Способ регенераци ионообменных смол

Изобретение относится к области ионообменной водоподготовки и водоочистки. Предложен способ противоточной регенерации ионообменных материалов. Способ регенерации включает стадию зажатия слоя ионита потоком жидкой среды, направленным снизу вверх, стадию регенерации растворами кислоты и щелочи, стадию гравитационного осаждения и отмывки ионитов от остатков регенерирующего раствора. Минимальные скорости подачи кислоты и щелочи рассчитывают с учётом диаметра фильтра, в котором осуществляют регенерацию, и вязкости регенерирующих растворов. Изобретение позволяет повысить длительность фильтроцикла и эффективность очистки воды при использовании фильтров большого диаметра. 1 табл.

 

Изобретение относится к области водоподготовки и водоочистки, а именно к способам ионообменной очистки воды с противоточной регенерацией ионообменных материалов по технологии АПКОРЕ и может быть использовано в энергетике, гидрометаллургии, химической, пищевой и других отраслях промышленности.

Известен способ противоточной регенерации отработанных ИС, включающий в себя обработку регенерационным раствором и взрыхление снизу вверх, и отмывку водой сверху вниз (RU 2058817, 1995).

Недостатком указанного способа является низкая эффективность процесса регенерации вследствие большого расхода регенерационных растворов и сточных вод, а также увеличенное время процесса регенерации смолы.

Более эффективным признана регенерация ионообменных смол с использованием технологии UPCORE. Такая установка (RU 2241542, 2003), как правило, состоит из ионообменного фильтра, имеющего две дренажно-распределительные системы сверху и снизу, заполненного на 85-95% ионитом и плавающим инертным материалом и снабженного системой клапанов, обеспечивающих последовательную подачу в ионитный фильтр очищаемого раствора в направлении сверху вниз, и в противоточном направлении - снизу вверх воды с большой скоростью, затем регенерирующего агента и промывной воды с меньшей скоростью и окончательную отмывку ионита сверху вниз. Весь регенерационный раствор сбрасывается на переработку. Способ регенерации ионитов в фильтрационных процессах типа UPCORE ("The UPCORE System". Engineering Handbook. Trademark of The Dow Chemical Company. May 1995, A1, page 5,6, B2 page 21; Малышев P.M., Золотников A.H., Бомштейн B.E., Громов С.Л., Newell Р.А., Sievers R., Medete A. - Способ противоточной регенерации ионитов - Патент РФ №2149685, Изобретения, 2000, №15; Громов С.Л., Пантелеев А.А. - Технологии противоточной регенерации ионитов для водоподготовки. Часть 2. - Теплоэнергетика №11, 2006, с.50-55) заключается в том, что обрабатываемую воду подают в направлении сверху вниз последовательно через плавающий слой инертного материала и слой ионообменной загрузки. Ионообменная загрузка может представлять собой сильнокислотный катионит в Na или Н-формах, сильноосновный анионит в Cl или ОН-формах, или послойную загрузку слабоосновного и сильноосновного анионитов в ОН-форме. В последнем случае плотность и гранулометрический состав анионионитов различной функциональности подбирают таким образом, чтобы обеспечить разделение слоев. По завершении рабочего цикла фильтрования проводят операции поршнеобразного подъема и зажатия слоя ионита восходящим потоком воды, после чего подают регенерирующий раствор (регенерант) в направлении снизу-вверх с расходом, обеспечивающим сохранение слоя ионита в зажатом состоянии, затем проводят вытеснение остатков регенеранта восходящим потоком воды без разуплотнения зажатого слоя ионита, после чего позволяют слою смолы осесть под воздействием силы тяжести и проводят промывку водой в направлении, совпадающем с направлением потока обрабатываемой воды в рабочем цикле. При этом обеспечивается степень зажатия слоя ионита в пределах 90-92%, для чего требуется подавать поток воды с линейной скоростью до 50 м/ч не менее 3-5 мин, а для регенерации смолы подают регенерант в течение до одного часа с линейной скоростью потока до 20 м/час для поддержания слоя смолы в зажатом состоянии.

Основными недостатками способа являются недостаточная длительность рабочего фильтроцикла и необходимость повышенного расхода регенерирующего агента из-за неполного зажатия слоя (до 10% объема слоя смолы в нижней части аппарата может оставаться в незажатом состоянии) и риска возникновения продольного перемешивания частиц ионита в нижней части слоя, что приводит к недостаточной степени регенерации частиц ионита, обеспечивающих показатели качества очистки обрабатываемой среды.

Известен способ ионообменной очистки воды (RU 2205692, 2002,) содержащей органические вещества, с противоточной регенерацией ионообменных материалов, включающий подачу обрабатываемой воды в направлении сверху вниз через плавающий слой инертного материала, последующее прохождение ее через расположенные непосредственно один над другим два слоя ионообменных материалов с плотностью и гранулометрическим составом, обеспечивающими их послойное разделение, и с использованием в качестве верхнего слоя органопоглощающей анионитной смолы для удаления из воды органических веществ, периодическую регенерацию ионообменных материалов путем предварительного подъема и зажатия слоев ионообменных материалов к плавающему слою инертного материала и последующей подачи регенерационного раствора в направлении снизу вверх последовательно через оба слоя ионообменных материалов и плавающий слой инертного материала, при этом в качестве органопоглощающей анионитной смолы используют смолу в Cl--форме, и после удаления органических веществ обрабатываемую воду очищают от катионов в нижнем слое ионообменного материала, в качестве которого используют катионитную смолу в Na+ или H+ - формах, а для регенерации обоих слоев ионообменных материалов применяют раствор NaCl и/или HCl.

Недостатком способа является недостаточная эффективность процесса в связи с неполным зажатием слоя ионообменных материалов на стадии регенерации.

Наиболее близким по технической сущности к заявляемому способу является модифицированный способ регенерации ионитов в фильтрационных процессах типа "АПКОРЕ" (RU 2241542, 2004), в котором перед стадией зажатия слоя ионита потоком жидкой среды, направленным снизу вверх, предварительно проводят его обработку потоком очищаемой жидкости в направлении сверху вниз с линейной скоростью, превышающей среднее эксплуатационное значение на 5-250%, как правило, в течение 1-5 мин. Способ обеспечивает повышение эффективности процесса регенерации слоя ионообменных смол и увеличивает фильтроцикл на 5-10%.

К причинам, препятствующим достижению оптимального технического результата при использовании известного способа, относятся разуплотнение нижней части слоя ионообменной загрузки при переходе от стадии зажатия слоя к стадии подачи раствора реагента и снижение линейной скорости несущего потока до значений, рекомендованных в [The Dow Chemical Company - The UPCORE System. Engineering Handbook, 1995]: для раствора кислоты - 10 м/ч, а для щелочи - 7 м/ч. Из-за разуплотнения 3-5% от общего объема слоя переходят в незажатое (псевдоожиженное) состояние и, как следствие, снижается эффективность регенерации особенно при работе на фильтрах диаметром более 1 м.

Технической задачей, решаемой авторами, являлось повышение эффективности процесса регенерации и оптимизация расхода реагентов. Решение задачи заключалось в создании условий, способных обеспечить пребывание в зажатом состоянии слоя смолы, объем которого максимально близок к теоретически возможному 100% пределу, на всех стадиях процесса.

Среди важнейших факторов, определяющих эффективность проведения регенерации ионообменных смол по технологии UPCORE, является показатель степени зажатия слоя. Чем ближе его значение к теоретическому пределу (100% объема загруженного ионита), тем выше будут показатели рабочей обменной емкости отрегенерированного ионита и, соответственно, качества обрабатываемой в рабочем цикле воды. Причем удерживать слой смолы в зажатом состоянии необходимо на всех стадиях процесса регенерации, проводимого по технологии UPCORE.

При этом, чтобы оптимизировать потребление реагентов в процессе регенерации, необходимо стремиться к минимизации расхода несущего потока на стадии подачи растворов реагентов заданной концентрации. Проведенные ранее исследования (The Dow Chemical Company - The UPCORE System. Engineering Handbook, 1995) показали, что в качестве нижнего предела допустимой линейной скорости при подаче раствора кислоты необходимо выбирать значение, равным 10 м/ч, а при подаче щелочи - 7 м/ч. Однако на практике в промышленных фильтрах с внутренним диаметром более 0,5 м при переходе от стадии зажатия слоя к стадии подачи раствора реагента и снижении линейной скорости несущего потока до рекомендуемых значений происходит разуплотнение нижней части слоя ионообменной загрузки, в результате которого 3-5% от общего объема слоя пребывают в незажатом (псевдоожиженном) состоянии. С учетом того обстоятельства, что именно качеством регенерации ионитов, находящихся в нижней части слоя загрузки, определяются показатели глубины извлечения компонентов, удаляемых из обрабатываемого раствора в рабочем цикле, уменьшение степени зажатия слоя на 3-5% приводит к пропорциональному снижению показателей рабочей обменной емкости слоя и росту значений проскока извлекаемых компонентов.

Технический результат, позволяющий решить поставленную задачу, состоит в том, что в ходе регенерации осуществляют подачу кислоты с минимальной скоростью, рассчитанной по формуле: vk=10·((D·µ25)/(0,2·µ))0,105, где vк - линейная скорость потока раствора кислоты, м/ч; D - внутренний диаметр фильтра, м; µ25 и µ - вязкость раствора кислоты при температуре 25°C и рабочей температуре соответственно, а подачу щелочи - при минимальное допустимой линейной скорости по формуле: vщ=7·((D·µ′25)/(0,2·µ′))0,105, где vщ - линейная скорость потока раствора щелочи, м/ч; D - внутренний диаметр фильтра, м; µ′25 µ′ - вязкость раствора щелочи при температуре 25°C и рабочей температуре соответственно.

Заявленный способ осуществляется следующим образом. По истощению обменной емкости слоя смолы (завершении рабочего цикла) прекращают подачу обрабатываемой жидкости в ионообменный фильтр в направлении сверху-вниз. Затем приступают к проведению процесса регенерации (восстановлению рабочих параметров ионита). Для этого часть обработанной жидкости подают под слой ионита в направлении снизу-вверх с линейной скоростью, обеспечивающей поршнеобразный подъем и зажатие слоя смолы в верхней части фильтра. После этого, не прекращая подачи жидкости снизу-вверх, начинают снижать скорость потока жидкости до значения скорости подачи растворов для химической регенерации (регенеранта), рассчитанного в соответствии с указанными выше формулами, и подают регенеранты. По завершении химической регенерации слоя смолы остатки регенерантов вытесняют потоком обработанной жидкости, подаваемой в направлении снизу-вверх со скоростью, рассчитанной по приведенным выше формулам. Далее прекращают подачу жидкости и проводят операцию гравитационного оседания слоя смолы. Осевший в нижней части фильтра слой смолы промывают потоком обработанной жидкости в направлении сверху-вниз, осуществляя одновременно его зажатие. Слой смолы в фильтре отрегенерирован и готов к очередному рабочему циклу.

Эффективность заявляемого способа иллюстрируется следующим примером.

Пример 1. Испытания проводились на установке UPCORE при использовании ионообменной схемы обессоливания Н-ОН; и применении в катионитном фильтре - сильнокислотного катионита Dowex UPCORE Mono С-600, в анионитном - послойной загрузки анионитов Dowex UPCORE Mono WB-500 и Dowex UPCORE Mono A-625. Очистке подвергалась москворецкая вода с солесодержанием 250-300 мг/дм3. На установке использовали фильтры различных диаметров. Полученные результаты приведены в таблице 1.

Таблица 1
Влияние параметров процесса на степень обессоливания воды на установке UPCORE (заявляемый способ и ближайший аналог).
Способ Т°C Диаметр фильтра, м Скорость подачи р-ра кислота/щелочь, м/ч Степень зажатия слоя катионит/анионит, % Фильтроцикл, м3 Электропроводимость обессоленной воды, мкСм/см
Прототип 20-25 0,1 10/7 100/100 1,25 0,6-0,7
Заявленный способ 20-25 0,1 9,3/6,5 100/100 1,25 0,6-0,7
Прототип 20-25 0,8 10/7 98/98 200 0,45-0,5
Заявленный способ 20-25 0,8 11,6/8,1 100/100 210 0,4-0,42
Прототип 20-22 3,4 10/7 95/96 3500 0,4-0,42
Заявленный способ 20-22 3,4 13,5/9,5 99,9/99,9 3700 0,3-0,33

Проведенные испытания показали, что проведение регенерации по заявляемому способу на фильтрах большого диаметра существенно повышает длительность фильтроцикла и эффективность очистки воды.

Способ регенерации ионообменных смол в фильтрационных процессах типа "UPCORE", включающий в себя стадию зажатия слоя ионита потоком жидкой среды, направленным снизу вверх, стадии регенерации растворами кислоты и щелочи, гравитационного осаждения и отмывки ионитов от остатков регенерирующего раствора, отличающийся тем, что в ходе регенерации осуществляют подачу кислоты с минимальной скоростью, рассчитанной по формуле: vк=10·((D·µ25)/(0,2·µ))0,105, где vк - линейная скорость потока раствора кислоты, м/ч; D - внутренний диаметр фильтра, м; µ25 и µ - вязкость раствора кислоты при температуре 25°C и рабочей температуре соответственно, а подачу щелочи - при минимально допустимой линейной скорости по формуле: , где vщ - линейная скорость потока раствора щелочи, м/ч; D - внутренний диаметр фильтра, м; и µ′ - вязкость раствора щелочи при температуре 25°C и рабочей температуре соответственно.



 

Похожие патенты:

Изобретение относится к электростатической обработке жидкостей и изменению свойств жидкости, формированию центров кристаллизации или коагуляции. Способ обработки жидкости заключается в электростатическом воздействии через центральный электрод 8 сдвоенного конденсатора, имеющий контакт с жидкостью и не имеющий непосредственного подключения к источнику питания.

Изобретение относится к сельскому хозяйству, а именно к способу выращивания зеленых гидропонных кормов, включающему обработку посевного материала активированной водой - католитом.

Изобретение может быть использовано в промышленном производстве меламина из мочевины. Для осуществления способа проводят две стадии термического гидролиза сточной воды.
Изобретение относится к аэрации и может быть использовано при очистке сточных и промышленных вод. Способ ввода воздуха в флотомашину включает эжекционный ввод воздуха и последующую его диспергацию.

Изобретение относится к системам утилизации. Система утилизации мокрых углеродсодержащих отходов содержит топку, теплообменник и золоуловитель, топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются центробежные форсунки для распыливания жидкости, каждая из которых содержит корпус с камерой завихрения и сопло, корпус выполнен в виде штуцера с отверстием для подвода жидкости из магистрали и жестко соединенной с ним цилиндрической, соосной гильзой с внешней резьбой, а соосно корпусу, в его нижней части подсоединено посредством гильзы с внутренней резьбой сопло, выполненное в виде центробежного завихрителя второй ступени в виде цилиндрической полости с, по крайней мере тремя, тангенциальными вводами в виде цилиндрических отверстий, при этом гильза является частью сопла и установлена коаксиально и соосно по отношению к центробежному завихрителю второй ступени, который в верхней части снабжен цилиндрической частью, переходящей в коническую часть, образующую кольцевой конический зазор с корпусом, а над центробежным завихрителем второй ступени установлена вихревая цилиндрическая камера, являющаяся первой ступенью завихрителя жидкости, выполненная в виде соосно размещенного в ней штока с закрепленной на нем винтовой пластиной, при этом шток закреплен на трех стержнях, подсоединенных к конической камере, соединяющей завихрители первой и второй ступеней, при этом центробежный завихритель установлен в корпусе с образованием кольцевой цилиндрической камеры для подвода жидкости к тангенциальным вводам центробежного завихрителя, цилиндрическая полость которого соединена с выходной конической камерой сопла.

Изобретение относится к способу очистки реакционной воды в процессе производства углеводородов, при котором реакционную воду от типичного процесса синтеза углеводородов подают в противоточную отпарную колонну сверху, а углеводородсодержащий газ подают снизу в противоточную отпарную колонну в направлении противоположном подаче реакционной воды, отводят снизу противоточной отпарой колонны очищенную воду.

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл.

Изобретение относится к производству питьевой воды и может быть использовано при подготовке воды глубоководных водоемов. Способ получения глубинной байкальской питьевой воды включает забор воды из озера Байкал посредством водозаборника, транспортировку воды к насосной станции по глубинному водоводу, фильтрацию и стерилизацию.

Изобретение может быть использовано при обезвреживании жидких углеводородсодержащих отходов, образующихся на предприятиях подготовки и транспортировки газа. Для осуществления способа проводят обработку жидких углеводородсодержащих отходов в водном растворе в аэробных условиях биопрепаратом, содержащим углеводородокисляющие микроорганизмы, из расчета 1 кг биопрепарата на 10 кг углеводородов.
Изобретение может быть использовано в микробиологии и сельском хозяйстве при очистке водных цеолитовых растворов. Для осуществления способа очистки приготовленный водный цеолитовый раствор попеременно дважды подвергают замораживанию, затем оттаиванию при комнатной температуре с последующим сливом или сифонированием надосадочной жидкости в другую емкость на первом этапе, и обязательном сифонировании по прошествии не менее 12 часов на втором этапе.

Группа изобретений предназначена для использования в области регенерации ионообменных смол, дезактивация которых произошла в результате контакта с загрязненной ненасыщенной кислотой или эфиром с двойной связью, или в результате контакта с загрязненной ненасыщенной кислотой, эфиром или нитрилом с двойной связью, содержащими загрязняющие примеси.

Изобретения могут быть использованы для очистки сточных вод, образующихся в процессе получения ароматических карбоновых кислот, от соединений тяжелых металлов. Для осуществления способа сточные воды приводят в контакт с частицами хелатообразующей смолы, имеющими коэффициент однородности 1,4 или менее, при этом pH сточных вод составляет 5,1-5,9 и скорость потока сточных вод составляет 5-14 м/час.

Изобретение может быть использовано в энергетике, атомной промышленности, микроэлектронике, фармацевтике и других областях промышленности, где требуется вода высокой степени обессоливания.

Изобретение относится к способу работы установки умягчения воды ионообменным устройством, содержащим ионообменную смолу, питающим резервуаром для подачи раствора регенерирующего средства для регенерирования ионообменной смолы, смесительным устройством, а также по меньшей мере одним расходомером, причем поступающий на установку (1) умягчения воды объемный поток V(t) исх исходной воды разделяют на первый частичный объемный поток и второй частичный объемный поток в установке (1) умягчения воды или до нее, и первый частичный объемный поток направляют через ионообменную смолу (5), и этот умягченный частичный объемный поток V(t)част1мяг смешивают со вторым, несущим исходную воду частичным объемным потоком V(t)част2исх, в результате чего в установке (1) умягчения воды или после нее образуется выходящий объемный поток V(t)смеш смешанной воды.

Изобретение относится к технологии переработки отработанных растворов от регенерации натрий-катионитовых фильтров в процессах водоподготовки. .

Изобретение относится к области хроматографической очистки полипептидов. .

Изобретение относится к области очистки воды, преимущественно, от солей жесткости, с использованием метода ионного обмена с противоточной регенерацией ионитов. .
Изобретение относится к области очистки воды для ее потребления в качестве питьевой и может быть использовано, в частности, для очистки и повышения качества подземных вод, загрязненных в результате техногенного воздействия при разведке и разработке месторождений полезных ископаемых.

Изобретение относится к гидрометаллургии, в частности к процессам сорбционного извлечения цветных, редких и рассеянных элементов из растворов, полученных в ходе выщелачивания руд, и касается десорбции кремния с анионитов.
Изобретение относится к гидрометаллургии, в частности к обеспечению коррозионной стойкости аппаратуры, применяемой для сорбционной переработки растворов кислотного выщелачивания руд редких металлов.

Изобретение относится к технологии очистки воды, в частности к способам обессоливания воды с использованием метода ионного обмена, и может быть использовано в энергетике, атомной промышленности, фармацевтике и областях промышленности, где используют обессоленную воду или требуется вода высокой степени обессоливания. Способ регенерации загрузок фильтров смешанного действия по технологии выносной регенерации включает в себя операции выгрузки смешанной загрузки из фильтра смешанного действия в фильтр-регенератор катионита, разделения катионита и анионита в фильтре-регенераторе катионита, перегрузки всего объема анионита с катионитом из зоны перекрестного загрязнения в фильтр-регенератор анионита и регенерации содержимого фильтра-регенератора анионита раствором гидроксида натрия с последующей промывкой водой, а катионита, оставшегося в фильтре-регенераторе катионита - раствором кислоты с последующей промывкой водой, перегрузки содержимого фильтров-регенераторов в фильтр смешанного действия, перемешивания смешанной загрузки в фильтре смешанного действия и отмывки ее водой. Содержимое фильтра-регенератора анионита перед перегрузкой в фильтр смешанного действия дополнительно обрабатывают раствором гидроксида аммония с концентрацией от 0,1 до 1% масс. Изобретение позволяет сократить время на проведение процесса регенерации смешанной загрузки на 20%, уменьшить расходы воды при регенерации на 25-50% и упростить саму процедуру. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области ионообменной водоподготовки и водоочистки. Предложен способ противоточной регенерации ионообменных материалов. Способ регенерации включает стадию зажатия слоя ионита потоком жидкой среды, направленным снизу вверх, стадию регенерации растворами кислоты и щелочи, стадию гравитационного осаждения и отмывки ионитов от остатков регенерирующего раствора. Минимальные скорости подачи кислоты и щелочи рассчитывают с учётом диаметра фильтра, в котором осуществляют регенерацию, и вязкости регенерирующих растворов. Изобретение позволяет повысить длительность фильтроцикла и эффективность очистки воды при использовании фильтров большого диаметра. 1 табл.

Наверх