Способ определения траектории смещения непроизвольного зрительного внимания на изображении

Изобретение относится к области неврологии. На экране монитора предъявляют тестовое изображение на 300-400 мс и затем заменяют его постэкспозиционной матрицей такого же размера и формата. Матрица содержит цветные сектора с нанесенными внутри цифрами. Испытуемый называет цифру и цвет сектора в соответствии с первой точкой фиксации непроизвольного зрительного внимания, что определяет местоположение первой точки фиксации непроизвольного зрительного внимания. Для определения второй точки фиксации непроизвольного зрительного внимания процедуру повторяют с увеличением экспозиции до 600-800 мс; для определения третьей точки экспозицию увеличивают до 900-1200 мс. При этом предъявляют не менее двух изображений. Траекторию смещения непроизвольного зрительного внимания для каждого предъявляемого изображения строят путем последовательного соединения точек, начиная от центра изображения до местоположения первой, затем до местоположения второй и третьей точек фиксации. Изобретение позволяет повысить достоверность определения смещения непроизвольного зрительного внимания, что достигается за счет предъявления изображения и постэкпозиционной матрицы на время, необходимое для осуществления первого, второго и третьего скачка глаз, последовательной фиксации трех точек смещения непроизвольного внимания и построения по ним траектории. 2 ил., 3 пр.

 

Изобретение относится к области неврологии, психологии, психиатрии, офтальмологии, рекламе, а также к другим областям, где необходимо выявить траекторию смещения непроизвольного зрительного внимания на изображении и определить те объекты, которые подсознательно непроизвольно привлекают внимание испытуемого.

Зрительное внимание по определению - это некоторый локальный феномен, связанный с избирательным считыванием информации об окружающем пространстве (В.И. Белопольский. Взор человека. Механизмы, модели, функции. М. Изд-во ИП РАН, 2007). Очевидно, что именно зрительное внимание задает движение глаз (ДГ) в нужную точку поля зрения. Так, В.П. Зинченко и Н.Ю. Вергилес (Формирование зрительного образа. М. МГУ, 1969) показали, что при стабилизации протяженного изображения на сетчатке смещение зрительного внимания (ЗВ) по предъявленному изображению при попытке испытуемого рассмотреть все периферические зоны этого изображения вызывает так называемые «викарные движения глаз», т.е. малоамплитудное движение глаз в направлении смещения зрительного внимания, хотя сами ДГ никак не могут помочь считыванию информации с периферии изображения (ИЗ), поскольку изображение на сетчатке смещается вместе с ДГ и проекция этого ИЗ на сетчатке остается всегда неподвижной.

Таким образом, смещение ЗВ по изображению первично, а ДГ - следствие смещения ЗВ. Это подтверждают и результаты недавних исследований: «…мы выбираем для детального анализа...только часть из того, что попадает в поле зрения, а множество других вещей при этом полностью игнорируем. Так что, когда они исчезают из поля зрения, мы даже ничего не можем о них сказать» (Кэнвишер Н. и Войчулик Э. Картирование мозга: Новый взгляд на зрительное внимание. Хрестоматия «Горизонты когнитивной психологии», М. 2012). Иными словами, глаз может двигаться и останавливаться на предметах окружающей среды, но информация в мозг не будет передаваться, поскольку канал зрительного внимания переключен на другой объект или перегружен.

Регистрируя ДГ человека, нельзя с уверенностью сказать, что именно привлекало его зрительное внимание. В тоже время одной из самых актуальных задач исследования работы мозга является так называемая "обратная задача" - как по параметрам глазодвигательной активности реконструировать исходные перцептивные процессы, лежащие в основе зрительного внимания и узнавания объектов окружающего мира. Эта задача до сих пор далека от разрешения (В.И. Белопольский. Взор человека. Механизмы, модели, функции. М. Изд-во ИП РАН, 2007).

Зрительное внимание, в свою очередь, может быть произвольным, сознательным, возникающим благодаря нашему намерению, и непроизвольным, подсознательным. В основе непроизвольного ЗВ лежат неосознаваемые установки человека. Направление непроизвольного ЗВ конкретного человека может выявить его характер или, по меньшей мере, показать его стремления. Красивый пейзаж привлекает внимание художника, действуя на его эстетическое чувство, тогда как местный житель в этом же пейзаже увидит лишь что-то обыденное. При этом движения глаз у них будут совершенно разными. Основываясь на характере ДГ, можно сделать заключение относительно личности данного человека, о его уровне образования и даже о том, насколько он психически состоятелен.

О важности ЗВ говорит и хорошо известная работа Д. Ноттона и Л. Старка (Движение глаз и зрительное восприятие. В кн. Восприятие. Механизмы и модели. М. 1974, Мир, с.226-240). Они проводили эксперимент в плохо освещенной комнате с использованием метода окулографии и установили, что если человеку на 1,5-2 сек показывать крупное изображение, то при его рассматривании глаз испытуемого движется по одной и той же траектории. Они назвали это феноменом "траектория сканирования" (scan-path). В последующем, при показе того же изображения в серии других, эта траектория вновь повторяется. Для разных испытуемых эта "траектория сканирования" будет иной. На основании своих данных они выдвинули гипотезу, предполагающую, что в памяти человека каждый зрительный объект представлен в виде "кольца признаков". В данном случае признаком является тот фрагмент изображения, на который направлено зрительное внимание и на котором регистрируется зрительная фиксация после очередного скачка глаз. Если глаз (и мозг) обнаружили некоторый признак, то начинается проверка наличия остальных признаков, согласно "кольцу признаков", что проявляется в целенаправленном смещении ЗВ в ту точку изображения, где должен быть следующий признак. Таким образом, происходит зрительное узнавание известных человеку предметов.

Анализ составляющих "кольца признаков" у конкретного лица позволяет делать предположения об адекватности или неадекватности человека при психиатрической экспертизе, оценивать состояние неврологических больных. В литературе есть ряд данных в пользу такой возможности, например работа Бестельмайер и др. (P. Bestelmeyer et al., Perception, 2006, v.35, suppl. p.136), которые показали, что характер "траекторий сканирования" иной у шизофреников, так что регистрация смещения непроизвольного внимания может быть маркером неврологических и психиатрических болезней.

В неврологии при обследовании больных с поражениями мозга успешно использовали тесты на кратковременное предъявление изображения предметов. Так, при показе изображений знакомых предметов или лиц больным со зрительной агнозией на очень короткое (300 миллисекунд) время, удавалось приблизительно локализовать область коры головного мозга, поражение которой вызывало известные синдромы нарушения зрительного узнавания, что помогало сузить зону тестирования для более точного диагноза и локализации поражения (Кок Е.П. Зрительные агнозии. М. Наука, 1967, 224 с). Однако такие методики кратковременного предъявления изображения не позволяют определить, куда направляется непроизвольное зрительное внимание в дальнейшем, т.е. каковы главные зоны непроизвольного интереса данного испытуемого, составляющие ″кольцо признаков″.

Работу Д. Ноттона и Л.Старка (Движение глаз и зрительное восприятие. В кн. Восприятие. Механизмы и модели. М. 1974, Мир, с. 226-240) мы используем в качестве прототипа. Недостатком данного способа является то, что результаты были получены на примитивных, черно-белых, контурных изображениях. Кроме того, для его проведения необходимо наличие большого экрана и аппаратуры для окулографии.

Предлагаемый способ основан на закономерностях физиологии зрения человека, особенностях строения сетчатки глаз и законах движения взгляда по изображению, он прост в выполнении и не требует специальной регистрирующей аппаратуры.

Технический результат заявляемого способа заключается в определении и регистрации точек смещения непроизвольного зрительного внимания и построении траектории их смещения.

Технический результат достигается тем, что испытуемому на экране монитора предъявляют тестовое изображение определенного размера и формата на 300-400 мс и затем заменяют его постэкспозиционной матрицей такого же размера и формата, содержащей цветные сектора с нанесенными внутри цифрами, испытуемый называет цифру и цвет сектора в соответствии с первой точкой фиксации непроизвольного зрительного внимания, что определяет местоположение первой точки фиксации непроизвольного зрительного внимания, после этого процедуру повторяют с увеличением экспозиции до 600-800 мс для определения второй точки фиксации непроизвольного зрительного внимания и до 900-1200 мс для определения третьей точки фиксации непроизвольного зрительного внимания на каждом изображении, которые предъявляют не менее двух, а построение траектории смещения непроизвольного зрительного внимания для каждого предъявляемого изображения осуществляют путем последовательного соединения точек, начиная от центра изображения до местоположения первой, затем до местоположения второй и третьей точек фиксации непроизвольного зрительного внимания.

Способ осуществляется следующим образом. Каждому испытуемому на экране монитора предъявляют последовательно не менее двух различных изображений определенного размера и формата. Предъявляют первое изображение на 300-400 мс, после чего сразу с той же экспозицией предъявляют постэкспозиционную матрицу, соответствующую ему по форме и размеру, содержащую цветные сектора, внутри которых нанесены цифры. Испытуемый называет цвет сектора и цифру внутри него в соответствии с первой точкой фиксации непроизвольного зрительного внимания на изображении, что позволяет определить местоположение первой точки фиксации зрительного внимания (Патент №2488345 «Способ определения метоположения первого скачка глаз человека на область зрительного интереса на изображении»). После этого предъявляют другое изображение и процедуру повторяют. Можно предъявлять любое количество изображений в случайном порядке, но не менее двух. Затем время экспозиции увеличивают до 600-800 мс и предъявляют те же изображения, что и в первой серии, в случайном порядке на это время, заменяя каждый раз тестовое изображение на постэкспозиционную матрицу, что позволяет по ответу испытуемого установить вторую точку фиксации непроизвольного зрительного внимания на каждом изображении. Третью точку получают увеличением времени экспозиции до 900-1200 мс для каждого из изображений, также предъявляемых в случайном порядке и заменяя их постэкспозиционной матрицей. По ответу испытуемого о цифре и цвете сектора определяют третью точку непроизвольного зрительного внимания. В результате строят траекторию смещения непроизвольного зрительного внимания, начиная от центра изображения и соединяя первую, вторую и третью точки.

В способе могут быть использованы разные по содержанию изображения, в том числе картины известных художников, примеры удачной и неудачной визуальной рекламы, фотографии пространственных сцен с наличием на них фигур людей и т.п. Предложенный способ позволяет оценить: а) что конкретно (какие предметы и зрительные признаки) подсознательно привлекают зрительное внимание данного испытуемого, что может быть использовано, например, в психиатрии; б) насколько велико «поле внимания» данного испытуемого, т.е. является ли его зрительное восприятие глобальным (когда его поле внимания охватывает большую часть предъявленной зрительной сцены) или локальным (когда его поле внимания занимает небольшую часть изображения в окрестности исходной центральной точки). Такая оценка важна в эргономике, при отборе операторов, водителей, пилотов, спортсменов в тех видах спорта, где важно хорошее периферическое внимание.

Примеры.

1. Выявлены две основные группы с разными траекториями смещения непроизвольного зрительного внимания («инспекторы» и «аналитики»). Первая группа отличается ″глобальным″ зрительным вниманием и восприятием. Амплитуда смещений 3В намного больше чем у второй группы, и они сразу ″схватывают″ общий трехмерный характер изображенной ″сцены″ - будь то пейзаж или интерьер (Рис. 1), на котором видно, что непроизвольное зрительное внимание распределено по всей изображенной сцене и это показывает, что он ″понимает″ пространственное распределение объектов на всей сцене (белая точка в центре изображения и три точки последовательной фиксации взгляда с разной экспозицией). Вторая группа демонстрирует ″локальный″ характер смещения непроизвольного зрительного внимания. Амплитуда смещений непроизвольного зрительного внимания меньше и часто совершается в окрестности одной зоны фиксации. Эти испытуемые не успевают оценить пространственный характер изображения даже при самой длительной экспозиции (рис. 2).

2. Траектории смещения непроизвольного зрительного внимания у лиц мужского и женского пола кардинально отличались на некоторых специфических изображениях, например, на рекламе спиртных напитков, на которой одновременно была крупно изображена полуобнаженная модель. В этом случае непроизвольное зрительное внимание женщин привлекали аксессуары модели, ее волосы, руки, тогда как непроизвольное зрительное внимание мужчин полностью концентрировалось на зоне груди и живота.

3. В двух случаях траектории смещения непроизвольного зрительного внимания можно было назвать ″аномальными″, поскольку они отличались от обычных и по амплитуде смещения и по зонам интереса. В одном случае это был пациент с установленным диагнозом болезни Паркинсона, в другом случае - человек с неврозом, принимавший по указанию врача психотропные препараты.

Таким образом, результаты исследования смещения непроизвольного зрительного внимания и построения траектории смещения с использованием данного способа показывают, что методика может быть использована в разных областях: в неврологии, при оценке неврологического статуса пациента (особенно при инсультах, локализованных в одном полушарии), потому что не требуется специальной электронно-измерительной аппаратуры, достаточно планшетника, при отборе операторов для слежения за сигналами на протяженных табло и экранах, спортсменов некоторых видов спорта.

Способ определения траектории смещения непроизвольного зрительного внимания на изображении, заключающийся в регистрации траектории движения глаз на нем в течение короткого периода времени, отличающийся тем, что испытуемому на экране монитора предъявляют тестовое изображение определенного размера и формата на 300-400 мс и затем заменяют его постэкспозиционной матрицей такого же размера и формата, содержащей цветные сектора с нанесенными внутри цифрами, испытуемый называет цифру и цвет сектора в соответствии с первой точкой фиксации непроизвольного зрительного внимания, что определяет местоположение первой точки фиксации непроизвольного зрительного внимания, после этого процедуру повторяют с увеличением экспозиции до 600-800 мс для определения второй точки фиксации непроизвольного зрительного внимания и до 900-1200 мс для определения третьей точки фиксации непроизвольного зрительного внимания на каждом изображении, которые предъявляют не менее двух, а построение траектории смещения непроизвольного зрительного внимания для каждого предъявляемого изображения осуществляют путем последовательного соединения точек, начиная от центра изображения до местоположения первой, затем до местоположения второй и третьей точек фиксации непроизвольного зрительного внимания.



 

Похожие патенты:

Группа изобретений относится к медицине и медицинской технике, а именно к нейрофизиологии. Регистрируют траекторию движения центра зрачка глаза при распознавании оптотипа.

Изобретение относится к области медицины, а именно к офтальмологии. У пациентов с подозрением на БШ, начиная с возраста 5-6 лет и старше, проводят визометрию, исследование полей зрения, регистрацию скотопической, фотопической электроретинограммы, визуальный осмотр глазного дна, проверку цветного зрения, флюоресцентную ангиографию (ФАГ), регистрацию аутофлюоресценции (АФ) глазного дна, оптическую когерентную томографию (ОКТ).
Изобретение относится к области медицины, в частности неврологии, психологии, психиатрии, офтальмологии. .

Изобретение относится к медицине, а именно к офтальмологии. .

Изобретение относится к способу измерения восприятия, в частности измерения зрительного внимания. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения динамики движения глаз в процессе выполнения человеком когнитивных задач, а также для реализации интерфейсов, чувствительных к вниманию, интерфейсах глаз - мозг - компьютер, в системах, осуществляющих коммуникацию между людьми с нарушениями моторных функций.

Изобретение относится к медицинской технике и предназначено для обеспечения технической безопасности, может быть использовано для определения психофизического состояния оператора, в системах обучения и тестирования, в медицинской диагностике, физиологических экспериментах.

Изобретение относится к области психофизиологии и медицинской техники и может быть использовано при исследованиях и регистрации психофизиологического состояния человека по зрачковой реакции.
Изобретение относится к области медицины. .

Изобретение относится к медицине, а именно к способам и устройствам определения расхождения между координатными системами различных технических систем. Способ включает определение координатного положения референтного элемента на тест-объекте в координатной системе (u-v), связанной с первой технической системой; связывание с тест-объектом по меньшей мере одного тест-элемента, положение которого определено в координатной системе (x-y) второй технической системы относительно координатного положения референтного элемента; определение координатного положения по меньшей мере одного тест-элемента и/или по меньшей мере одного производного от него элемента в координатной системе (u-v) первой технической системы. Далее способ включает определение расхождений между координатными системами первой и второй технических систем с использованием найденного координатного положения по меньшей мере одного тест-элемента и/или по меньшей мере одного производного от него элемента в координатной системе (u-v) первой технической системы и координатного положения референтного элемента в координатной системе (u-v) первой технической системы. Тест-объект, использующийся в способе, имеет оптически выделяющийся паттерн. Зона вокруг паттерна выполнена с возможностью генерирования в ней посредством локального облучения лазером оптически выделяющихся тест-элементов. Устройство для лазерной хирургической офтальмологии содержит лазерное устройство, айтрекер и управляющий блок для обеспечения осуществления способа определения расхождений между координатными системами. 3 н. и 12 з.п. ф-лы, 3 ил.

Группа изобретений относится к области медицины. Система для отслеживания точки взгляда наблюдателя, наблюдающего объект, содержит устройство для регистрации изображения глаза наблюдателя, средство для предоставления светящегося маркера на наблюдаемом объекте или связанного с ним и средство для определения на основании изображения положения отражения роговицей маркера на глазу и центра зрачка. Средство для определения разности в положении между отражением роговицей маркера и центром зрачка, чтобы обеспечивать разностный сигнал, и средство для изменения положения маркера на наблюдаемом объекте или связанного с ним в зависимости от разностного сигнала, чтобы иметь отражение роговицей маркера и центр зрачка совпадающими, для обновления положения маркера до совпадения с точкой взгляда. Применение данной группы изобретений позволит повысить скорость и точность отслеживания взгляда. 2 н. и 10 з.п. ф-лы, 19 ил.

Группа изобретений относится к медицине. Способ распыления жидкости в глаз содержит: размещение устройства для распыления жидкости, содержащего датчик и автоматизированный распылитель проксимально к глазу; выравнивание глаза со сквозным отверстием или трубчатым вырезом, выполненным в устройстве для распыления жидкости с обеспечением возможности для пользователя видеть через отверстие, причем это выравнивание обеспечивает для датчика возможность обнаружения моргания, а для автоматизированного распылителя обеспечивает возможность распыления жидкости в глаз; излучение луча света в глаз; определение света, отраженного от глаза для обнаружения моргания; и распыление жидкости с помощью автоматизированного распылителя на основании обнаружения моргания. Устройство для распыления жидкости в глаз, содержащее: излучатель, направляющий луч света с заданной длиной волны в глаз; детектор для обнаружения моргания на основании света, отраженного от глаза; автоматизированный распылитель для распыления жидкости в глаз на основании обнаружения моргания; процессор, логически связанный с детектором для распыления жидкости в глаз на основе обнаружения моргания, и сквозное отверстие или трубчатый вырез, выполненный в устройстве с обеспечением возможности для пользователя видеть через отверстие для выравнивания устройства с глазом. Применение данной группы изобретений позволит повысить точность дозирования и распыления жидкости или аэрозоля в глаза. 2 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к мониторингу параметров зрения. Способ мониторинга движения глаз и определения направления взгляда по проекции лимба на линейные фотоприемники, в котором используются оптическая система, блок обработки и блок передачи информации внешним приборам, заключается в том, что используется один или несколько последовательно соединенных линейных фотоприемников, на которые оптической системой проецируется не менее двух проекций границы лимба Ymin и Ymax, а обработка движения и определение направления взгляда происходят в реальном времени по соответствующим значениям проекций лимба одного или обоих глаз прямым расчетом по приведенной ниже формуле или с использованием предварительно рассчитанных по этой формуле данных, хранящихся в памяти блока обработки: где Ymin и Ymax - минимальное и максимальное значение проекций лимба на линейную часть фотоприемника, соответствующие знакам плюс и минус в скобках формулы, R - радиус глазного яблока и r - радиус лимба, а направление взгляда по вертикали определяет угол φ и по горизонтали угол ψ. Использование изобретения позволяет повысить быстродействие при мониторинге движения глаз и определении направления взгляда. 4 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к медицинской технике. Представлено устройство для мониторинга одного или более хирургических параметров глаза пациента на протяжении многих сеансов, разнесенных во времени и между которыми глаз пациента может иметь перемещение. Устройство содержит: камеру для получения одного или более изображений глаза; модуль для определения во время первого сеанса хирургического параметра глаза и его координат, основываясь на изображении, полученном камерой, в первой системе координат; модуль для определения во время второго сеанса хирургического параметра глаза и его координат, основываясь на полученном камерой изображении, во второй системе координат; модуль для определения перемещения глаза по шести степеням свободы между первым и вторым сеансами и для определения преобразования координат, основываясь на этом; модуль для преобразования, основываясь на определенном перемещении глаза, хирургического параметра глаза и его координат из первой системы координат во вторую систему координат; модуль для количественного определения и/или визуализации изменения хирургического параметра глаза и его координат между первым и вторым сеансами, основываясь на хирургическом параметре глаза и его координатах, измеренных во время второго сеанса, и преобразованном хирургическом параметре глаза и его координатах, измеренных во время первого сеанса. Хирургические параметры глаза представляют собой один или более из следующих: относящиеся к имплантанту параметры глаза, которые основаны на имплантанте, хирургически вставленном в глаз пациента; или положение и/или контур роговичных или лимбальных, или склеральных надрезов. Хирургические параметры глаза дополнительно содержат одно или более из следующего: k-показания, которые определяют форму роговицы в терминах параметров эллипсоида вращения; линию взгляда как линию, соединяющую центр зрачка и точку фиксации в известном положении; глубину камеры роговицы; зрительную ось глаза; определение того, является ли глаз левым глазом или правым глазом. Применение данного изобретения позволит повысить точность диагностики и хирургическую точность при работе при работе с имплантатом. 13 з.п. ф-лы, 15 ил.

Группа изобретений относится к области медицины и медицинской техники. Осуществляют выборку уровня света, падающего на глаз человека, с предварительно заданной частотой. Определяют характеристики морганий: количество, период и ширину импульса морганий. Рассчитывают количество и продолжительность морганий за заданный период времени. Сравнивают характеристики морганий с сохраненным набором результатов выборок преднамеренных морганий. Определяют, соответствуют ли моргания предварительно заданным последовательностям преднамеренных морганий. Используют последовательность преднамеренных морганий в качестве сигнала обратной связи для системы управления электронной офтальмологической линзой. Для реализации способа используют систему, содержащую фотоэлемент, выполненный с возможностью генерирования сигнала, падающего на глаз света; усилитель, выполненный с возможностью принимать сигнал и увеличивать уровень его мощности; процессор, выполненный с возможностью принимать усиленный сигнал. При этом процессор осуществляет выборку с предварительно заданной частотой, сохраняет результаты, определяет и сравнивает характеристики морганий. Изобретение расширяет функциональные возможности офтальмологической линзы для коррекции и улучшения зрения. 2 н.п. ф-лы, 11 ил.

Группа изобретений относится к медицине. Бесконтактный пупиллометр для скрининг-диагностики функционального состояния организма включает корпус, держатель, излучатель, приемник, температурный датчик, камеру, кожух, индикатор положения, два инфракрасных (ИК) светодиода, красный светодиод, источник белого света, датчик освещенности и компьютер с программным обеспечением. Корпус выполнен сложной формы, которую условно можно разделить на две поверхности, формирующие козырек и ограждающие борты. Передняя торцевая сторона козырька корпуса имеет вогнутую форму, то есть в плане представлена дугой, по центру которой установлен температурный датчик, а на краях симметрично размещены излучатель и приемник соответственно, чтобы световой поток излучателя попадал непосредственно на приемник. Излучатель представлен фотоэлектродатчиком, генерирующим световой поток. Приемник представлен фотоэлектродатчиком, принимающим световой поток от излучателя. Температурный датчик представлен инфракрасным термометром, обеспечивающим бесконтактное измерение температуры. Во внутренней части ограждающих бортов корпуса по центру располагается камера в кожухе и индикатор положения, а по сторонам оппозитно от камеры монтируется два ИК светодиода. Кожух выполнен из материала, способного равномерно распределять свет. Индикатор положения находится выше камеры и выполнен из материала, поверхность профильной стороны которого обладает отражающей способностью, со степенью четкости достаточной для отражения контуров глаз. Два ИК светодиода работают в диапазоне инфракрасного света, при этом выполняют функцию постоянной непрерывной подсветки правого и левого глаза соответственно. В верхней части корпуса расположен датчик освещенности. На задней стенке кожуха за камерой располагаются красный светодиод и источник белого света. При перекрывании светового потока от излучателя к приемнику срабатывает красный светодиод. Ограждающие борты корпуса совместно с козырьком, а также с двумя ИК светодиодами и датчиком освещенности создают и измеряют условие фонового освещения. При этом бесконтактный способ скрининг-диагностики функционального состояния организма включает этап предысследования, этап исследования и заключающий этап. На этапе предысследования осуществляются регистрация идентификационного кода обследуемого, под которым в дальнейшем хранится информация; позиционирование обследуемого и создание фонового освещения, для этого испытуемый, при постоянной работе двух ИК светодиодов, не касаясь поверхностей корпуса и видя отражение своих глаз на индикаторе положения, приближает свою голову к передней торцевой стороне козырька корпуса до тех пор, пока не перекроет путь луча от излучателя к приемнику, тем самым активируя работу красного светодиода. На этапе исследования, при постоянной работе красного светодиода и подсвечивающих глаза ИК светодиодах, осуществляется бесконтактное непрерывное одновременное измерение показаний фонового освещения, температуры тела человека и зрачковой реакции глаза в трех последовательно сменяемых режимах: адаптации, нагрузки и восстановления. При этом режим адаптации длится с момента включения красного светодиода до момента включения источника белого света; режим нагрузки характеризуется работой включенного источника белого света; режим восстановления длится с момента выключения источника белого света до момента моргания красного светодиода. На этапе заключения осуществляется занесение в базу данных ПК под идентификационным кодом обследуемого измерения. Выполнение обработки и анализа измерений. При этом для измерений зрачковой реакции осуществляется обработка каждого кадра изображения в цифровой форме по пикселям и путем статистической обработки построение графика изменения площади зрачка во времени, в зависимости от освещения. Далее выполняется расчет, по меньшей мере, следующих параметров: латентное время реакции зрачка на источник белого света (Tlat1), латентное время реакции зрачка на выключение источника белого света (Tlat2), угол реакции зрачка на включение источника белого света (F1), угол реакции зрачка на выключение источника белого света (F2), коэффициент реакции (AmplRatio), средняя площадь зрачка до начала реакции (Average). Далее по меньшей мере по пяти исследованиям осуществляется формирование индивидуальных норм испытуемого, в которых для каждой величины Tlat1, Tlat2, F1, F2, AmplRatio, Average определены минимальное и максимальное значения с допуском в 10%. При повторном исследовании выполняется автоматическое сравнение расчетных параметров зрачковой реакции обследуемого с его же индивидуальными нормативами с выдачей эпикриза функционального состояния организма. Применение данной группы изобретений позволит повысить точность измерений, а также уменьшить время обследования. 2 н. и 9 з.п. ф-лы, 9 ил., 2 пр.

Группа изобретений относится к медицине. Устройство контактной линзы содержит: контактную линзу, содержащую: подложку; множество датчиков, расположенных на или в подложке в предварительно определенных положениях контактной линзы друг относительно друга; схему управления, расположенную на подложке и соединенную с указанными датчиками. При этом схема управления содержит: компонент обработки, выполненный с возможностью: получения информации состояния, связанной с одним или более из множества датчиков, которая указывает, закрывается ли связанный датчик веком; определения величины закрытия века на основе предварительно определенных положений одного или более из множества датчиков, которые определены как закрытые веком на основе информации состояния; и определения одного из моргания века, положения века или ориентации контактной линзы на основе информации состояния. Способ заключаются в выполнении работы устройством. Энергонезависимый машиночитаемый носитель, на котором сохранены инструкции для осуществления способа. Применение данной группы изобретений позволит расширить арсенал технических средств. 3 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к области медицины, а именно к офтальмологии. Для исследования зрительных функций используют портативное устройство, состоящее из шлема виртуальной реальности с дисплеем; компьютера для формирования точки фиксации, последовательного предъявления паттернов и фиксации результатов исследования; окулографа для контроля за положением линии взора и скоординированного с ним приспособления для смещения координатной сетки паттернов, предъявляемых для исследуемого глаза. Устройство позволяет исследовать зрительные функции у людей с офтальмологическими, неврологическими и когнитивными расстройствами за счет возможности одновременно с движением взора синхронно смещать координатную сетку совокупности предъявляемых диагностических паттернов. 9 з.п. ф-лы, 4 ил., 2 пр.

Группа изобретений относится к медицине. Способ оптической когерентной томографии (ОКТ) глаза осуществляется с помощью аппарата для оптической когерентной томографии (ОКТ). При этом способ содержит этапы: захват изображений глаза с камеры с высоким временным разрешением, используя систему камер; получение изображения ОКТ глаза с высоким временным разрешением, используя блок получения изображения ОКТ, причем измерительная ось блока получения изображений ОКТ и измерительные оси системы камер выровнены вдоль общей измерительной оси аппарата, используя расщепитель луча; освещение роговицы глаза с использованием множества точечных источников света, расположенных в геометрическом порядке точечных источников света вокруг измерительной оси так, чтобы изображения камер с высоким временным разрешением содержали множество световых указателей в геометрическом порядке световых указателей; определение по изображениям камер с высоким временным разрешением данных о движении с высоким временным разрешением, представляющих движение глаза относительно измерительной оси, с использованием блока управления; определение с высоким временным разрешением, в качестве данных о движении, пространственного размера геометрического порядка, соответствующего множеству световых указателей, с использованием блока управления; назначение каждому пространственному размеру геометрического порядка, соответствующего световым указателям, соответствующего осевого смещения глаза по отношению к аппарату с использованием блока управления; преобразование изображений ОКТ на основе данных о движении с использованием блока управления; и генерирование томограммы глаза из изображений OКT с использованием блока управления. Применение группы изобретений позволит улучшить качество получаемой томограммы. 2 н. и 11 з.п. ф-лы, 5 ил.
Наверх