Способ получения ароматических полиамидов

Изобретение относится к способу получения ароматических полиамидов, которые могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких связующих для пластмасс, стеклопластиков, клеев и пленок. Способ получения ароматических полиамидов заключается в том, что ароматические динитрилы подвергают взаимодействию с бисфенолами в ионной жидкости при 150-180°C в течение 10-12 часов. Ионная жидкость представляет собой 1-бутил-3-метилимидазолий гептахлордиалюминат ([bmim]Al2Cl7). Изобретение позволяет сократить температуру и продолжительность синтеза, увеличить молекулярную массу полимера, а также улучшить физико-механические показатели материалов на их основе. 2 табл., 4 пр.

 

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения термостойких гетероцепных полимеров, которые могут быть использованы в промышленности полимерных изделий как связующие для пластмасс и стеклопластиков, а также клеев, покрытий и пленочных материалов.

Известны (пат. США №3418275, опубл. 1968 г., пат. США №3624033, опубл. 1971 г., Федотова О.Я. и др. Высокомол. соед.. - 1960. - Т.2. - с.899-903, Hesegawa H. Bull. Chem. Soc. Japan. - 1954. - V.27. - p.227-235) классические в химии полимеров способы получения ароматических полиамидов (АПА), заключающиеся в поликонденсации диаминов с галогенангидридами ароматических дикарбоновых кислот. Однако каждый отдельный дихлорангидрид необходимо синтезировать и доводить до требуемой кондиции, что связано с дополнительными затратами. Высокая гидролитическая неустойчивость дихлорангидридов помимо гибели функциональных групп приводит к выделению хлористого водорода. Последний также выделяется и в процессе получения полимера, что вызывает коррозию аппаратуры и образование солей с диаминами или с растущими полимерными цепями, которые, как правило, нереакционноспособны. Поэтому процесс получения АПА требует довольно сложного аппаратурного оформления из коррозионно-стойких материалов и/или присутствия акцептора хлороводорода.

Предлагаемый метод заключается в использовании стабильных мономеров, что исключает указанные трудности.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения АПА (Патент №2306347 РФ / Могнонов Д.М., Бурдуковский В.Ф., Стельмах С.А.; Заявл. 11.12.2006; Опубл. 10.04.2008. - Бюл. №10),принятый за прототип, основанный на взаимодействии ароматических динитрилов с бис-фенолами в присутствии каталитических количеств хлорида сурьмы(III), хлорида и бромида алюминия при 170-220°C в течение 21-30 ч. Приведенная вязкость АПА, полученных таким способом,составляет 0.23-0.55 дл/г (H2SO4, 25°C).

Техническим результатом изобретения является увеличение молекулярной массы полимера, улучшение физико-механических характеристик материалов, сокращение продолжительности и температуры реакции.

Для достижения технического результата предложено получение АПА сополимеризацией динитрилов с бис-фенолами в ионной жидкости - 1-бутил-3-метилимидазолий гептахлордиалюминат ([bmim]Al2Cl7) при 150-180°C в течение 10-12 ч по следующей схеме:

Характеристическая вязкость составляет 0.43-0.87 дл/г (H2SO4, 20°C). Полимеры полностью растворимы в амидных растворителях при умеренном нагревании в концентрированных серной и муравьиной кислотах.

Термостойкость (по данным ТГА (5°C/мин, воздух), 10%-ная потеря массы) и теплостойкость полимеров (Тст.) составляет 440-490°C и 250-320°C соответственно.

Строение АПА подтверждено данными ИК, ЯМР 1H и 13C-спектроскопией. Так, по данным ИК-спектроскопии (KBr, см-1) присутствуют характеристические полосы поглощения при 1650-1660 (C=O) и 3390-3380 (N-H). Наиболее доказательными являются данные ЯМР 13C-спектроскопии (ДМСО-d6, δ, м.д.): сигнал при 164.83, свидетельствующий о наличии карбонильного атома углерода и ЯМР 1H-спектроскопии (ДМСО-d6, δ, м.д.): сигнал при 10.3, свидетельствующий о наличии атома водорода амидной связи.

Пленочные материалы получали поливом 18-20% раствора полимера в диметилформамиде на стеклянную подложку. Физико-механические свойства пленок представлены в таблице 1.

Таблица 1.
Физико-механические свойства пленок на основе АПА
АПА σраст., МПа εразр., %
Ar R
56.4 4.6
60.5 4.0
71.2 3.2
59.5 4.1

Прессованием порошков ароматических полиамидов при давлении 70-75 МПа и 250-350°C получены пресс-материалы, свойства которых приведены в Таблице 2.

Таблица 2
Физико-механические свойства пресс-материалов.
АПА Удельная ударная вязкость, МПА ГОСТ 4647-80 Разрушающее напряжение при растяжении, МПа ГОСТ 4648-71
Ar R
72-75 110
75-78 113
70-73 117
83-86 98

Предлагаемый способ подтверждается следующими нижеприведенными примерами.

Пример 1. В колбу загружали 3.4875 г [bmim]Cl (19.9857 ммоль) и при 20°C и интенсивном перемешивании небольшими порциями добавляли 5.3361 г хлорида алюминия (39.9714 ммоль). После полной гомогенизации небольшими порциями в полученную [bmim]Al2Cl7 (плотность 1.334 г/мл, 25°C) добавляли смесь 0.507 г 1,3-дицианобензола (5.292 ммоль) и 0.4356 г резорцина (5.292 ммоль). Реакционную массу интенсивно перемешивали 10 ч при 200°C. Затем высаживали в 1%-ный раствор гидроксида натрия, отфильтровывали и многократно промывали водой. Сушили в вакууме при 60-70°C до постоянной массы. Выход полимера количественный, характеристическая вязкость 0.87 дл/г (H2SO4, 20°C).

Пример 2. В колбу загружали 3.4875 г [bmim]Cl (19.9857 ммоль) и при 20°C и интенсивном перемешивании небольшими порциями добавляли 5.3361 г хлорида алюминия (39.9714 ммоль). После полной гомогенизации небольшими порциями в полученную [bmim]Al2Cl7 (плотность 1.334 г/мл, 25°C) добавляли смесь 0.507 г 1,3-дицианобензола (5.292 ммоль) и 1.2066 г 4,4'-дифенилолпропанола (5.292 ммоль). Реакционную массу интенсивно перемешивали 12 ч при 200°С. Затем высаживали в 1%-ный раствор гидроксида натрия, отфильтровывали и многократно промывали водой. Сушили в вакууме при 60-70°С до постоянной массы. Выход полимера количественный, характеристическая вязкость 0.81 дл/г (H2SO4, 20°С).

Пример 3. В колбу загружали 3.4875 г [bmim]Сд (19.9857 ммоль) и при 20°С и интенсивном перемешивании небольшими порциями добавляли 5.3361 г хлорида алюминия (39.9714 ммоль). После полной гомогенизации небольшими порциями в полученную [bmim]Al2Cl7 (плотность 1.334 г/мл, 25°C) добавляли смесь 1.1642 г 4,4'-дицианодифенилоксида (5.292 ммоль) и 1.2066 г 4,4'-дифенилолпропанола (5.292 ммоль). Реакционную массу интенсивно перемешивали 12 ч при 200°С. Затем высаживали в 1%-ный раствор гидроксида натрия, отфильтровывали и многократно промывали водой. Сушили в вакууме при 60-70°С до постоянной массы. Выход полимера количественный, характеристическая вязкость 0.75 дл/г (H2SO4, 20°С).

Пример 4. В колбу загружали 3.4875 г [bmim]Cl (19.9857 ммоль) и при 20°C и интенсивном перемешивании небольшими порциями добавляли 5.3361 г хлорида алюминия (39.9714 ммоль). После полной гомогенизации небольшими порциями в полученную [bmim]Al2Cl7 (плотность 1.334 г/мл, 25°C) добавляли смесь 0.507 г 1,4-дицианобензола (5.292 ммоль) и 1.503 г фенолфталеина (5.292 ммоль). Реакционную массу интенсивно перемешивали 10 ч при 200°C. Затем высаживали в 1%-ный раствор гидроксида натрия, отфильтровывали и многократно промывали водой. Сушили в вакууме при 60-70°C до постоянной массы. Выход полимера количественный, характеристическая вязкость 0.87 дл/г (H2SO4, 20°C).

Как видно из приведенных данных Таблиц 1, 2,Ю предлагаемый способ получения АПА выгодно отличается тем, что прост, получаются полимеры с высокими значениями молекулярной массы, сравнительно хорошей растворимостью и способностью к переработке в материалы современными методами, а также высокими значениями физико-механических свойств их материалов и высокой стойкостью к термоокислительной деструкции.

Вышеперечисленный комплекс практически полезных свойств полученных АПА определяет положительный эффект изобретения. Полученные полиамиды могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, пленок и клеев.

Способ получения ароматических полиамидов, отличающийся тем, что полиамиды образуются при взаимодействии ароматических динитрилов с бисфенолами в ионной жидкости - 1-бутил-3-метилимидазолий гептахлордиалюминат ([bmim]Al2Cl7) при 150-180°C в течение 10-12 ч.



 

Похожие патенты:

Изобретение относится к композиции полиамидной смолы, которая имеет превосходные свойства, такие как термостойкость, стойкость к химическому воздействию, прочность, износостойкость и формуемость, и поэтому широко применяется для получения формованных изделий в качестве технической пластмассы.
Изобретение относится к сополиамиду, способу его получения, к композиции, содержащей сополиамид, применению сополиамида и фосфорноватистой кислоты или, по меньшей мере, одной из ее солей.
Изобретение относится к сополиамиду, способу его получения, композиции, содержащей сополиамид, а также к применению сополиамида и композиции. Сополиамид содержит, по меньшей мере, два разных звена, отвечающий следующей общей формуле: А/Х.Т.
Изобретение относится к способам получения композиции в форме крошки, включающей ароматический полиамид из ароматического диамина и хлорангидрида ароматической дикарбоновой кислоты.

Изобретение относится к усовершенствованному способу получения раствора соли двухосновных кислот и по меньшей мере одного диамина для получения полиамида. .
Изобретение относится к способу получения полиамида. .

Изобретение относится к области катализа реакций поликонденсации. .

Изобретение относится к композиции полиамидной смолы, содержащей полиамид (х), имеющий диаминовое звено, которое, главным образом, состоит из m-ксилилендиаминового звена, и звено дикарбоновой кислоты, которое, главным образом, состоит из звена адипиновой кислоты; и специфические количества антиоксиданта фосфорной кислоты и щелочного компонента.

Изобретение относится к новым улучшенным полиамидам из мета-ксилилендиамина и адипиновой кислоты. .

Изобретение относится к способу получения полиамида, применяемого в производстве формованных материалов - бутылок, листов, пленок, волокон. Способ получения полиамида заключается в том, что проводят прямую полимеризацию в расплаве диаминового компонента, содержащего 70 или более мол.% пара-ксилилендиамина с дикарбоновой кислотой, содержащей 70 или более мол.% С6-С18 алифатической дикарбоновой кислоты. Полимеризацию проводят при давлении от 0,2 до 0,5 МПа в отсутствие растворителя в реакторе периодического действия. Реактор оснащен перемешивающей лопастью без структурной основной части в горизонтальном направлении или перемешивающей лопастью, обладающей структурной основной частью в горизонтальном направлении, где основная часть в ходе перемешивания не контактирует с границей раздела между реакционной смесью и секцией газовой фазы. В ходе реакции температуру в секции газовой фазы реакционного резервуара реактора поддерживают равной 200°С или выше. Перемешивание содержимого реакционного резервуара от начала введения диаминового компонента до прекращения введения и до начала падения давления осуществляют так, что характеризующее перемешивание число Фруда составляет от 0,0002 до 0,15. Изобретение позволяет повысить производительность полиамида и получить полиамид высокого качества с низким содержанием нерасплавленного вещества в продукте. 3 з.п. ф-лы, 2 ил., 1 табл., 10 пр. .
Изобретение описывает способ получения полиамида поликонденсацией диаминного компонента и компонента дикарбоновой кислоты в реакционном резервуаре периодического действия, оснащенном парциальным конденсатором, в отсутствие растворителя, причем диаминный компонент включает 70 мольных процентов или более ксилолдиамина, который включает 20 мольных процентов или более пара-ксилолдиамина, и компонент дикарбоновой кислоты содержит алифатическую дикарбоновую кислоту, выбранную из янтарной кислоты, глутаровой кислоты, адипиновой кислоты, пимелиновой кислоты, пробковой кислоты, азелаиновой кислоты, себациновой кислоты, ундекандиовой кислоты и додекандиовой кислоты, при этом способ включает следующие стадии (1)-(3): (1) стадию, в которой загружают компонент дикарбоновой кислоты в реакционный резервуар и повышают внутреннее давление в реакционном резервуаре до 0,2 МПа (манометрических) или выше; (2) стадию, в которой непрерывно или периодически добавляют диаминный компонент к компоненту дикарбоновой кислоты, пока молярное отношение (В/А) диаминного компонента (В) к загруженному компоненту (А) дикарбоновой кислоты не достигнет 0,60, в то же время поддерживают внутреннее давление в реакционном резервуаре при 0,2 МПа (манометрических) или выше и поддерживают всю реакционную систему в жидком состоянии; и (3) стадию, в которой снижают внутреннее давление в реакционном резервуаре до уровня менее 0,2 МПа (манометрических) в то время, пока молярное отношение (В/А) диаминного компонента (В) к загруженному компоненту (А) дикарбоновой кислоты находится в пределах диапазона от 0,60 до 0, 95, в то же время поддерживают всю систему в жидком состоянии и непрерывно или периодически добавляют диаминный компонент к компоненту дикарбоновой кислоты. Технический результат заключается в получении полиамида с высокими качественными показателями. 6 з.п. ф-лы, 8 пр.

Изобретение относится к композиции полиамидной смолы, содержащей полиамид (X), включающий диаминовое звено, в том числе 70 мол.% или более метаксилилендиаминового звена, и звено дикарбоновой кислоты, включая 70 мол.% или более звена адипиновой кислоты или звена себациновой кислоты, и щелочное соединение (A), которое представляет собой, по меньшей мере, одно, выбранное из карбонатов, гидрокарбонатов или карбоксилатов щелочных или щелочноземельных металлов, где удовлетворяются следующие уравнения (1)-(3): 0,03≤P≤0,32 (1) 2,2≤M≤26,1 (2) 9,3<M/P≤186, (3) где P обозначает мольную концентрацию, выраженную в мкмоль/г, атомов фосфора, содержащихся в г в композиции полиамидной смолы, M обозначает сумму, выраженную в мкмоль/г, величин, получаемых умножением мольной концентрации атома щелочного металла и мольной концентрации атома щелочноземельного металла, содержащихся в г в композиции полиамидной смолы на его валентность соответственно. Описаны также способ получения композиции полиамидной смолы, полиамидная маточная смесь и многослойное формованное изделие. Технический результат - хороший цветовой тон композиции полиамидной смолы, продуцирование меньшего количества геля и обожженного остатка при производстве изделий из композиции, таких как пленки, листы, волокна, многослойные изделия. 4 н. и 7 з.п. ф-лы, 10 табл., 91 пр.
Изобретение относится к способу получения полиамида, который может быть использован для получения формованных изделий, пленок, листов и волокон. Способ заключается в том, что проводят поликонденсацию диаминового компонента и дикарбонового кислотного компонента в реакторе периодического действия. В качестве диаминового компонента используют смесь ксилилендиаминов, содержащую по меньшей мере 40% мол. п-ксилилендиамина. Диаминовый компонент добавляют по каплям к дикарбоновому компоненту, который поддерживают в состоянии расплава путем нагревания его до температуры не ниже его точки плавления, при давлении 0,1 МПа изб. или более. Реакционную смесь поддерживают в состоянии расплава. Температуру реакционной смеси поддерживают равной не более 255°С до тех пор, пока мольное соотношение диаминовый компонент/дикарбоновый кислотный компонент для реакционной смеси не достигнет 0,8. Температуру реакционной смеси в конце добавления по каплям диаминового компонента контролируют таким образом, чтобы она имела значение не ниже точки плавления полиамида. Полученный полиамид имеет точку плавления в диапазоне от 255°С до 285°С. Изобретение позволяет получить полиамид, обладающий улучшенным оттенком и хорошим качеством. 2 з.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к способу получения полукристаллического полуароматического сополимерного полиамида. Способ получения полукристаллического полуароматического сополимерного полиамида (Со-РА) заключается в том, что вначале получают полукристаллический полуароматический полиамид (А) прямой твердофазной полимеризацией терефталевой кислоты в количестве 45-50 % мол., диамина в количестве 47,5-50 % мол., и одного или нескольких компонентов, содержащих аминовые и/или кислотные группы в количестве 0-5 % мол. Полуароматический полиамид (А) имеет температуру плавления (Tm-A), составляющую по меньшей мере 310°С. Затем получают полиамид (В), который представляет собой аморфный полиамид, имеющий температуру стеклования (Tg-B), меньшую, чем значение Tm-A, либо полукристаллический полиамид, имеющий температуру плавления (Tm-B), меньшую, чем значение Tm-A, или комбинацию из указанного аморфного полиамида и указанного полукристаллического полиамида. Далее нагревают и перемешивают полиамид (А) и полиамид (В) с получением расплава полимеров, который имеет температуру (Т-расплав), большую, чем значение Tm-A. Затем расплав охлаждают до температуры, меньшей, чем температура затвердевания расплава с получением твердого сополимерного полиамида. Изобретение позволяет оптимизированным способом получить полукристаллический полуароматический сополимерный полиамид, имеющий температуру плавления по меньшей мере 300°С и имеющий высокие механические свойства. 16 з.п. ф-лы, 1 ил., 3 табл., 12 пр.
Наверх