Клапан обратный электроцентробежной установки и способ очистки фильтра на приеме насоса



Клапан обратный электроцентробежной установки и способ очистки фильтра на приеме насоса
Клапан обратный электроцентробежной установки и способ очистки фильтра на приеме насоса
Клапан обратный электроцентробежной установки и способ очистки фильтра на приеме насоса

 


Владельцы патента RU 2544930:

Валеев Мурад Давлетович (RU)

Группа изобретений относится к нефтяной промышленности и может быть применена для промывки приема и полости электроцентробежных насосов от твердых взвешенных частиц песка, асфальтосмолистых веществ и солей. Клапан включает корпус с верхней и нижней присоединительными резьбами, седло для клапана, закрепленное неподвижно внутри корпуса, упорную втулку и шайбу с центральным и периферийными отверстиями, закрепленную в корпусе с помощью стопорного кольца, тарельчатый клапан со штоком, проходящим через центральное отверстие шайбы, подвижную втулку и пружину, установленную между шайбой и подвижной втулкой. Шток тарельчатого клапана выполнен полым с горизонтальными отверстиями в верхней части, соединяющими надклапанную область НКТ с подклапанной. Подвижная втулка выполнена ступенчатой, нижняя часть которой с меньшим диаметром образует с наружной поверхностью полого штока клапана скользящую пару трения. В верхней части втулки с ввернутой крышкой и центраторами выполнены горизонтальные отверстия большего в сравнении с отверстиями штока клапана диаметра. В верхней части штока клапана снаружи установлены стопорное кольцо и уплотнительные кольца из эластичного материала, расположенные по обе стороны горизонтальных отверстий штока клапана. Технический результат заключается в повышении эффективности очистки фильтра. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к нефтяной промышленности и может быть использовано для промывки приема и полости электроцентробежных насосов от твердых взвешенных частиц песка, асфальтосмолистых веществ и солей.

Известно, что на выходе из электроцентробежного насоса (ЭЦН) в насосно-компрессорных трубах (НКТ) устанавливаются обратный и сливной клапаны. Обратный клапан при остановке насоса предупреждает излив жидкости из НКТ в скважину и раскручивание вала насоса в обратном направлении. Сливной клапан позволяет, напротив, освободить НКТ от жидкости для подъема оборудования при ремонте (Богданов А.А. Погружные центробежные электронасосы для добычи нефти. М.: Недра. 1968. С. 52-54). Излив жидкости из НКТ в скважину осуществляют сбросом в НКТ груза, который, долетев до сливного клапана, ломает его и образует отверстие, соединяющее полость НКТ с затрубным пространством.

Известен клапан скважинного центробежного насоса (патент RU 72268 U1, заявл. 26.12.2007, опубл. 10.04.2008), содержащий корпус с внутренней и внешней присоединительными резьбами и закрепленным в нем седлом и размещенный в канале ограничителя осевого перемещения шариковый запорный элемент. Седло клапана снабжено посадочной проточкой под уплотнительное кольцо и зафиксировано относительно корпуса цилиндрической втулкой и шайбой с отверстиями для прохода пластовой жидкости. В верхней части корпуса клапана установлен патрубок с ввинченной в него трубой шламоуловителя, снабженной радиальными отверстиями для прохода пластовой жидкости. Шайба с отверстиями для прохода пластовой жидкости зафиксирована от осевого перемещения относительно корпуса клапана посредством пружинного кольца, а патрубок монтируется в корпусе посредством шпонки с пружинным кольцом.

Кроме того, известен клапан обратный (патент RU №56940 U1, заявл. 07.04.2006, опубл. 27.09.2006), состоящий из корпуса, седла, закрепленного в корпусе, запорного элемента в виде шара. В корпусе образован цилиндрический канал и ограничитель осевого перемещения запорного элемента в канале с отверстиями для протока жидкости, при этом ограничитель выполнен за одно целое с корпусом. Оси отверстий для протока жидкости расположены на образующих цилиндрического канала. Седло закреплено на входе с помощью гайки и(или) резьбовой втулки с пазами под ключ.

Общим недостатком приведенных аналогов является невозможность промывки ЭЦН при засорении приемной части, а также закачки различных химических реагентов через насос в скважину.

Известен фильтр скважинный очищаемый (патент RU 2441139 С1, заявл. 12.07.2010, опубл. 27.01.2012), включающий наружную и внутреннюю трубы с отверстиями, фильтрующий элемент, закрепленный между трубами, волновой преобразователь. Фильтрующий элемент выполнен в виде свитой по высоте проволоки. Волновой преобразователь выполнен в виде пружины сжатия.

Для очистки фильтра после его засорения производят остановку центробежного насоса с последующим его запуском в противоположном направлении вращения ротора. Обратный поток жидкости смывает налипшие частицы песка с фильтрующего элемента.

Указанное устройство обладает недостатком, состоящим в невозможности создания обратного тока жидкости из НКТ через насос в скважину в случае наличия обратного клапана на выходе центробежного насоса.

Известен обратный клапан-автомат, состоящий из корпуса с седлом, на которое посажен тарельчатый клапан со штоком (патент RU 2038463 С1. Обратный клапан-автомат. Заявл. 17.03.1992. Опубл. 27.06.1995). Шток пропущен через отверстие в крестовине, установленной в корпусе. Между шайбой и крестовиной установлена пружина. Со стороны шайбы на шток посажена втулка. При определенных давлениях стопора заклинивают шток, позволяя произвести очистку турбобура. Недостаток такого клапана состоит в зависимости открытия или закрытия запорного элемента от давления и расхода жидкости, что недопустимо для работы погружного насоса.

Наиболее близким к изобретению по технической сущности и достигаемому результату является клапан обратный трехпозиционный (патент RU №104618 U1, заявл. 25.01.2011, опубл. 20.05.2011), который содержит корпус с верхней и нижней присоединительными резьбами. Корпус клапана выполнен составным и имеет верхнюю, среднюю и нижнюю части. Полый шток закреплен внутри корпуса неподвижно, верхняя часть штока выполнена в виде седла для клапана, а под седлом на нем выполнены сквозные радиальные каналы. Подвижным элементом клапана обратного трехпозиционного является полый поршень, расположенный на внешней образующей полого штока соосно с ним с возможностью перекрывать и открывать радиальные каналы полого штока. Подвижный полый поршень подпружинен и имеет два бурта, являющиеся фиксатором движения поршня по вертикали при определенном давлении на поршень.

Недостатками выбранного прототипа являются необходимость дополнительного подъема давления жидкости в НКТ, исчисляемого десятками атмосфер, что повышает риск аварийной ситуации, присутствие двух поверхностей трения полого подвижного поршня (внутренней и наружной), приводящее к его заклиниванию, возможность накопления грязи над поршнем, также приводящего к заклиниванию пар трения.

Технической задачей изобретения является обеспечение очистки фильтра без дополнительного подъема давления в колонне насосно-компрессорных труб.

Поставленная задача решается тем, что в известном устройстве, включающем корпус с верхним и нижним присоединительными резьбами, седло для клапана, закрепленное неподвижно внутри корпуса, упорную втулку и шайбу с центральным и периферийными отверстиями, закрепленную в корпусе с помощью стопорного кольца, тарельчатый клапан со штоком, проходящим через центральное отверстие шайбы, подвижную втулку и пружину, установленную между шайбой и подвижной втулкой, согласно изобретению шток тарельчатого клапана выполнен полым с горизонтальными отверстиями в верхней части, соединяющими надклапанную область НКТ с подклапанной, а подвижная втулка выполнена ступенчатой, нижняя часть которой с меньшим диаметром образует с наружной поверхностью полого штока клапана скользящую пару трения, а в верхней части втулки с ввернутой крышкой и центраторами выполнены горизонтальные отверстия большего в сравнении с отверстиями штока клапана диаметра, причем в верхней части штока клапана снаружи установлены стопорное кольцо и уплотнительные кольца из эластичного материала, расположенные по обе стороны горизонтальных отверстий штока клапана.

Решение указанной задачи достигнуто в способе очистки фильтра на приеме насоса без подъема погружного оборудования на поверхность обратной промывкой фильтрующего элемента жидкостью из колонны насосно-компрессорных труб, включающем остановку насоса для проведения ремонта, согласно изобретению промывку производят спуском груза в колонну труб на скребковой проволоке через лубрикатор на устье скважины, который собственным весом сжимает пружину и перемещает подвижную втулку ступенчатой формы вниз, совмещая горизонтальные отверстия в подвижной втулке и полом штоке тарельчатого клапана и создавая переток жидкости под давлением из колонны насосно-компрессорных труб в скважину через полость насоса и фильтр, а после промывки фильтра груз извлекают из скважины и насос запускают в работу.

На рис. 1, 2 и 3 показаны схемы обратного клапана в различных позициях. В корпусе 1 клапана, установленного выше насоса, размещено посадочное седло 2 тарельчатого клапана 3, переходящего в полый шток с горизонтальными отверстиями в верхней части. Над седлом 2 располагаются упорная втулка 4 и шайба 5 с центральным для полого штока и периферийными для протока жидкости каналами. Над шайбой расположена пружина 6, которая подпирает подвижную втулку 7 ступенчатой формы, закрытую сверху крышкой 8 и имеющую центраторы 9. Во втулке 7 также выполнены горизонтальные отверстия большего диаметра. Клапан 3 для герметичной посадки в седло 2 имеет эластичную манжету 10. Для герметизации пары трения: втулка 7 - полый шток клапана 3, на последнем размещены эластичные манжеты 11. Для ограничения вертикального хода втулки 7 на полом штоке клапана 3 размещено стопорное кольцо 12. Для фиксации гильзы 4 и шайбы в корпусе 1 также установлено стопорное кольцо 13. Для работы клапана используется груз 14, спускаемый в колонну насосно-компрессорных труб на скребковой проволоке через лубрикатор (не показаны).

Работа клапана состоит в следующем.

После спуска электроцентробежного насоса в скважину обратный клапан 3 под собственным весом принимает крайнее нижнее положение, указанное на рис. 1. При этом пружина 6 остается в полностью разжатом положении, при котором горизонтальные отверстия во втулке 7 и полом штоке клапана 3 не совпадают, что предупреждает проток жидкости из НКТ в насос.

При запуске насоса в работу под действием напора жидкости снизу клапан 3 поднимается и пропускает жидкость в НКТ через периферийные каналы шайбы 5 (рис. 2). Приподнятие клапана 3 приведет к тому, что подвижная втулка 7 под собственным весом опустится по отношению к штоку, а горизонтальные отверстия втулки и полого штока совпадут. Пружина 6 так же, как и в случае, указанном на рис. 1, остается в разжатом состоянии. Таким образом, часть добываемой жидкости из насоса в НКТ будет поступать и через полый шток клапана 3.

Для очистки фильтра на приеме насоса от налипших мехпримесей производится его остановка. Клапан 3 под собственным весом опустится вниз и прижмется гидростатическим давлением сверху к седлу 2 (см. рис. 1). Пружина 6 вернет втулку 7 в крайнее верхнее положение, при котором отверстия во втулке 7 и полом штоке клапана 3 уже не совпадут, что предотвратит переток жидкости из НКТ в насос.

Далее в НКТ скважины через лубрикатор на скребковой проволоке спускают груз 14, который благодаря весу, превышающему силу упругости пружины 6, сожмет ее и переместит втулку 7 вниз до положения, указанного на рис. 3. При этом отверстия во втулке 7 и полом штоке клапана 3 совпадут и жидкость из НКТ под большим напором будет перетекать в скважину через полость насоса и приемный фильтр с обратной ее стороны. Обратная промывка жидкостью фильтра позволит смыть с нее налипшую грязь. По истечении определенного времени груз 14 приподнимают и втулка 7 под действием сжатой пружины 6 вернется в крайнее верхнее положение, при котором прекратится переток жидкости из НКТ в скважину. В дальнейшем груз 14 извлекают из скважины.

Время очистки приемной части насоса выбирается с расчетом предупреждения достижения жидкостью статического уровня в скважине, при котором уже создается репрессия на пласт.

После операции промывки производят запуск насоса в работу.

Технико-экономическими преимуществами предложенного устройства и способа являются простота и надежность его работы, а также отсутствие необходимости подъема давления в НКТ на значительную величину для промывки насоса и фильтра. Кроме того, обратный клапан может одновременно выполнять роль сливного клапана, что упрощает спуско-подъемные операции при ремонте скважины. Перед подъемом подземного оборудования в случае проведения ремонтных работ производят сброс груза 14 в НКТ без скребковой проволоки. Сброшенный груз, долетев до клапана, ударится о крышку 8, сожмет пружину 6 и будет удерживать втулку 7 в крайнем нижнем положении по отношению к полому штоку клапана и позволять жидкости из НКТ через совмещенные отверстия во втулке и полом штоке вытекать в скважину при подъеме оборудования в период ремонта.

1. Клапан обратный электроцентробежной установки, включающий корпус с верхней и нижней присоединительными резьбами, седло для клапана, закрепленное неподвижно внутри корпуса, упорную втулку и шайбу с центральным и периферийными отверстиями, закрепленную в корпусе с помощью стопорного кольца, тарельчатый клапан со штоком, проходящим через центральное отверстие шайбы, подвижную втулку и пружину, установленную между шайбой и подвижной втулкой, отличающийся тем, что шток тарельчатого клапана выполнен полым с горизонтальными отверстиями в верхней части, соединяющими надклапанную область НКТ с подклапанной, а подвижная втулка выполнена ступенчатой, нижняя часть которой с меньшим диаметром образует с наружной поверхностью полого штока клапана скользящую пару трения, а в верхней части втулки с ввернутой крышкой и центраторами выполнены горизонтальные отверстия большего в сравнении с отверстиями штока клапана диаметра, причем в верхней части штока клапана снаружи установлены стопорное кольцо и уплотнительные кольца из эластичного материала, расположенные по обе стороны горизонтальных отверстий штока клапана.

2. Способ очистки фильтра на приеме насоса без подъема погружного оборудования на поверхность обратной промывкой фильтрующего элемента жидкостью из колонны насосно-компрессорных труб, включающий остановку насоса для проведения ремонта, отличающийся тем, что промывку производят спуском груза в колонну труб на скребковой проволоке через лубрикатор на устье скважины, который собственным весом сжимает пружину и перемещает подвижную втулку ступенчатой формы вниз, совмещая горизонтальные отверстия в подвижной втулке и полом штоке тарельчатого клапана и создавая переток жидкости под давлением из колонны насосно-компрессорных труб в скважину через полость насоса и фильтр, а после промывки фильтра груз извлекают из скважины и насос запускают в работу.



 

Похожие патенты:

Изобретение относится к запорным элементам обратных клапанов и может быть применено в буровом и нефтедобывающем оборудовании. Запорный орган выполнен в виде поджимаемого к седлу сферического запорного элемента, с возможностью его перемещения, снабжен опорными элементами, выполненными в виде криволинейных ножек.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных месторождений для импульсной закачки жидкости в пласт.

Группа изобретений относится к горному делу и может быть применена при бурении и заканчивания скважин. Изолирующее устройство для пробки разрыва пласта содержит шаровое седло, снабженное посадочной поверхностью, и шар, выполненный с возможностью контакта с посадочной поверхностью.

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Система содержит трубчатую колонну и пустотелый активационный шар.

Изобретение относится к нефтяной и газовой промышленности и может быть применено при освоении скважин. Клапан содержит полый корпус с муфтовым и ниппельным концами, снабженными резьбами для соединения клапана с колонной насосно-компрессорных труб и с радиальным отверстием, полый золотник с радиальным отверстием, поршень.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для проведения ремонта скважин. Клапан-отсекатель устанавливается в составе лифтовой колонны труб над гидравлическим устройством и состоит из разъемного корпуса, в осевом канале которого установлен полый плунжер с кольцевым выступом, опирающимся на пружину.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных месторождений для импульсной закачки жидкости в пласт.

Группа изобретений относится к горному делу и может быть применена для гидравлического разрыва углеводородсодержащего пласта. Скважинная система содержит множество скользящих муфт, имеющих центральный сквозной канал.

Изобретение относится к области добычи углеводородов и может быть использовано при текущем ремонте скважин, оборудованных фонтанным лифтом, электроцентробежными (или другими типами) насосами.

Изобретение относится к области арматуростроения и предназначено в качестве запорно-регулирующего устройства для использования, например, в комплексе оборудования для добычи нефти, в котором подача жидкости осуществляется с помощью электроцентробежного насоса.

Изобретение относится к системам отсечения потока в скважине и может быть применено для испытания колонны труб на герметичность. Устройство содержит пробку из удаляемого материала, установленную в трубу скважины для проведения указанных испытаний. При этом участки стенки трубы имеют каналы (3, 4, 8), обеспечивающие проточное соединение соответственно между полостью (70) скважины над пробкой и полостью (72) скважины под пробкой. Причем устройство содержит закрывающий элемент, выполненный с возможностью постоянного перекрытия проточного соединения. Предпочтительно канал образован осевой полостью/камерой (4), в которой расположен поршень, выполненный с возможностью повторной регулировки путем осевого перемещения из первого положения, в котором имеется проточное соединение через канал, и второго положения, в котором соединение постоянно перекрыто и не может быть открыто вновь. Технический результат заключается в повышении эффективности перекрытия потока в скважине при испытании колонны труб на герметичность. 9 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости, в том числе с помощью боковых и боковых горизонтальных стволов из эксплуатационных колонн. Устройство включает скважину с горизонтальным участком, проходящим по пласту с различными зонами проницаемости, колонну труб с кабелем, электрические клапаны, измерительные датчики давления и температуры, один или несколько пакеров, перекрывающих внутрискважинное пространство, герметично отсекая зоны с различной проницаемостью, причем датчики связаны с узлом измерения на устье скважины, а клапаны связаны кабелем с блоком управления, при этом выше клапанов размещен насос для поднятия продукции на поверхность по внутритрубному пространству, выходы клапанов сообщены с внутритрубным пространством, а входы, кроме ближнего к забою клапана, - с внутрискважинным пространством, причем каждый клапан выполнен в виде размещенных в корпусе электродвигателя с редуктором, вращающий вал которого соединен посредством соединения «винт-гайка» с толкателем, пространство которого и корпус толкателя заполнены смазочной жидкостью, и шарового клапана, выполненного с возможностью герметичного взаимодействия с седлом, ниже которого размещен стакан с входными каналами. Причем вход ближнего к устью клапана сообщен с внутрискважинным пространством, шар каждого клапана соединен при помощи корзины с толкателем с возможностью совместного перемещения, клапаны установлены напротив соответствующей зоны скважины для сообщения входными каналами с этой зоной, причем входные каналы каждого клапана оборудованы соответствующими датчиками давления и температуры, при этом стаканы клапанов герметично и жестко соединены с корпусом соответствующего клапана и снабжены, кроме ближнего к забою клапана, продольными переточными каналами, корпус каждого клапана, кроме ближнего к забою, снизу оборудован переходной втулкой, вставленной с возможностью вращения и фиксации в транспортном положении, причем полость внутри толкателя, снабженная плавающим поршнем, сообщена подпоршневым пространством с технологическими каналами с внутритрубным пространством, а полость над поршнем каналами, выполненными в корпусе толкателя, сообщена с пространством выше толкателя. Таким образом, использование изобретения позволяет расширить технологические возможности при работе устройства в скважине с горизонтальным участком, позволяя проводить независимый отбор продукции скважины из каждого интервала добычи или осуществлять закачку рабочего агента в скважину через клапаны за счет фиксации шарового клапана в открытом положении благодаря корзине, закрепленной на толкателе. При этом за счет размещения поршня во внутреннем пространстве толкателя, разделяющего продукцию скважины во внутритрубном пространстве и смазочную жидкость в корпусе толкателя, снимаются нагрузки на механизм привода клапана, повышая тем самым его надежность, а применение переходной соединительной втулки на конце клапана, имеющей возможность вращения относительно клапана, исключает скручивание и повреждение кабеля при сборке на устье скважины, повышая качество сборки. 5 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для перепуска затрубного газа в колонну насосно-компрессорных труб - НКТ в скважинах, эксплуатируемых установками штанговых насосов. Задача изобретения - совершенствование конструкции скважинного устройства для перепуска затрубного газа для повышения эффективности работы штангового насосного оборудования скважин, независимо от температурных условий работы скважины и от величины давления затрубного газа. Устройство расположено в затрубном пространстве скважины над уровнем скважинной жидкости в муфте колонны насосно-компрессорных труб. Устройство содержит обратный клапан и радиальный гидравлический канал. В нижней части муфты расположен радиальный гидравлический канал, связанный с одной стороны с затрубным пространством скважины через обратный клапан, а с другой стороны - с полостью НКТ через струйный аппарат. При этом, оси радиального гидравлического канала и струйного аппарата пересекаются в области сопла последнего. Кроме того, устройство содержит колонну насосных штанг с размещенным на ней отклонителем газо-жидкостного потока. Этот отклонитель выполнен в виде втулки с возможностью фиксации в муфте колонны НКТ. Длина отклонителя газо-жидкостного потока меньше расстояния между приемом и выкидом струйного аппарата. Оси радиального гидравлического канала и струйного аппарата перпендикулярны. Возможность фиксации отклонителя газо-жидкостного потока в муфте колонны НКТ может быть реализована, например, путем оснащения муфты НКТ внутренним пазом, а отклонителя газо-жидкостного потока - кольцевым держателем. Использование устройства позволяет осуществлять снижение давления затрубного газа независимо от температурных условий и от величины его давления, позволяя увеличить межремонтный период работы штангово-насосного оборудования. Кроме того, данное устройство позволит уменьшить глубину подвески штангового насоса за счет повышения уровня жидкости над штанговым насосом и тем самым снизить расход НКТ, насосных штанг и увеличить межремонтный период работы установок. 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано, в частности, для продления безводного режима эксплуатации нефтяных скважин. Технический результат - упрощение устройства, повышение надежности его работы и расширение его функциональных возможностей. Устройство включает спущенную в скважину колонну труб, пакер с установленным в нем отключателем потока. Пакер выполнен в виде полого корпуса с верхним рядом отверстий, размещенных выше уплотнительного элемента пакера. Внутри полого корпуса концентрично его оси расположена труба, сверху жестко соединенная с колонной труб, а снизу - с поршнем. Труба с поршнем имеют возможность осевого перемещения относительно полого корпуса отключателя потока. В полом корпусе ниже уплотнительного элемента пакера выполнен нижний ряд отверстий. Поршень выполнен полым и заглушенным снизу. Напротив верхнего и нижнего рядов отверстий полого корпуса поршень оснащен внутренней цилиндрической выборкой и рядом сквозных отверстий. В полом корпусе выше верхнего ряда радиальных отверстий выполнен фигурный паз в виде одной продольной проточки и трех поперечных проточек. Поперечные проточки выполнены из верхней, средней и нижней частей продольной проточки. В фигурном пазу полого корпуса с возможностью осевого и поперечного перемещения установлен направляющий штифт. Он жестко закреплен в поршне выше его верхней внутренней кольцевой выборки. При размещении направляющего штифта в поперечной проточке, выполненной из средней части продольной проточки, устройство выполнено с возможностью сообщения внутреннего пространства трубы через ряд сквозных отверстий поршня, внутреннюю цилиндрическую выборку, верхний и нижний ряд отверстий с надпакерным и подпакерным пространствами скважины. При размещении направляющего штифта в поперечной проточке, выполненной из верхней части продольной проточки, устройство выполнено с возможностью сообщения внутреннего пространства трубы через ряд сквозных отверстий поршня, внутреннюю цилиндрическую выборку, верхний ряд отверстий с надпакерным пространством скважины. Нижний ряд отверстий полого корпуса герметично перекрыт поршнем. При размещении направляющего штифта в поперечной проточке, выполненной из нижней части продольной проточки, устройство выполнено с возможностью сообщения внутреннего пространства трубы через ряд сквозных отверстий поршня, внутреннюю цилиндрическую выборку, нижний ряд отверстий с подпакерным пространством скважины. При этом верхний ряд отверстий полого корпуса герметично перекрыт поршнем. 3 ил.

Предложенная группа изобретений относится к горному делу и может быть применена для регулирования потока в скважине. Система содержит проточную камеру, через которую протекает флюидная смесь, причем указанная камера имеет, по меньшей мере, два входа, исполнительный механизм и переключатель потока флюида. При этом сопротивление потоку изменяется в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам. Поток указанной флюидной смеси может отклоняться по направлению к одному из указанных входных протоков указанным исполнительным механизмом. Способ регулирования сопротивления потоку в скважине включает изменение ориентации отклоняющей заслонки относительно канала, по которому протекает флюидная смесь, в результате чего поток указанной флюидной смеси отклоняется по направлению к одному из входных протоков проточной камеры. Причем указанная камера обеспечивает сопротивление потоку, изменяющееся в зависимости от пропорций, в которых указанная флюидная смесь протекает в указанную камеру по соответствующим входным протокам. Технический результат заключается в повышении эффективности регулирования потока в скважине. 3 н.п. и 40 з.п. ф-лы, 13 ил.

Группа изобретений относится к горному делу и может быть применена в нефтегазовых скважинах. Гидравлическое устройство содержит гидравлический канал высокого давления, подвижный элемент, герметизирующие элементы и корпус, выполненный с камерой, с впускным отверстием, выполненным с возможностью гидравлического сообщения с камерой, и с перепускным отверстием, выполненным с возможностью гидравлического сообщения внутритрубного пространства с затрубным пространством. Герметизирующие элементы и подвижный элемент расположен внутри корпуса. Гидравлический канал высокого давления герметично закреплен во впускном отверстии. Камера представляет собой буферную камеру. Устройство дополнительно снабжено внешней камерой с функцией пружины. При этом буферная камера расположена в корпусе с возможностью гидравлической изоляции от перепускного отверстия и от внешней камеры. Герметизирующие элементы расположены между буферной и внешней камерами и между буферной камерой и перепускным отверстием. Подвижный элемент расположен с возможностью герметичного возвратно-поступательного перемещения и выполнен с разными размерами поперечных сечений. При этом размер поперечного сечения подвижного элемента со стороны перепускных отверстий или отверстия меньше, чем размер поперечного сечения подвижного элемента со стороны внешней камеры. Технический результат заключается в повышении эксплуатационной надежности работы устройства в скважинах с малыми диаметрами с переменным или низким давлением скважинного флюида. 2 н. и 23 з.п. ф-лы, 5 ил.

Группа изобретений относится к оборудованию для эксплуатации подземной скважины и, в частности, к системе переменной сопротивляемости потоку. В скважине по добыче углеводородов имеется необходимость регулирования потока текучих смесей из геологического пласта в скважину. Такое регулирование обеспечивает, например, возможность предотвращения образования водяного или газового конуса в пласте, минимизацию добычи песка, минимизацию добычи воды и/или газа, максимизацию добычи нефти и/или газа, балансирование добычи между зонами. Технический результат - совершенствование регулирования потока текучей смеси в подземной скважине. Система переменной сопротивляемости потоку включает проточную камеру для прохождения по ней текучей смеси. Эта камера имеет по существу цилиндрическую стенку. Имеется, по меньшей мере, один вход, обеспечивающий возможность поступления текучей смеси в упомянутую камеру. Этот вход пересекает указанную цилиндрическую стенку. Имеется выход, обеспечивающий возможность выхода текучей смеси из камеры. Этот выход расположен возле центра указанной камеры. Кроме того, имеется, по меньшей мере, одна конструкция, препятствующая круговому движению текучей смеси у выхода. 4 н. и 45 з.п. ф-лы, 24 ил.

Группа изобретений относится к горному делу и может быть применена в предохранительном клапане в насосно-компрессорной трубе. Скважинный инструмент включает канал потока, проходящий продольно через скважинный инструмент, внутреннюю камеру, содержащую диэлектрическую текучую среду, и путь потока, который создает гидравлическую связь между внутренней камерой и каналом потока и который включает, по меньшей мере, два изменения направления в направлении потока. При этом путь потока содержит множество секций путей потока, проходящих продольно от верхнего манифольда к нижнему манифольду. Причем изменяющиеся противоположные концы смежных секций путей потока гидравлически сообщены друг с другом посредством верхнего и нижнего манифольдов. При этом каждый из верхнего и нижнего манифольдов соединен с, по меньшей мере, тремя секциями путей потока. Технический результат заключается в повышении надежности предохранительного клапана. 3 н. и 44 з.п. ф-лы, 21 ил.

Изобретение относится к нефтяной промышленности и может быть использовано при эксплуатации скважины с большим углом наклона эксплуатационной колонны. Технический результат - повышение надежности работы устройства в горизонтальной скважине и эффективности очистки добываемого продукта, увеличение межремонтного периода работы устройства, а также снижение его металлоемкости. Устройство включает колонну насосно-компрессорных труб с насосом, клапан, хвостовик. В составе колонны насосно-компрессорных труб ниже насоса в вертикальной части горизонтальной скважины размещен клапан. К клапану снизу присоединен хвостовик с фильтром. Клапан выполнен в виде муфты с конусным седлом и установленной в муфте двухступенчатой пробки из пластикового материала со сквозными окнами, выполненными на ее боковой поверхности. Верхняя ступень пробки герметично взаимодействует с муфтой. Между нижней ступенью двухступенчатой пробки и муфтой имеется кольцевой зазор. Нижний торец пробки выполнен в виде конуса и имеет возможность герметичного взаимодействия с конусным седлом муфты. Двухступенчатая пробка имеет возможность ограниченного осевого перемещения относительно муфты. Высота двухступенчатой пробки меньше расстояния от отверстия в муфте до торца нижней трубы колонны насосно-компрессорных труб. На концах трубы с отверстиями диаметром 6-7 мм жестко закреплены опоры. Между опорами на трубе напротив отверстий концентрично установлен фильтрующий элемент. Он выполнен из намотанной витками по спирали проволоки с зазором 1,0 мм между витками, соединенной с проволочными продольными стрингерами, образующими между трубой и фильтрующим элементом дренажные каналы. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации высокодебитных нефтяных скважин. Технический результат заключается в повышении производительности насоса. Скважинный штанговый насос двухстороннего действия включает спускаемый на колонне труб цилиндр и плунжер с верхними и нижними всасывающими и нагнетательными клапанами с запорными органами, причем верхний всасывающий клапан установлен снаружи цилиндра, а плунжер соединен с колонной штанг через полый шток с уплотнением. Нижний всасывающий клапан цилиндра расположен снаружи, плунжер сверху и снизу оснащен соответственно верхним и нижним нагнетательными клапанами. Полый шток сообщен через верхние отверстия с пространством колонны труб, а через верхний и нижний нагнетательные клапаны плунжера - с соответствующими полостями цилиндра, полости цилиндра и пространства колонны труб разобщены уплотнением полого штока. Каждый клапан выполнен в виде корпуса с внутренним кольцевым каналом, сообщающим входные радиальные окна с внутренней кольцевой проточкой, запорным органом в виде эластичной цилиндрической втулки с наружным утолщением, перекрывающей кольцевую проточку с возможностью пропуска внутрь и закрепленной на корпусе за утолщение снаружи замком. Входные окна всасывающих клапанов снаружи снабжены фильтрами, а выше цилиндра колонна труб снабжена сливным клапаном. 2 з.п. ф-лы, 2 ил.
Наверх