Способ получения водорода за счет гидролиза твердого реагента-алюминия в реакционном сосуде



Способ получения водорода за счет гидролиза твердого реагента-алюминия в реакционном сосуде
Способ получения водорода за счет гидролиза твердого реагента-алюминия в реакционном сосуде

 


Владельцы патента RU 2545290:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") (RU)

Изобретение относится к способам получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде и может быть использовано для получения водорода в сфере автономной энергетики, преимущественно в энергоустановках с электрохимическими генераторами, как в стационарных установках, на транспорте, так и при ремонтах электрогенераторов с водородным охлаждением и в химической промышленности. Заявлен способ получения водорода путем гидролиза алюминия в реакционном сосуде, который заполнен водным раствором едкого натра. Способ получения водорода проводят в реакторе непрерывного действия путем подачи алюминия в виде водной суспензии. Водную суспензию алюминия перед подачей в реакционный сосуд гелируют (загущают). В качестве гелирующей (загущающей) добавки используют модифицированную полиакриловую кислоту или агар-агар. Изобретение позволяет повысить экономичность производства водорода и улучшить качество гидролиза и регулирование процесса получения водорода.1 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде и может быть использовано для получения водорода в сфере автономной энергетики, преимущественно в энергоустановках с электрохимическими генераторами, как в стационарных установках, на транспорте, так и при ремонтах электрогенераторов с водородным охлаждением, а также в химической промышленности.

Известен способ получения водорода путем гидролиза алюминия, который осуществляется при подаче паров воды в виде насыщенного или перегретого пара при температуре 200-300°C в количестве, близком стехиометрическому (Патент РФ RU 2260880, опубликован 04.01.2007 г.), применяемый в автономных энергетических установках с циклом функционирования от нескольких часов до нескольких тысяч часов, преимущественно для подводных лодок, подводных аппаратов, судов, железнодорожного и автомобильного транспорта, бытовых источников энергии периодического действия, а также периодически действующих стационарных энергетических установках, используемых на особо ответственных объектах, не допускающих перерыва электропитания.

Недостатками данного способа являются необходимость энергетических затрат для производства пара с температурой 250-300°C в парогенераторе и применение сменяемых или несменяемых контейнеров, что приводит к усложнению системы получения водорода.

Известен также наиболее близкий к предлагаемому изобретению способ получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде, включающий подачу водного раствора едкого натра в реакционный сосуд (патент РФ RU 2232710, опубл. 04.01.2007 г.), выбираемый в качестве прототипа.

В известном способе получение водорода происходит в реакторах периодического действия т.е. периодически, что приводит к ухудшению качества регулирования получения водорода, необходимости перезаправки системы, и, в конечном счете, к усложнению эксплуатации и удорожанию производства водорода.

Техническая задача, решаемая изобретением, состоит в повышении экономичности производства водорода и в улучшении качества гидролиза и регулирования процесса получения водорода.

Технический эффект, заключающийся в повышении эффективности, достигается тем, что в известном способе получения водорода путем гидролиза алюминия в водном растворе едкого натра, согласно изобретению, процесс получения водорода производят непрерывно путем подачи алюминия в виде водной суспензии, при этом водную суспензию алюминия перед подачей в реакционный сосуд гелируют. Кроме того, в качестве гелирующей (загущающей) добавки используют, например, модифицированную полиакриловую кислоту или агар-агар.

На фиг. 1 представлен пример устройства, реализующего предлагаемый способ. На фиг. 2 представлена зависимость выхода водорода от концентрации щелочи.

Устройство содержит реактор 1, магистраль подачи водного раствора едкого натра 4, магистраль подачи гелированной водной суспензии алюминия 2, магистраль выдачи водорода 3, магистраль вывода продуктов гидролиза 5.

Регулирование выхода водорода основано на том, что:

а) используется реактор непрерывного действия, когда процесс получения водорода можно регулировать по расходам в магистралях подачи водной суспензии алюминия и водного раствора едкого натра, что позволяет улучшить качество регулирования и снизить затраты на эксплуатацию;

б) гелирование водной суспензии алюминия позволяет улучшить качество процесса гидролиза за счет более равномерного распределения частиц алюминия в реакционном объеме.

Предлагаемый способ получения водорода апробирован в лабораторных условиях.

На фиг. 2 представлена зависимость выхода водорода от концентрации щелочи для алюминиевого порошка ПАП-1, полученная при лабораторных исследованиях водородного генератора.

На основе проведенных исследований разрабатывается проект применения водородного вихревого реактора непрерывного действия для создания автономной энергетической установки аварийного энергообеспечения ретранслятора сотовой связи.

1. Способ получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде, содержащий подачу водного раствора едкого натра и вывод водорода, отличающийся тем, что алюминий вводят в реакционный сосуд в виде водной суспензии, при этом перед подачей ее в реакционный сосуд водную суспензию предварительно гелируют.

2. Способ получения водорода за счет гидролиза твердого реагента - алюминия в реакционном сосуде по п.1, отличающийся тем, что в качестве гелирующей добавки используют модифицированную полиакриловую кислоту или агар-агар.



 

Похожие патенты:
Группа изобретений относится к десульфуризации углеводородов. Способ включает стадии: (i) пропускание смеси углеводорода и водорода через катализатор десульфуризации с превращением сероорганических соединений, присутствующих в указанном углеводороде, в сульфид водорода, (ii) пропускание полученной смеси через сорбент сульфида водорода, содержащий оксид цинка, со снижением содержания сульфида водорода в смеси, и (iii) пропускание газовой смеси, обедненной сульфидом водорода, через дополнительный десульфуризующий материал.

Изобретение может быть использовано в химической промышленности и энергетике для получения энергии. В реакторе гидрогазификации одновременно нагревают углеродсодержащий материал, водород и воду при температуре и давлении, достаточных для создания потока газообразного продукта, обогащенного метаном и монооксидом углерода.

Изобретение относится к области газохимии, а именно к установке для получения синтез-газа для производства углеводородов. Установка включает магистраль подачи углеводородного сырья, магистраль подачи остаточного газа с установки синтеза углеводородов из синтез-газа, соединенные с блоком адиабатического предриформинга, трубопровод для подачи кислородосодержащего газа, соединенный с блоком автотермического риформинга, связанного с блоком адиабатического предриформинга, и трубопровод для выхода полученной парогазовой смеси, соединенный с выходом блока автотермического риформинга.

Изобретение относится к энергетическому оборудованию и может быть использовано для получения водорода как в стационарных установках, так и на транспорте. Способ генерации водорода включает размещение изделий из композита алюминия или магния, выполненных в форме куба или параллелепипеда с отверстиями в трех ортогональных направлениях, в решетчатые контейнеры, которые помещают каждый в отдельный герметичный реактор, через который пропускают воду с помощью впускных для воды отверстий, снабженных запорными задвижками, соединенных с магистралью впускной воды, и выпускных для воды отверстий, снабженных запорными задвижками, соединенных с магистралью выпускной воды, при этом магистрали соединены с теплообменником, а водород отводят через отверстия, снабженные запорными задвижками, соединенные с магистралью водорода, которую соединяют с газопотребляющим устройством.

Изобретение относится к улучшенному способу конверсии моноксида углерода СО и воды Н2О в диоксид углерода СO2 и водород Н2, который включает стадии связывания моноксида углерода из газовой фазы первым растворителем с получением формиата НСОО-, разложение формиата НСОО- и отделение образующегося водорода Н2.

Изобретение относится к трубе риформинга с переменной толщиной стен, предназначенной для риформинга газа в процессе прямого восстановления железа. Труба содержит аксиально выровненную трубчатую конструкцию, выполненную из металлического материала.

Изобретение относится к способу получения метано-водородной смеси, содержащей в основном Н2 и СН4, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, и может быть использовано в химической промышленности для переработки углеводородных газов, а также в качестве топлива в газотурбинных приводах компрессорных станций и на транспорте, для производства электроэнергии.

Изобретение относится к области технологии создания композиционных полимерных материалов и может быть использовано для предотвращения нежелательной пассивации воздухом или компонентами, содержащимися в технических водородсодержащих газах и других газообразных средах, гидридообразующих сплавов, предназначенных для хранения водорода.

Изобретение относится к области разработки структурированного катализатора для получения синтез-газа в процессе паровой и парокислородной конверсии ацетона или этанола.

Изобретение может быть использовано в химии и энергетике. Исходные реагенты - воду и диоксид углерода, через смеситель 2 подают в реактор 1, выполненный в виде герметичной емкости, содержащей катализатор, при этом концентрацию диоксида углерода в воде регулируют, чтобы получить карбонизированную воду, посредством давления и времени насыщения воды диоксидом углерода.

Изобретение относится к области синтеза аммиака из кондиционного газа, содержащего водород и азот. Аммиачная установка для производства аммиака, в которой аммиачный продувочный газ (20) направляют в узел извлечения, включающий средства охлаждения (102, 202, 302, 402, 502) и фазовые сепараторы, расположенные каскадом и включающие сепаратор высокого давления (103, 203, 303, 403, 503), работающий при давлении контура, и сепаратор, работающий при существенно меньшем давлении, чем давление контура (205, 206, 305); при этом продувочный газ (20) сначала охлаждают до криогенной температуры с достижением частичного ожижения метана и аргона, а затем разделяют охлажденный поток в фазовом сепараторе высокого давления на газообразный поток и нижний жидкий продукт, который далее подают в сепаратор более низкого давления. Газообразный поток, содержащий азот и водород при давлении контура (123, 223, 323, 423, 523а), повторно нагревают в канале теплообменника, отводят и возвращают в контур (1) синтеза при давлении контура. Изобретение позволяет получить высокую степень извлечения азота из продувочного газа при минимальной мощности компрессора и низком расходе энергии, а также уменьшить содержание инертных примесей в контуре синтеза. 2 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетики и может быть использовано для частичного или полного замещения углеводородного топлива на различных видах транспорта, в отопительных системах жилых и производственных помещений, в генераторах производства пара и для раздельного получения чистого кислорода и водорода для производственных, медицинских и других нужд. Способ получения водорода и кислорода из пара воды включает пропускание перегретого пара с температурой 500-550°C через электрическое поле постоянного тока высокого напряжения, при этом перегретый пар одновременно проходит и через гравитационное (инерционное) поле, создаваемое самим паром при его движении в электрической гравитационной водородной ячейке, и сепарирование смеси водорода с кислородом. Для создания гравитационного (инерционного) поля электрическая гравитационная водородная ячейка выполнена в виде набора дисковых пластин с центральным отверстием, выполняющих функции электродов и направляющих для движения пара воды по винтовой траектории, и собранных таким образом, что дисковые пластины образуют двойной шнек, при этом одноименные - четные, нечетные дисковые пластины соединены между собой и электрически изолированы от разноименных. Изобретение позволяет значительно уменьшить габариты и повысить производительность установок. 2 н.п. ф-лы, 3 ил.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное. Изобретение также относится к способу получения катализатора и к способу получения синтез-газа в присутствии заявленного катализатора. Технический результат - повышение удельного съема продукта, исключение опасности взрыва и возгорания, низкие энергозатраты, получение синтез-газа с отношением Н2/СО в пределах 1,5-2,5, возможность получения побочного продукта - технического азота при высоких значениях конверсии метансодержащего сырья. 3 н. и 4 з.п. ф-лы, 3 табл., 13 пр.

Группа изобретений относится к области переработки углеводородного сырья (CH4) - к способу и устройству (реактору) для получения синтез-газа. Способ получения синтез-газа путем каталитического превращения метана посредством пропускания реагентов через неподвижный слой катализатора, в качестве неподвижного слоя катализатора используют кольцевой слой катализатора, в котором реагенты пропускают от внутренней к наружной поверхности кольцевого слоя катализатора, в качестве реагентов используют смесь метана с газообразными реагентами, дополнительно содержащую продукты плазмохимического распада газообразных реагентов или их смеси, тепловой режим процесса обеспечивают путем смешивания продуктов плазмохимического распада со смесью метана с газообразными реагентами, а, по крайней мере, часть реагентов подают непосредственно в плазмохимическую зону. При этом в качестве газообразных реагентов используют углекислый газ или водяной пар или кислород. Реактор для получения синтез-газа путем каталитического превращения метана, включающий неподвижный слой катализатора и устройство нагрева реагентов и катализатора, слой катализатора выполнен в форме кольца, в котором движение реагентов осуществляется от внутренней к наружной поверхности кольцевого слоя катализатора, устройство нагрева реагентов и катализатора выполнено в виде плазматрона, потребляющего рабочий газ и расположенного в центральной части реактора в плазмохимической зоне, имеющей огнеупорную термоизоляцию, между плазмохимической зоной и слоем катализатора расположена буферная зона, в которой происходит перемешивание реагентов и продуктов плазмохимического распада рабочего газа плазматрона. Кроме того, плазматрон может быть выполнен с возможностью перемещения в плазмохимической зоне. Изобретение позволяет увеличить производительность процесса получения синтез-газа и снизить теплопотери в окружающую среду. 2 н. и 2 з.п. ф-лы, 1 ил., 5 пр.

Изобретение относится к области устройств, предназначенных для получения биогаза (биоводорода) из сточных вод от животных и людей. Задача изобретения - превращение работоспособной периодически действующей с ручной загрузкой-выгрузкой биогенераторной установки для получения биогаза низкого давления в промышленную непрерывно действующую установку по производству биогаза (биоводорода) высокого давления (10-12 МПа) путем размещения биореактора в Земле на глубине порядка 2000 м, что обеспечит оптимальные температурные условия реакций анаэробного преобразования биомассы, создаст условия для самотечной загрузки биореактора биомассой, газолифтной выгрузки биогаза и остаточной биопульпы. Для получения биоводорода предусмотрены системы: укисления биомассы до рН 5,49; засева биомассы водородогенными микроорганизмами; подачи биологического катализатора в зону реакции биореактора, Для устройства непрерывнодействующих подземных генераторов биогаза (биоводорода) может быть использовано штатное буровое оборудование и материалы. Предлагаемое изобретение является идеально энергосберегающим и экологически безопасным.

Двухступенчатый беспрерывнодействующий подземный генератор биоводорода включает биогенератор, установленный в земле, заполненный до определенного уровня биомассой, газоотводную трубу и трубу отвода остаточной биопульпы. Биогенератор состоит из двух биореакторов, расположенных в земле на глубине до 2000 м, включенных последовательно по рабочей среде. В заявленном устройстве предусмотрены системы самотекущей загрузки и разгрузки биореакторов под действием сил тяготения столба входной биомассы и газлифтного эффекта метановой и водородной биопульп, система подкисления метановой биопульпы, система подачи посевной микрофауны и система подачи биостимулятора на начальном участке активной зоны биореактора 2-й ступени. Данное техническое решение обеспечивает оптимальные температурные условия реакций анаэробного преобразования биомассы, позволяет получить на выходе из установки биоводород высокого давления, создает условия для самотекущей загрузки биореактора биомассой, газлифтной выгрузки биоводорода и остаточной биопульпы.

Изобретение относится к области энергетики и предназначено для производства водорода и кислорода из водяного пара методом термической диссоциации и может быть использовано в сельском хозяйстве, коммунально-бытовой отрасли для работы двигателей внутреннего сгорания и газотурбинных установок. Термодиссоционный генератор водорода и кислорода содержит парогенератор, вращающийся коллектор пара с отверстиями для выпуска пара, плазмохимические реакторы для термической диссоциации водяного пара и получения водорода и кислорода, подключенные к источнику питания и сообщающиеся с одной стороны с отверстиями в коллекторе пара и с другой стороны с расширяющимися соплами и цилиндрами волновых компрессоров. При этом плазмохимические реакторы либо состоят из корпуса, в котором установлен электрод-катод и который имеет рубашку, сообщающуюся с охлаждаемым соплом-анодом, при этом передняя поверхность корпуса выполнена в виде диска с отверстиями для впуска пара, либо плазмохимические реакторы выполнены в виде блока корпусов реакторов, сообщающихся с блоком охлаждаемых сопел-анодов, в корпусах расположены электроды-катоды, при этом на блоке плазмохимических реакторов расположен клапанный механизм для впуска пара. Плазмохимические реакторы, расширяющиеся сопла и цилиндры волновых компрессоров имеют рубашки для циркуляции охлаждающей жидкости. Изобретение обеспечивает снижение стоимости готовой продукции. 6 ил.

Изобретение относится к катализаторам для получения синтез-газа из газообразного углеводородного сырья, например метана, природного газа или попутных нефтяных газов. Заявляется катализатор риформинга газообразного углеводородного сырья (по варианту 1), который содержит, мас.%: оксид никеля (45-60), оксид лантана (1-5), диоксид циркония (3-15), диоксид церия (1-4), алюмомагниевое оксидное соединение (15-30) (в составе которого (30-70) оксида алюминия, (30-70) оксида магния), диоксид кремния (5-15), углерод (1-3). Заявляется также катализатор риформинга газообразного углеводородного сырья (по варианту 2), который содержит, мас.%: оксид никеля (50-65), оксид лантана (3-10), диоксид церия (1-8), алюмомагниевое оксидное соединение (15-30) (в составе которого (30-70) оксида алюминия, (30-70) оксида магния), диоксид кремния (5-15), углерод (1-3). Технический результат заключается в высокой термостабильности (до 1200°С) катализатора, обладающего высокой активностью как в процессе высокотемпературного, так и низкотемпературного риформинга газообразных углеводородов; высокой механической прочности на сжатие (более 35 МПа); стойкости к термоударам (более 15 теплосмен); высокой теплопроводности (3,5-5,5) Вт/м·К; низком гидравлическом сопротивлении (не более 3 кПа). 2 н. и 4 з.п. ф-лы, 1 табл., 3 ил., 2 пр.

Изобретение относится к способу производства водородсодержащего продукта и одного или нескольких продуктов в виде жидкой воды с использованием каталитического парового реформинга углеводородов. Изобретение касается способа, в котором часть подпиточной воды нагревают продуктом реформинга, а другую часть подпиточной воды нагревают газообразными продуктами горения до подачи подпиточной воды в деаэратор. Воду, содержащуюся в газообразных продуктах горения, конденсируют с образованием продукта в виде жидкой воды. Данный способ может быть совмещен с процессом термоочистки воды. Технический результат - облегчение извлечения воды из газообразных продуктов горения, доступность низкопотенциального тепла потока продукта реформинга для процесса термоочистки воды. 18 з.п. ф-лы, 8 ил., 3 пр.

Изобретение относится к способу получения водорода низкого давления для последующего сжигания и получения водяного пара с помощью низковольтного электролиза щелочного электролита раствора солей галогенводородных кислот и их смесей постоянным током, с помощью алюминиевых электродов, с дальнейшим извлечением кислорода в отдельный накопитель из образовавшихся алюминиевых комплексов, с поддержанием состава электролита и контролем температуры и давления в электрохимической ячейке. Использование настоящего способа позволяет снизить опасность при проведении процесса за счет того, что кислород, образующийся в результате реакции, связывается в комплексы и может быть затем утилизирован. 3 ил.
Наверх