрольная аппаратура содержит опорный узел, опорное седло, расположенное на одном конце опорного узла; несущую платформу, закрепленную на опорном седле посредством шарнирного узла вращения с возможностью поворота в двух направлениях, по меньшей мере, один модуль генерирования солнечной энергии, расположенный на несущей платформе для преобразования солнечной энергии в электрическую энергию.

Изобретение относится к возобновляемым источникам энергии и, в частности, к устройству для производства электроэнергии из возобновляемого источника энергии, включающего шарнирное сочленение, имеющее подшипник.

Изобретение относится к устройствам преобразования солнечной энергии в электрическую, в частности к конструкциям солнечных энергетических установок, которые могут использоваться в быту, например, в усадьбах индивидуальных жилых домов (коттеджей, сельских жилых домов), на садовых участках, в парках, городских скверах, остановках транспорта (особенно загородом, где нет централизованного электроснабжения) и т.д.

Фотоэлектрический модуль солнечного концентрированного излучения относится к гелиотехнике и касается создания солнечных модулей с фотоэлектрическими и тепловыми приемниками и концентраторами солнечного излучения в виде параболоидов.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачные фокусирующие призмы с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения α = arcsin 1 n , где n - коэффициент преломления призмы, имеющей грань входа и грань переотражения излучения, образующие общий двугранный угол φ, грань выхода концентрированного излучения с приемником излучения и устройство отражения в виде зеркального отражателя, образующего с гранью переотражения острый двугранный угол ψ, который расположен однонаправленно с острым двугранным углом φ фокусирующей призмы.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям для получения электричества и тепла. Техническим результатом является повышение эффективности преобразования солнечной энергии, снижение удельных затрат на получение электроэнергии и тепла. В гибридном фотоэлектрическом модуле, содержащем защитное стеклянное покрытие, соединенные солнечные элементы, размещенные между стеклом и корпусом с теплообменником, солнечные элементы электроизолированы от теплообменника, пространство между солнечными элементами и теплообменником, а также между стеклянным покрытием и теплообменником заполнено слоем силоксанового геля толщиной 0,5-5 мм, защитное стеклянное покрытие выполнено в виде вакуумированного стеклопакета из двух стекол с вакуумным зазором 0,1-0,2 мм с вакуумом 10-3-10-5 мм рт.ст. Теплообменник выполнен в виде герметичной камеры с патрубками для циркуляции теплоносителя, а общая площадь соединенных солнечных элементов соизмерима с площадью верхнего основания корпуса теплообменника. В гибридном фотоэлектрическом модуле цепочки из последовательно соединенных солнечных элементов могут быть соединены электрически параллельно при помощи коммутационных шин. 1 з.п. ф-лы, 2 ил.

Изобретение относится к гелиотехнике, в частности к конструкциям солнечных энергетических установок с фотоэлектрическим датчиком слежения за Солнцем и системами азимутального и зенитального поворотов плоскости солнечной энергоустановки. Энергоустановка содержит принимающую солнечную энергию плоскость, систему управления приводами азимутального и зенитального поворотов плоскости и разворота ее с запада на восток, валы приводов, систему слежения за Солнцем. Система слежения включает в себя два фотоэлектрических модуля, закрепленных на выносной платформе, которая установлена параллельно принимающей солнечную энергию плоскости энергоустановки. Первый фотоэлектрический модуль представляет собой датчик положения Солнца по азимуту, в конструкции которого размещены два фотоэлемента слежения за Солнцем и командный фотоэлемент разворота принимающей солнечную энергию плоскости солнечной энергоустановки с запада на восток. Второй фотоэлектрический модуль представляет собой датчик положения Солнца по зениту, содержащий два фотоэлемента слежения за Солнцем. Конструкция каждого фотоэлектрического модуля содержит монтажную площадку, на верхней стороне которой размещены два фотоэлемента, разделенные перегородкой, служащей в свою очередь разделителем направлений освещенности последних и опорой для крепления зеркального цилиндра. Командный фотоэлемент разворота плоскости энергоустановки с запада на восток находится на нижней стороне монтажной площадки фотоэлектрического модуля, следящего за положением Солнца по азимуту. Применение данного изобретения обеспечивает высокую точность слежения по азимуту и зениту за положением Солнца и повышенную надежность работы энергоустановки. 3 ил.

Устройство относится к области электротехники. Техническим результатом является повышение прочности. Зажимное соединение (1) для закрепления на направляющих балках (8) пластинообразных конструктивных элементов (13), в частности солнечных модулей, состоит из опоры (2), имеющей ориентированную в продольном направлении зажимного соединения (1) упорную балку (4) с боковыми крыловидными планками (5, 6) с поверхностями (10, 11) прилегания для конструктивных элементов (13), а также предусмотренную на нижней стороне пяту (7) для крепления опоры (2) на балке (8), а также - из зажимной крышки (3) с продольным пазом (9), охватывающим верхнюю часть упорной балки (4), и с покрывающими поверхности (10, 11) прилегания опоры (2) зажимными поверхностями (13, 14) и с удерживающим соединением (25, 28, 29) для фиксации зажимной крышки (3) на опоре (2), причем балка (8) имеет направляющие пазы с выступающими внутрь паза краями (34), и пята (7), выполненная Т-образной, своей поперечиной (36) вставлена в направляющий паз и после поворота на 90° зацепляется позади выступающих краев (34). Опора (2) имеет проход (24), по центру которого расположена пружинная шайба (31), которая с силовым замыканием захватывает вдавленный, соединенный с зажимной крышкой (3) удерживающий штифт (30) и тем самым фиксирует зажимную крышку (3) на опоре (2). 25 з.п. ф-лы, 8 ил.
Изобретение относится к области гелио- и ветроэнергетики. Всесезонная гибридная энергетическая вертикальная установка содержит установленный с возможностью вращения вертикальный вал в виде цилиндрической трубы, охватывающей неподвижную полую ось. Неподвижная полая ось закреплена на основании. На вертикальном валу соосно между двумя защитными куполами закреплены ротор Савониуса и ротор Дарье. Защитные купола покрыты препятствующим обледенению слоем. Ротор Савониуса установлен внутри ротора Дарье. Лопасти ротора Дарье выполнены в виде скрученных полос, покрытых препятствующим обледенению слоем. На всей поверхности лопастей ротора Савониуса, выполненных в виде скрученных пластин, с двух сторон закреплены фотоэлектрические преобразователи. Выходы фотоэлектрических преобразователей соединены с силовым входом устройства управления. На вертикальном валу закреплен датчик скорости вращения вала. Выход датчика скорости вращения вала соединен с сигнальным входом устройства управления. Первый силовой выход устройства управления соединен через первый ключ с входом бесколлекторного двигателя постоянного тока. Второй силовой выход устройства управления соединен через второй ключ с входом индукционного передатчика энергии. Выход индукционного передатчика энергии соединен через контроллер заряда с первым входом накопителя электрической энергии. Второй вход накопителя соединен через контроллер заряда с выходом электромагнитного генератора. Электромагнитный генератор закреплен в нижней части вертикального вала. Технический результат - увеличение вырабатываемой электроэнергии за счет использования ветровой и солнечной энергии всесезонно при переменных погодных условиях. 12 з.п. ф-лы, 2 ил.

Группа изобретений относится к области энергетики и может быть использована для выработки электроэнергии, горячей воды и пара. Способ получения тепловой и электрической энергии включает фокусирование солнечных лучей концентратором на неподвижную тепловоспринимающую поверхность и последующее передвижение по ней фокуса в соответствии с перемещением солнца, нагрев через тепловоспринимающую поверхность теплоносителя и преобразование полученной тепловой энергии в электрическую. В качестве концентратора используют вогнутое зеркало, которое перемещают путем слежения за солнцем, при этом тепловоспринимающую поверхность размещают на пересечении вертикальной и горизонтальных осей, вокруг которых осуществляют поворот концентратора при слежении. Для поворота концентратора вокруг вертикальной оси включают первый электродвигатель, в результате чего червяк 5 начинает вращаться и поворачивать зубчатое колесо 2 вместе с платформой 1. При достижении концентратором нужного положения (азимута) выключают первый электродвигатель. Для поворота концентратора вокруг горизонтальной оси включают второй электродвигатель, благодаря чему начинают вращаться вал 14 с червяком 13, который посредством зубчатого колеса 12 и связанного с ним червяка 10 поворачивает зубчатый сектор 9 с осью 6 и колесом 7. При этом за счет цепной передачи 8 происходит поворот ведомого колеса 15 с горизонтальной осью 17 и концентратором до требуемого положения, после чего производят его фиксирование путем выключения двигателя. При этом на нижней части тепловоспринимающей поверхности сферы 19 формируется световое пятно сконцентрированных солнечных лучей, которое перемещается по этой поверхности в процессе слежения за солнцем в течение светового дня. Изобретение должно обеспечить повышение стабильности параметров энергоносителей, повышение КПД, а также улучшение эксплуатационных характеристик. 2 н. и 8 з.п. ф-лы, 3 ил.
Группа изобретений относится к летательным аппаратам с использованием подъемной силы несущего газа. Дирижабль с электродвигателем и заменяемыми отсеками для пассажиров и грузов характеризуется тем, что отсеки дирижабля для пассажиров или грузов, находящихся на отдельной, прикрепленной снизу его корпуса рубке управления дирижаблем, являются заменяемыми. Корпус дирижабля изготавливается из мягкого синтетического материала. Входное и выходное сопла сквозного ветреного канала ветреной электростанции имеют диаметр, равный диаметру поперечного сечения корпуса дирижабля. На внешней защитной обшивке мягкой оболочки прикреплены гибкие фотоэлементы солнечной электростанции. Снабжение электродвигателей воздушных винтов осуществляется от инвертора, преобразующего постоянный ток в переменный ток, соединенного с обеими электростанциями и аккумуляторами проводами. Внутри герметической рубки управления имеются: выход на платформу крепления, размещенную снизу рубки управления. Способ эксплуатации дирижабля характеризуется использованием круглой взлетно-посадочной площадки, вращающейся вокруг ее центра, причальных мачт на взлетно-посадочной платформе, запорных стержней платформы и запорных устройств на заменяемых отсеках. Открепление производится при помощи открепительных штоков, находящихся в сквозных, обособленно проходящих от внутренних помещений отсеков, каналах, и посадочных гидроцилиндров взлетно-посадочной платформы. Группа изобретений направлена на ускорение высадки и посадки пассажиров. 2 н.п. ф-лы.

Изобретение относится к солнечным электростанциям, в том числе к переносным, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную. Солнечная электростанция содержит раму c приводом азимутального поворота и систему автоматики вращения с зенитальным отслеживанием солнца продольной осью кронштейна, посредством которого на нем установлена панель с солнечными батареями. Панель с солнечными батареями выполнена с защитным упаковочным прямоугольным ящиком с четырьмя крышками, соответственно верхняя первая, вторая, третья четвертая сверху в закрытом положении, каждая из которых выполнена в виде дополнительной панели с солнечными батареями и своим одним ребром установлена посредством соответствующих шарниров на верхних ребрах соответственно левой, правой, задней и передней стенок ящика с его дном, причем каждое предыдущее из перечисленных ребер стенок выполнено на более высоком уровне по сравнению с последующим для закрытия дополнительных панелей в виде колоды карт рабочими поверхностями солнечных батарей вниз и с возможностью их раскрытия, а также удержания посредством выполненных в районах шарниров подпружиненных застежек в горизонтальном положении параллельно дну ящика с направленными вверх в сторону солнца рабочими поверхностями солнечных батарей, а основная панель с солнечными батареями жестко закреплена на внутренней поверхности дна ящика рабочей поверхностью солнечных батарей наружу, посредством которого она установлена на кронштейн, конец которого сопряженно вставлен с применением выполненной на нем подпружиненной двухпозиционной застежки в граненую изнутри муфту, выполненную в центральной части снаружи дна ящика. Технический результат заключается в повышении надежности и эффективности работы солнечной электростанции. 3 з.п. ф-лы, 5 ил.

Изобретение относится к переносным портативным солнечным электростанциям, предназначенным для преобразования солнечной лучистой энергии в электрическую как в солнечную погоду, так и в переменную. Портативная солнечная электростанция состоит из рамы, в которой установлен вертикальный вал с шестеренчатым реверсным приводом азимутального поворота; системы автоматики азимутального привода слежения за солнцем и разворота вертикального вала с запада на восток в начало слежения за солнцем при его восходе; панели с солнечными батареями, установленной на кронштейне зенитального поворота, соединенном с верхним концом вертикального вала посредством шарнира, выполненного с ручным или автоматическим приводом; кабельных разъемов и пульта управления. Согласно изобретению в нее дополнительно введены панели с солнечными батареями, образующие в собранном виде защитный упаковочный ящик, и панели, установленные внутри ящика, при этом солнечные батареи, образующие ящик, обращены своими рабочими поверхностями внутрь ящика. Технический результат: повышение надежности и эффективности работы солнечной электростанции, а именно повышение относительной мощности получаемой электроэнергии, приходящейся на единицу массы станции. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области контроля фотоэлектрических устройств и касается способа исследования пространственного распределения характеристик восприимчивости фотоэлектрических преобразователей в составе солнечных батарей к оптическому излучению. Способ включает сканирование поверхности исследуемого объекта лазерным лучом с помощью гальваносканеров с одновременной записью координат сканирования и напряжения, пропорционального величине фотоотклика в данной точке исследуемого объекта. Технический результат заключается в обеспечении возможности получения данных о распределении энергетических параметров фотоэлектричиских преобразователей в составе солнечных батарей, а также в обеспечении возможности визуализации полученных данных. 2 з.п. ф-лы, 2 ил.

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального пользования. Солнечная установка содержит систему автоматики азимутального поворота слежения за Солнцем, которая соединена с силовым преобразователем, подключенным к электродвигателю, вал которого соединен с редуктором, на выходном валу которого расположена платформа, на которой под углом в 45° к ее плоскости установлена солнечная фотобатарея, на которой закреплен датчик освещенности, соединенный с системой автоматики азимутального поворота слежения за Солнцем. К солнечной фотобатарее подключен накопитель энергии, соединенный с силовым преобразователем и нагрузкой. К выходному валу редуктора подключены два концевых выключателя. Технический результат: возможно использование любого типа солнечных фотобатарей. 1 ил.
Наверх