Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас.%: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5. Затем наносят верхний слой из нитрида титана. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними. Нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода. Повышается работоспособность режущего инструмента. 1 табл.

 

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998, 123 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида титана и алюминия TiAlN и верхнего слоя нитрида титана TiN, раскрытый в описании к свидетельству на полезную модель RU 27099 U1, принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточными твердостью и остаточными сжимающими напряжениями, а следовательно, трещиностойкостью. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. В двухслойном покрытии нижний слой должен обладать хорошей адгезией к инструментальной основе, высокими сжимающими напряжениями, что должно препятствовать образованию и развитию трещин в покрытии. Кроме того, создание микрослоистости приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.

Технический результат - повышение работоспособности РИ.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас.%: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5 и верхний слой из нитрида титана, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода.

Такая структура покрытия позволяет получить более высокую твердость нижнего слоя покрытия. При этом нижний слой обладает высокими трещиностойкостью и уровнем сжимающих напряжений из-за дополнительного легирования материала слоя и наличию в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Слои покрытия должны обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также двухслойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки "Булат-6", снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними. Камеру откачивают до давления 6,65-10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают второй катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота включают первый и третий катоды и осаждают нижний слой покрытия TiAICrN толщиной 3,0 мкм. Верхний слой покрытия TiN толщиной 3,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенном втором катоде и подаче реакционного газа - азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Микротвердость покрытий определяли на микротвердомере "ПМТ-3" под нагрузкой 100 г.

Остаточные напряжения в покрытии определяли на рентгеновском дифрактометре "ДРОН-3М" с использованием фильтрованного Сuкα-излучения.

Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S =0,4 мм/зуб, глубина резания t=1,5 мм, ширина фрезерования В=20 мм. За критерий износа была принята величина фаски износа по задней поверхности h3=0,4 мм.

В таблице 1 приведены результаты испытаний РИ с полученными покрытиями.

Как видно из приведенных в таблице 1 данных, стойкость пластин, с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,18-1,37 раза.

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас. %: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5 и верхний слой из нитрида титана, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода.



 

Похожие патенты:

Изобретение относится к способам получения композитных наноматериалов и может быть использовано в приборостроении и других областях при производстве материалов на основе полупроводников, диэлектриков или металлов.

Изобретение относится к области изготовления электровакуумных приборов, в частности к способу получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах генераторных ламп, и может быть использовано для получения интерметаллических антиэмиссионных покрытий на сеточных электродах генераторных ламп.

Группа изобретений относится к получению изделий из композиционных материалов с карбидно-металлической матрицей путем паро-жидкофазного металлирования. Способ включает размещение пористой заготовки и тигля с металлом в реторте замкнутого объема и их нагрев с образованием паров металла и обеспечением массопереноса металла в поры материала заготовки за счет конденсации паров металла, промежуточное охлаждение, изотермическую выдержку при максимальной температуре металлирования и окончательное охлаждение.

Группа изобретений относится к способу нанесения покрытия магнетронным распылением и держателю подложек на его основе и может быть использовано в машиностроении, технологии нанесения на изделия нанопокрытий, рекламном и демонстрационном деле при изготовлении витрин.

Изобретение относится к области нанесения на гибкую подложку органических материалов, в частности к испарителям для испарения органических материалов, например меламина.

Изобретение относится к аппарату для осаждения из паровой фазы материала на подложку с использованием процесса обратной литографии. Устройство включает корпус конической формы с купольным верхом, источник напыления, центральный куполообразный элемент, расположенный выше источника напыления рядом с купольным верхом корпуса.
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к способу получения покрытий карбина и может быть использовано для создания новых композиционных биосовместимых покрытий, требующих химической инертности, высокой твердости, низкого трения и высокой теплопроводности.

Изобретение относится к режущему инструменту с покрытием и способу нанесения на основу инструмента покрытия. Покрытие включает, по меньшей мере, один мультинанослой, имеющий нанокомпозитный нанослой, образованный кристаллическим (TixAlyCrz)N и аморфным Si3N4, при этом 0,25≤x≤0,75, 0,25≤y<0,75, 0,05≤z≤0,2, 0,85≤x+y+z≤0,97.

Изобретение относится к способу изготовления заготовки светоотражающего элемента для оптических систем, включающему предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя.
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Изобретение относится к области нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к нанесению ионно-плазменных покрытий. Способ получения многослойного покрытия на поверхности технологических инструментов включает ионную очистку поверхности и нанесение слоев покрытия дуальной магнетронной системой с титановым и алюминиевым магнетронами.

Изобретение относится к режущему инструменту с покрытием и способу нанесения на основу инструмента покрытия. Покрытие включает, по меньшей мере, один мультинанослой, имеющий нанокомпозитный нанослой, образованный кристаллическим (TixAlyCrz)N и аморфным Si3N4, при этом 0,25≤x≤0,75, 0,25≤y<0,75, 0,05≤z≤0,2, 0,85≤x+y+z≤0,97.

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении, мас.: титан 70,5-79,5, алюминий 14,0-20,0, хром 6,5-9,5. Затем наносят верхний слой из нитрида титана. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют из сплава титана и алюминия, второй - из титана и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними. Нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода. Повышается работоспособность режущего инструмента. 1 табл.

Наверх