Способ модификации элемента статора энергетической турбины

Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки относительно напыляемой поверхности элемента статора 0,5-1,0 м/с. Площадь пятна напыления на поверхности элемента статора составляет 1,7-5,0 см2. Техническим результатом является отсутствие трещин и расслоений в покрытии за счет снижения нагрева напыляемой поверхности в 3-4 раза, увеличение прочностных свойств покрытия, при этом увеличивается также коэффициент использования напыляемого порошка. 1 табл.

 

Изобретение относится к машиностроению, конкретнее к уплотняемым зазорам в энергетических турбинах и способам модификации стационарного кожуха таким образом, чтобы контролировать зазор между вращающимися и неподвижными компонентами турбин. В частности, изобретение относится к способу нанесения уплотнительного покрытия на элементы статора энергетических турбин, предназначенному контролировать зазор между вращающимися и неподвижными компонентами турбин.

Паровые турбины производств являются основными первичными двигателями мощных компрессорных и насосных агрегатов, надежности и эффективности работы которых уделяется особое внимание.

В настоящее время ведущие мировые производители паровых турбин наиболее активно ведут исследования в направлении конструктивных решений уплотнений паровых турбин.

Уплотнительные, или изнашиваемые покрытия применяются в газотурбинных двигателях в авиации, энергетике, газоперекачивающих агрегатах (ГПА) взамен вставок из уплотнительных материалов. Изнашиваемые покрытия снижают зазор между статором и ротором газогенератора (компрессор и турбина). Методом плазменного напыления уплотнительные покрытия делаются настолько податливыми, чтобы кромка лопатки или лабиринт легко врезались в их слой, однако достаточно прочными, чтобы выдерживать напор газового потока при повышенных температурах.

Применение уплотняющих (прирабатываемых) покрытий в горячей части турбины газотурбинного двигателя (ГТД) позволяет заметно повысить КПД и тепловую мощность двигателя за счет уплотнения зазоров по периферийным торцам лопаток и по гребешкам лабиринтных уплотнений между ступенями по всей окружности вращения, сводя к минимуму износ дорогостоящих вращающихся лопаток ротора турбины. Основными требованиями к уплотнительным покрытиям в ГТД являются достаточная прочность, податливость при врезании лопаток лабиринтными выступами, антифрикционность, теплозащитные свойства, эрозионная стойкость и низкое сопротивление "выветриванию" рабочей поверхности (со стороны газового потока).

Из уровня техники известен способ модификации элемента статора энергетической турбины, включающий нанесение на него покрытия (RU 2415199 С1, МПК С23С 14/38, опубликовано 27.03.2011).

Недостаток известного способа модификации элемента статора энергетической турбины заключается в том, что при нанесении покрытия не контролируется нагрев напыляемой поверхности, который приводит к снижению ресурса статора и наведению остаточных напряжений в уплотнительное покрытие, которые приводят к появлению трещин, сколов и отслоений уплотнительного покрытия как между слоями, так и от материала подложки.

Задачей, на решение которой направлено изобретение, является снижение температуры напыляемой поверхности во время напыления для сохранения работоспособности как материала статора, так и уплотнительного покрытия при высоких нагрузках, вызванных критическими режимами эксплуатации энергетических турбин.

Техническим результатом является снижение нагрева напыляемой поверхности в 3-4 раза, отсутствие трещин и расслоений в покрытии, увеличение прочностных свойств покрытия, увеличение коэффициента использования напыляемого порошка.

Технический результат достигается тем, что способ модификации элемента статора энергетической турбины включает нанесение на него покрытия плазменным напылением, под углом 55-70 градусов по отношению к поверхности напыления, причем скорость перемещения горелки относительно напыляемой поверхности элементов статора энергетических турбин во время напыления составляет 0,5-1,0 м/с, а площадь пятна напыления на поверхности элементов статора энергетических турбин составляет 1,7-5,0 см2.

Проведенные исследования показали, что при скорости напыления менее 0,5 м/с покрытие формируется с наведенными трещинами и расслоениями. При скорости напыления более 1,0 м/с снижается коэффициент использования порошка, т.е. на напыление той же толщины покрытия тратится в 1,5-2 раза больше порошка, что снижает экономическую привлекательность способа формирования уплотнительного покрытия.

Для получения толстого уплотнительного покрытия с минимальным перегревом напыляемой поверхности с минимальными временными паузами между нанесением каждого слоя покрытия необходимо контролировать площадь участка поверхности, подвергаемой напылению. При площади напыления менее 1,7 см2 покрытие формируется с наведенными трещинами. При площади напыления более 5,0 см покрытие формируется с расслоениями.

Пример 1. Порошок на основе оксида циркония с полиэстером был нанесен методом плазменного напыления. Угол нанесения керамического слоя составил 60 градусов. Скорость перемещения горелки относительно напыляемой поверхности статора во время напыления составила 0,75 м/с, которая была максимальна для применяемого вида манипулятора. Площадь пятна напыления на поверхности статора составила 3,4 см2.

Температура поверхности статора не поднималась выше 45 градусов, при этом покрытие сформировалось без трещин с итоговой толщиной - 4 мм.

Пример 2. Порошок на основе оксида циркония с полиэстером был нанесен методом плазменного напыления на ряд стальных образцов, при этом меняли режимы нанесения покрытия

Таблица 1
Образец покрытия Угол напыления, градус Скорость перемещения горелки, м/с Площадь напыления, см2 Наличие дефектов Температура поверхности напыления
1 90 1,0 2,0 трещины 181
2 90 0,5 2,0 расслоение 192
3 80 1,0 2,0 расслоение 157
4 80 0,5 2,0 расслоение 163
5 70 1,0 2,0 отсутствуют 110
6 70 0,5 2,0 отсутствуют 125
7 60 1,0 2,0 отсутствуют 78
8 60 0,5 2,0 отсутствуют 89
9 50 1,0 2,0 покрытие не формируется 40
10 50 0,5 2,0 отслоение 55
11 40 1,0 2,0 покрытие не формируется -
12 40 0,5 2,0 покрытие не формируется -
13 30 1,0 2,0 покрытие не формируется -
14 30 0,5 2,0 покрытие не формируется -

Способ получения покрытия на поверхности элемента статора энергетической турбины, включающий нанесение на его поверхность покрытия плазменным напылением, отличающийся тем, что на поверхность элемента статора наносят порошок под углом 55-70 градусов к поверхности напыления, при этом плазменную горелку перемещают относительно напыляемой поверхности элемента статора со скоростью 0,5-1,0 м/с, а напыление поверхности осуществляют участками с площадью напыления 1,7-5,0 см2.



 

Похожие патенты:
Изобретение относится к области получения и производства фильтрующих материалов для очистки воздуха промышленных помещений на основе полимерных волокон, обладающих антибиотическими свойствами.

Изобретение относится к получению углеродных наноструктур и позволяет получить углеродные частицы в виде порошка, что значительно расширяет их применение, упростить способ и устройство получения углеродных наноструктур, а также повысить коэффициент полезного действия.

Изобретение относится к нанотехнологии, в частности к плазменным методам осаждения наночастиц на подложку, которые могу быть использованы в качестве катализаторов, как чувствительные элементы датчиков и как магнитные запоминающие среды.
Изобретение относится к машиностроению и может быть использовано для нанесения покрытия на поверхность металлических изделий, таких как лопатки компрессора газотурбинных двигателей и установок, с целью повышения их служебных характеристик.
Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии.
Изобретение относится к металлургии, а именно к химико-термической обработке металлов и сплавов, в частности к ионному азотированию в плазме тлеющего разряда, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей сложной конфигурации, режущего инструмента и штамповой оснастки.

Изобретение относится к машиностроению и может быть использовано для модифицирования поверхности деталей машин с целью повышения их служебных характеристик. .

Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности.
Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности.

Изобретение относится к детали, в частности к лопатке газовой турбины, содержащей основную часть и расположенный на ней теплоизоляционный слой, который имеет столбчатую структуру с керамическими столбиками, которые в большинстве направлены в основном перпендикулярно поверхности основной части.
Изобретение относится к области получения и производства полимерных материалов, обладающих антибиотическими свойствами за счет создания тонкого покрытия. Синтез тонкого покрытия на поверхности изделия осуществляют в низкотемпературной плазме тлеющего разряда в парах 3-нитро-1-адамантановой кислоты. Сначала камеру с изделием вакуумируют, подают аргон и проводят газоразрядную очистку поверхности материала изделия при давлении 80 Па и плотности тока 2-5 А/м2. После очистки камеру вновь вакуумируют и напускают пары 3-нитро-1-адамантановой кислоты до давления 30-100 Па с последующим зажиганием тлеющего разряда для синтеза покрытия на поверхности изделия. 2 пр.
Изобретение относится к области обработки поверхности инструментальных материалов и может быть использовано для создания покрытия в виде пленки нитрида титана на твердосплавных подложках, таких как режущие пластины, предназначенных для обработки труднообрабатываемых материалов. Способ включает очистку поверхности пластин бомбардировкой ионами и последующее напыление TiN на поверхность пластин путем осаждения в реакционном газе - азоте ионов титана из плазмы, сформированной вакуумно-дуговым генератором в направлении анода, расположенного внутри катода, при этом в качестве анода используют набор твердосплавных пластин, имеющих общую площадь поверхности Sa, удовлетворяющую условию: Sa<(2m/M)l/2S, где S - площадь поверхности полого катода; m и М - соответственно масса электрона и иона. Техническим результатом изобретения является повышение качества покрытия. 1 пр.

Изобретение относится к способу ионно-плазменного напыления покрытий на изделия в вакууме и устройству для его осуществления и может найти применение в металлургии, плазмохимии и машиностроительной промышленности. Изделия размещают внутри плазменного устройства, содержащего мишень из распыляемого материала. Осуществляют наложение сконфигурированного электрического и магнитного полей в условиях тлеющего плазменного разряда, сжатие плазменного потока и его локальную фокусировку в центре вершины мишени с образованием на ее поверхности локального плазменного пятна в пределах 1 мм2. Устройство включает размещаемую внутри вакуумной камеры и заполняемую в процессе работы плазмообразующим газом плазменную ячейку. Ячейка образована между двумя параллельно расположенными пластинами и содержит расположенные соосно катод, мишень из распыляемого материала, анод и фокусирующие электроды. Катод выполнен в виде стержневого держателя мишени. Напыляемые изделия закреплены в одном из фокусирующих электродов. Катод с мишенью установлен внутри полого цилиндрического магнита, имеющего осевую намагниченность. В результате получают покрытия высокого качества при снижении потребляемой мощности устройства. 2 н.п. ф-лы, 2 ил.

Изобретения относятся к способу и устройству для нанесения покрытий в вакууме. Напускают в вакуумную камеру рабочий газа. В качестве источника осаждаемых частиц используют катод с мишенью. При зажигании тлеющего разряда устанавливают давление в газоразрядной камере ниже Р=10-2 Торр, создают разные концентрации частиц газа в различных областях межэлектродного пространства путем создания сверхзвукового потока рабочего газа со скоростью более V=300 м/с в заданной области межэлектродного зазора в поперечном к электрическому полю направлении. Устройство нанесения покрытий содержит газоразрядную камеру и размещенные в ней катод с мишенью и анод, газоввод для напуска рабочего газа в виде сверхзвукового сопла, являющегося диффузором, конфузор, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно друг против друга с обеспечением расположения оси конфузора и диффузора в направлении, поперечном к оси анода и катода, на заданном расстоянии относительно анода и катода. Изобретение позволяет получить высокую скорость нанесения покрытий при низких давлениях, что повышает чистоту процесса, а также упрощает конструкцию устройства. 2 н.п. ф-лы, 3 ил.
Наверх