Плазменное устройство для cvd



Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd
Плазменное устройство для cvd

 

H05H1/46 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2545977:

КАБУСИКИ КАЙСЯ КОБЕ СЕЙКО СЕ (JP)

Изобретение относится к плазменному устройству для химического осаждения покрытия из паровой фазы (CVD) на подложку в виде пленки или листа. Устройство включает вакуумную камеру, пару роликов для напыления, расположенных в вакуумной камере, вокруг которых намотана подложка, которая является мишенью для осаждения, и генерирующую магнитное поле секцию, которая генерирует генерирующее плазму магнитное поле на поверхности роликов для напыления, формируя участок для осаждения, на котором напыляют покрытие на упомянутую подложку. Пара роликов для напыления включает первый ролик для напыления и второй ролик для напыления, отделенный от первого ролика для напыления промежутком таким образом, что оси упомянутых роликов параллельны. Генерирующая магнитное поле секция расположена таким образом, что первый участок для напыления сформирован в контрпространстве, которое представляет собой пространство между парой роликов для напыления. Второй участок для напыления сформирован на участке, смежном с поверхностью роликов для напыления. Данный участок находится вне контрпространства. Разработано устройство, обеспечивающее непрерывное осаждение покрытия методом CVD с высокой производительностью. 6 з.п. ф-лы,8 ил.

 

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к плазменному устройству для CVD (химического осаждения из паровой фазы), предназначенному для осаждения покрытия методом CVD на подложку, такую как пленка из пластмассы или лист из пластмассы.

Предпосылки изобретения

[0002] От пленки из пластмассы, используемой для подложки для дисплея, в высшей степени требуется обладать характеристиками (барьерными свойствами), не позволяющими водяному пару или кислороду проходить через нее, или сопротивлением изнашиванию. Для того чтобы придать пленке из пластмассы или т.п. хорошие барьерные свойства или высокое сопротивление изнашиванию, необходимо нанести на поверхность пленки покрытие, состоящее из SiOx, Al2O3 или т.п. В качестве традиционно известных способов нанесения покрытия из SiOx применяют методы физического осаждения из паровой фазы (PVD), такие как напыление в вакууме и распыление.

[0003] Например, напыление в вакууме представляет собой один из высокопроизводительных методов среди методов PVD и широко используется для получения пленки для упаковки пищевых продуктов. Такой метод напыления в вакууме реализует высокую производительность, однако барьерные свойства напыленного покрытия не являются хорошими. Конкретно, в одном примере численного значения водопаропроницаемость покрытия, нанесенного методом напыления в вакууме, составляет около 1 г/(м2·день), а кислородопроницаемость составляет около 1 см3/(м2·атм·день). Эти величины не удовлетворяют требованиям, предъявляемым к подложке для дисплея.

[0004] Между тем, при использовании методов PVD метод распыления часто используют наряду с методом напыления в вакууме. При нанесении покрытия на подложку, имеющую хорошее состояние поверхности, покрытие, нанесенное методом распыления, может иметь водопаропроницаемость и кислородопроницаемость, которые равны или меньше пределов детектирования метода MOCON. Конкретно, покрытие из SiOx или покрытие из SiON, нанесенное методом распыления и имеющее толщину от 50 нм до 100 нм, может иметь водопаропроницаемость 0,2 г/(м2·день) или менее и кислородопроницаемость 0,02 см3/(м2·атм·день) или менее. Поэтому барьерные свойства покрытия, нанесенного методом распыления, намного лучше свойств покрытия, нанесенного методом напыления в вакууме.

[0005] Между тем, скорость осаждения при распылении меньше скорости напыления в вакууме, поэтому достижение достаточной производительности при распылении затруднительно.

[0006] Кроме того, покрытие, нанесенное методом PVD, т.е. как покрытие, нанесенное методом напыления в вакууме, так и покрытие, нанесенное методом распыления, имеет недостаток, заключающийся в том, что покрытие является хрупким из-за минералов. Например, при напылении пленки толщиной более 100 нм методом PVD покрытие не выдерживает своего собственного внутреннего напряжения - разницы между коэффициентами термического расширения покрытия и подложки, что может привести к дефектам и отслаиванию покрытия. Соответственно, метод PVD не подходит для нанесения, при котором покрытие толщиной более 100 нм наносят на пленочную подложку.

[0007] В отличие от метода PVD скорость напыления согласно плазменному методу CVD ниже скорости напыления в вакууме, но выше скорости напыления согласно методу распыления на один порядок. Кроме того, покрытие, напыленное согласно плазменному методу CVD, имеет некоторую степень эластичности, а также высокие барьерные свойства. По этой причине, используя плазменный метод CVD, можно нанести покрытие, имеющее большую толщину от нескольких сотен нанометров (нм) до нескольких микрометров (мкм), что невозможно при использовании метода PVD, поэтому ожидается, что плазменный метод CVD составит новый способ осаждения с использованием таких отличительных признаков.

[0008] Пример устройства для осуществления плазменного метода CVD описан в Патентном документе 1.

[0009] Плазменное устройство для CVD, описанное в Патентном документе 1, включает вакуумную камеру, подающий ролик, расположенный в вакуумной камере, для подачи пленки, и перемоточный ролик, расположенный в вакуумной камере, для перематывания пленки. В плазменном устройстве для CVD напыление непрерывно осуществляют осаждением на пленку, поступающую из подающего ролика в вакуумной камере, откачанной до вакуума, а затем пленку с покрытием вновь наматывают с помощью перемоточного ролика. Кроме того, в вакуумной камере размещают пару роликов для осаждения, вокруг которых наматывается пленка, и к ним подводят питание от сети переменного тока. Кроме того, плазменное устройство для CVD имеет секцию для генерирования магнитного поля, включающую несколько магнитов в роликах для осаждения. Такая секция генерирует магнитное поле в касательном направлении относительно поверхностей роликов для осаждения. Между тем, когда источник переменного тока подает напряжение переменного тока на пару роликов для осаждения, магнитное поле генерируется в нормальном направлении относительно наружных периферических участков роликов для осаждения.

[0010] Иными словами, плазменное устройство для CVD, описанное в Патентном документе 1, генерирует местный магнетронный разряд на участке, где магнитное поле, генерируемое в касательном направлении, между парой роликов для осаждения, взаимодействует с электрическим полем, генерируемым в нормальном направлении, и распыляет покрытие методом CVD, используя плазму, ионизируемую магнетронным разрядом.

[0011] Однако в плазменном устройстве для CVD, описанном в Патентном документе 1, участок, где генерируется плазма, ограничен частью пространства (контрпространством) между парой роликов для осаждения. При изъятии пленки из этого пространства напыления на пленку не происходит. Иными словами, в плазменном устройстве для CVD, описанном в Патентном документе 1, поскольку участок, где генерируется плазма, а именно участок для напыления, ограничен частью контрпространства, не возникает проблемы образования хлопьев из-за напыления ненужного покрытия. Однако при напылении только на ограниченном участке скорость осаждения не увеличивается, поэтому производительность осаждения снижается.

Перечень ссылок

Патентный документ

[0012] Патентный документ 1: JP 2008-196001 A.

[0013] Задачей настоящего изобретения является разработка плазменного устройства для CVD, способного реализовывать высокую производительность.

[0014] Плазменное устройство для химического осаждения из паровой фазы (CVD) на подложку в виде пленки или листа согласно настоящему изобретению включает: вакуумную камеру, пару роликов для напыления, расположенных в вакуумной камере, вокруг которых намотана подложка, которая является мишенью для напыления, и генерирующую магнитное поле секцию, которая генерирует генерирующее плазму магнитное поле на поверхности роликов для напыления, формируя участок для напыления, на котором напыляют покрытие на подложку, намотанную вокруг роликов для напыления. Кроме того, пара роликов для напыления включает первый ролик для напыления и второй ролик для напыления, отделенный от первого ролика для напыления промежутком таким образом, что оси роликов для напыления параллельны, а генерирующая магнитное поле секция расположена таким образом, что первый участок для напыления формируется в контрпространстве, которое представляет собой пространство между парой роликов для напыления, а второй участок для напыления формируется на участке, смежном с поверхностью роликов для напыления в виде участка для напыления, при этом второй участок находится вне контрпространства.

Краткое описание чертежей

[0015] [Фиг.1] Фиг.1 представляет собой вид спереди плазменного устройства для CVD согласно первому варианту воплощения настоящего изобретения.

[Фиг.2] Фиг.2 представляет собой увеличенный вид участка для напыления в плазменном устройстве для CVD.

[Фиг.3] Фиг.3 представляет собой диаграмму, иллюстрирующую формы волн переменного тока, поступающего на ролик для напыления из плазменного источника тока в плазменное устройство для CVD.

[Фиг.4] Фиг.4 представляет собой увеличенный вид в перспективе генерирующей магнитное поле секции плазменного устройства для CVD.

[Фиг.5] Фиг.5 представляет собой диаграмму, иллюстрирующую секцию для напыления плазменного устройства для CVD согласно второму варианту воплощения.

[Фиг.6] Фиг.6 представляет собой диаграмму, иллюстрирующую секцию для напыления плазменного устройства для CVD согласно третьему варианту воплощения.

[Фиг.7] Фиг.7 представляет собой диаграмму, иллюстрирующую модифицированный пример участка для напыления плазменного устройства для CVD согласно второму варианту воплощения.

[Фиг.8] Фиг.8 представляет собой диаграмму, иллюстрирующую секцию для напыления плазменного устройства для CVD согласно четвертому варианту воплощения.

Описание вариантов воплощения

[0016] Далее варианты воплощения настоящего изобретения будут описаны со ссылкой на чертежи.

[0017] Первый вариант воплощения

Далее плазменное устройство для CVD согласно первому варианту воплощения настоящего изобретения будет описано со ссылкой на чертежи.

[0018] Фиг.1 иллюстрирует полную конфигурацию плазменного устройства 1А для CVD согласно первому варианту воплощения настоящего изобретения.

[0019] В плазменном устройстве 1А для CVD согласно настоящему изобретению переменное напряжение или импульсное напряжение, сопровождаемое обращением полярности, прикладывают к паре роликов 2 и 2 для напыления, расположенных таким образом, чтобы быть обращенными друг к другу с заданным пространством (контрпространством) 3, сформированным между ними при пониженном давлении, в результате чего возникает тлеющий электрический разряд в контрпространстве 3, заключенном между парой роликов 2 и 2 для напыления. Далее, напыление в плазменном устройстве 1А для CVD осуществляют на подложку W плазменным CVD с использованием плазмы технологического газа, ионизированного тлеющим электрическим разрядом. Плазменное устройство 1А для CVD снабжено парой роликов 2 и 2 для напыления, вакуумной камерой 4, вакуумной насосной системой 5, парой роликов 2 и 2 для напыления, плазменным источником 6 тока и генерирующими магнитное поле секциями 8 и 15.

[0020] Вакуумная камера 4 имеет форму кожуха, внутренняя часть которого является полой. Вакуумная насосная система 5, например, включает вакуумный насос и соединена с вакуумной камерой 4 для эвакуации внутренней части вакуумной камеры.

[0021] Пара роликов 2 и 2 для напыления (первый ролик для напыления и второй ролик для напыления) расположена таким образом, что их оси проходят в горизонтальном направлении (направлении, проходящем сквозь плоскость бумаги на фиг. 1), при этом расположенные рядом ролики параллельны один другому с промежутком в горизонтальном направлении, которое перпендикулярно им. Оба полюса плазменного источника 6 тока (источника переменного тока) соответственно соединены с каждым из роликов 2 для напыления. Кроме того, подложка W в виде листа, которая представляет собой мишень для напыления, может быть намотана вокруг такой пары роликов 2 и 2 для напыления. Более того, вакуумная камера 4 снабжена подающей газ секцией 7, которая подает технологический газ внутрь вакуумной камеры 4. Во внутренней части каждого ролика 2 для напыления установлены генерирующие магнитное поле секции (первая генерирующая магнитное поле секция 8 и вторая генерирующая магнитное поле секция 15) для генерирования плазмы.

[0022] Далее плазменное устройство 1A для CVD описано подробно. Однако что касается данного описания, верх и низ в плоскости бумаги на фиг.1 означают верх и низ плазменного устройства 1А для CVD. Кроме того, правая и левая стороны фиг. 1 означают правую и левую стороны плазменного устройства 1A для CVD.

[0023] Поскольку внутренняя полость вакуумной камеры 4 окружена верхней и нижней перегородками, правой и левой перегородками, и задней и передней перегородками, внутренняя часть может сохранять герметичность относительно наружной части.

Вакуумная насосная система 5 соединена с выпускным каналом 9, сформированным у нижней перегородки вакуумной камеры 4, в результате чего вакуумная камера 4 может быть откачана до состояния вакуума или от эквивалентного низкому давлению состояния до состояния вакуума в ответ на внешнее задание. Технологический газ подают из подающей газ секции 7 внутрь вакуумной камеры 4, в которой был создан вакуум (низкое давление) вакуумным насосом 5. В этот момент внутренняя часть вакуумной камеры 4 приобретает нужное давление в результате баланса между откачиванием вакуумным насосом 5 и снабжением воздухом из подающей газ секции 7.

[0024] Каждый ролик 2 для напыления имеет цилиндрический корпус из нержавеющей стали или т.п. с одинаковым диаметром и одинаковой длиной. Каждый ролик 2 для напыления установлен таким образом, что каждый центр вращения расположен, по существу, на одинаковой высоте от нижней поверхности (верхней поверхности нижней перегородки) вакуумной камеры 4. Оба ролика 2 и 2 для напыления расположены таким образом, что центры осей параллельны друг другу, расположены рядом друг с другом с расстоянием в горизонтальном направлении, в результате чего наружные периферические участки обоих роликов 2 и 2 для напыления обращены друг к другу, при этом между ними находится контрпространство 3.

[0025] Размер каждого ролика 2 для напыления по центру оси больше самой большой ширины подложки W, имеющей наибольшую ширину, таким образом, чтобы подложки W, имеющие различную пространственную ширину, могли быть намотаны на них. Внутри каждого ролика 2 для напыления может циркулировать текучая среда, такая как вода, с регулируемой температурой, в результате чего появляется возможность регулировать температуру поверхности роликов. Для предотвращения царапания каждого ролика 2 для напыления предпочтительно осуществляют их хромирование или покрытие цементированным карбидом.

[0026] Оба ролика 2 и 2 для напыления электрически изолированы от вакуумной камеры 4 и электрически изолированы друг от друга. Один полюс плазменного источника 6 тока соединен с одним из пары роликов 2 и 2 для напыления, а другой полюс плазменного источника 6 тока соединен с другим из пары роликов 2 и 2 для напыления. Иными словами, каждому ролику 2 для напыления придают потенциалы, имеющие полярности, отличные друг от друга, при этом плазменный источник 6 тока соединен с обоими роликами 2 и 2 для напыления таким образом, что потенциалы с различными полярностями переполюсовываются частотой переменного тока. Поскольку подложка W состоит из непроводящих материалов (изолирующих материалов), которые будут описаны ниже, даже при создании напряжения постоянного тока между роликами 2 и 2 для напыления, ток не может проходить через подложку. Однако ток может проходить при пропускании напряжения, имеющего соответствующую частоту (примерно, 1 кГц или более, предпочтительно 1 кГц или более) к паре роликов 2 и 2 для напыления в зависимости от толщины подложки W. Более того, между двумя роликами 2 и 2 для напыления может быть генерирован тлеющий разряд в результате пропускания напряжения переменного тока в диапазоне сотен V до 2000 V к паре роликов 2 и 2 для напыления. Кроме того, верхний предел частоты конкретно не ограничен, когда частота составляет 10 МГц или более, генерируется устойчивая волна. Соответственно, предпочтительно, чтобы частота составляла 10 МГц или менее.

[0027] Кроме того, в качестве подложки W (мишень для осаждения покрытия CVD), наматываемой вокруг пары роликов 2 и 2 для напыления, могут быть использованы изолирующие материалы, такие как пластмассовая пленка или лист, бумага и т.п. Изолирующие материалы могут быть намотаны в виде рулона. Подложку W наматывают на подающий ролик 10, расположенный в вакуумной камере 4. Пластмассовая пленка или лист, используемый в качестве подложки W, включает, например, РЕТ, PEN, PES, поликарбонат, полиолефин или полиимид. Толщина подложки W предпочтительно составляет от 5 мкм до 0,5 мм, которая способна сохраняться в вакууме. Подложку W наматывают в виде рулона наматывающим роликом 11 внутри вакуумной камеры 4 после напыления покрытия методом CVD.

[0028] Описанный выше подающий ролик 10 расположен в верхней левой части от левого ролика 2 для напыления внутри вакуумной камеры 4. Кроме того, наматывающий ролик 11 расположен в верхней правой части от правого ролика 2 для напыления внутри вакуумной камеры 4. Пара роликов 2 и 2 для напыления и несколько направляющих роликов 12 расположены между подающим роликом 10 и наматывающим роликом 11.

[0029] Плазменный источник 6 тока способен подавать переменное напряжение в виде синусоидальной кривой, как проиллюстрировано на фиг.3А, либо напряжение в виде импульсов, полярности обоих полюсов которого изменяются на обратную по истечении времени, как проиллюстрировано на фиг.3(b).

[0030] Оба полюса такого плазменного источника 6 тока имеют плавающий потенциал, изолированный от вакуумной камеры 4, при этом каждый из них соединен с обоими роликами 2 и 2 для напыления, тем самым создавая потенциал, способный генерировать разряд между роликами 2 и 2 для напыления на каждый ролик 2 для напыления. Более того, напряжение в виде импульсов, поступающее с плазменного источника 6 тока, может представлять собой напряжение, при котором повторяют следующие операции. Как проиллюстрировано на фиг.3(с), после непрерывной передачи коротких импульсов постоянное количество раз полярность изменяется, после чего короткие импульсы передаются такое же количество раз.

[0031] Кроме того, плазменное устройстве 1А для CVD снабжено секцией 7 для подачи газа, подающей технологический газ в вакуумную камеру 4, и выпускающей газ секцией, откачивающей технологический газ из вакуумной камеры 4. Подающая газ секция 7 подает технологический газ в верхнюю часть контрпространства 3, находящегося между парой роликов 2 и 2 для напыления. Далее выпускающая газ секция откачивает технологический газ за пределы вакуумной камеры 4 из нижней части (более низкое положение) каждого ролика 2 для напыления.

[0032] Секция 7 для подачи газа расположена в верхней правой части относительно левого ролика 2 для напыления и в верхней левой части относительно правого ролика 2 для напыления в вакуумной камере 4. Такая секция 7 для подачи газа представляет собой трубчатую деталь и установлена внутри вакуумной камеры 4 таким образом, чтобы быть параллельной центру оси каждого ролика 2 для напыления. Внутренняя часть секции 7 для подачи газа является полой. Технологический газ, который будет описан ниже, циркулирует в этой внутренней части и направляется внутрь извне вакуумной камеры. Множество небольших отверстий, сообщающихся с внутренней и наружной частями секции 7 для подачи газа, выполнены в продольном направлении (в направлении центра оси ролика 2 для напыления) в нижней части секции 7 для подачи газа таким образом, чтобы пропускать технологический газ, проходящий внутри секции 7 для подачи газа, в нижнюю часть. Технологический газ, выходящий из каждого небольшого отверстия 13, поступает в контрпространство 3, находящееся между парой роликов 2 и 2 для напыления.

[0033] Удаляющая газ секция откачивает технологический газ изнутри вакуумной камеры 4 наружу через отверстие 9 для откачивания, открывающееся в нижней перегородке вакуумной камеры 4. Согласно данному варианту воплощения вакуумный насос (вакуумная насосная система) 5, соединенная с отверстием 9 для откачивания, также является частью секции для откачивания газа. Кроме того, секция для откачивания газа и вакуумная насосная система 5 могут не представлять собой общее устройство. Например, секция для откачивания газа и вакуумная насосная система 5 могут быть соответственно отдельно установлены в вакуумной камере 4. В этом случае вакуумная насосная система 5 откачивает содержимое вакуумной камеры 4 до состояния вакуума или состояния низкого давления, эквивалентного состоянию вакуума. Затем давление внутри вакуумной камеры 4 контролируют, подавая технологический газ внутрь вакуумной камеры 4 из секции 7 для подачи газа и откачивая технологический газ из вакуумной камеры 4 через удаляющую газ секцию.

[0034] Плазменное устройство 1А для CVD, изображенное на фиг.1, например, снабжено только одним отверстием 9 для откачивания в нижней части контрпространства 3 в нижней перегородке вакуумной камеры 4, при этом вакуумный насос 5 соединен с отверстием 9 для откачивания. Далее, газовый коллектор 14 установлен между отверстием 9 для откачивания и контрпространством 3. Газовый коллектор 14 имеет форму полосы, расположенной в горизонтальном направлении и разделяющей технологический газ, проходящий по направлению к нижней части из контрпространства 3 направо и налево. Иными словами, технологический газ, подаваемый внутрь вакуумной камеры 4 секцией 7 для подачи газа и стекающий вниз, пересекая контрпространство 3, сталкивается с газовым коллектором 14, расположенным в направлении, перпендикулярном потоку (вкратце, ортогональном), в результате чего поток технологического газа разделяется на один ролик 2 для напыления и другой ролик 2 для напыления вдоль такого газового коллектора 14. По этой причине технологический газ, пересекающий контрпространство 3, направляют на участок, смежный с нижней периферией левого ролика 2 для напыления, и участок, смежный с нижней периферией правого ролика 2 для напыления. Такой газовый коллектор 14 также предотвращает попадание посторонних материалов, таких как хлопья покрытия, в вакуумный насос 5. Кроме того, фиг.1 иллюстрирует разделение газовым коллектором 14 технологического газа, стекающего вниз из контрпространства 3, но не ограничивается этим. Например, отверстия 9 для откачивания соответственно находятся в нижней части каждого ролика 2 для напыления, в нижней части вакуумной камеры 4, при этом вакуумный насос 5 может быть соединен с отверстием 9 для откачивания. Согласно такой конфигурации он способен разделять технологический газ без использования газового коллектора 14. Соответственно, на фиг.2-8 выходящий из отверстия 9 для откачивания технологический газ в нижней части каждого ролика 2 для напыления обозначен стрелками, и подробное его описание не будет повторяться.

[0035] В качестве технологического газа, поступающего из секции 7 для подачи газа, например, используют комбинацию технологического газа, реакционного газа и вспомогательного газа. Такой технологический газ подают в вакуумную камеру 4 из секции 7 для подачи газа, как описано выше. Технологический газ представляет собой компонент, который доставляет материал, служащий в качестве основного компонента покрытия. Например, при осаждении в вакуумной камере 4 покрытия из SiOx примеры технологического газа включают HMDSO (гексаметилдисилоксан), TEOS (тетраэтоксисикан), силан, которые содержат Si, служащий в качестве основного компонента покрытия из SiOx. Реакционный газ представляет собой компонент, не напыляющий само покрытие, но взаимодействующий с технологическим газом, вводимым в покрытие из SiOx. Например, при осаждении покрытия из SiOx в вакуумной камере 4 кислород (O2) выбирают в качестве реакционного газа для напыления покрытия из SiOx в результате реакции с Si. Вспомогательный газ состоит из компонентов, не зависящих от состава покрытия в принципе, однако его подают для улучшения устойчивости разряда, улучшения качества покрытия или текучести технологического газа. Например, при напылении покрытия из SiOx в вакуумной камере 4 в качестве вспомогательного газа используют Ar, He или т.п.

[0036] Как проиллюстрировано на фиг.2, плазменное устройство 1А для CVD включает генерирующую магнитное поле секцию, которая генерирует плазму на желаемом участке.

[0037] Генерирующая магнитное поле секция включает первую генерирующую магнитное поле секцию 8 и вторую генерирующую магнитное поле секцию 15, при этом такие первая и вторая генерирующие магнитное поле секции 8 и 15 соответственно устанавливают в различных местах в вакуумной камере 4.

[0038] Как проиллюстрировано на фиг.2, первая генерирующая магнитное поле секция 8 находится внутри каждого ролика 2 для напыления и расположена таким образом, чтобы быть обращенной по направлению к контрпространству 3, находящемуся между парой роликов 2 и 2 для напыления. Иными словами, первая генерирующая магнитное поле секция 8 расположена вдоль участка, прилегающего к контрпространству 3, даже в центре периферической стенки каждого ролика 2 для напыления таким образом, чтобы генерировать магнитное поле возле контрпространства 3 между парой роликов 2 и 2 для напыления. В проиллюстрированном на чертеже примере первая генерирующая магнитное поле секция 8 при использовании правого ролика 2 для напыления расположена между двумя и четырьмя часами циферблата часов вдоль внутренней периферии. Кроме того, первая генерирующая магнитное поле секция 8 при использовании левого ролика 2 для напыления расположена между восемью и десятью часами циферблата часов вдоль внутренней периферии. Первая генерирующая магнитное поле секция 8, например, имеет такую же конфигурацию, как и генерирующая магнитное поле секция, используемая в так называемом напыляющем катоде плоского магнетрона, как проиллюстрировано на фиг.4.

[0039] Более конкретно, как проиллюстрировано на фиг.4, первая генерирующая магнитное поле секция 8 находится внутри каждого ролика 2 для напыления и включает магнит для генерирования магнитного поля на поверхности такого ролика 2 для напыления. Благодаря генерированному магнитному полю первая генерирующая магнитное поле секция 8 приобретает функцию конвергирования плазмы на поверхности (точнее на участке, смежном с поверхностью) такого ролика 2 для напыления. Конкретно, первая генерирующая магнитное поле секция 8 включает центральный магнит 16 в форме бруска, расположенный в направлении (направлении ширины ролика), параллельном центру оси каждого ролика 2 для напыления, и периферический магнит 17, который имеет форму, окружающую центральный магнит, при виде направления (радиального направления ролика 2 для напыления), перпендикулярного его продольному направлению. Центральный магнит 16 устанавливают в середине направления ширины (вертикальное направление на фиг.4), перпендикулярно продольному направлению в первой генерирующей магнитное поле секции 8 таким образом, что центр оси центрального магнита 16 параллелен центру оси ролика 2 для напыления. Периферический магнит 17 имеет, например, форму беговой дорожки. Иными словами, периферический магнит 17 в форме беговой дорожки имеет форму, неотъемлемо включающую прямую часть, расположенную по обеим сторонам направления ширины относительно центрального магнита 16 и параллельную центральному магниту 16, и полукруговую часть, соединяющую оба конца прямой части. Более того, периферический магнит 17 в форме беговой дорожки расположен таким образом, чтобы окружать центральный магнит 16 на расстоянии от центрального магнита 16 на поверхности (на вертикальной поверхности в примере, проиллюстрированном на фиг.4), проходящей через центр оси центрального магнита 16.

[0040] В центральном магните 16 магнитные полюса расположены таким образом, чтобы быть обращенными в направлении (радиальное направление ролика 2 для напыления), перпендикулярном центру его оси, и таким образом, чтобы полюс N был направлен к наружной части радиального направления, как в примере, показанном на чертежах. В периферическом магните 17 магнитные полюса расположены таким образом, чтобы быть обращенными в направлении, противоположном магнитным полюсам центрального магнита 16, и таким образом, чтобы полюс S был направлен к наружной части радиального направления, как в примере, показанном на чертежах. Иными словами, в первой генерирующей магнитное поле секции 8 как полюс N центрального магнита 16, так и полюс S периферического магнита 17 направлены к наружной части радиального направления, при этом оба магнита 16 и 17 расположены в первой генерирующей магнитное поле секции 8 таким образом, чтобы генерировать магнитное поле, представленное изогнутыми магнитными линиями. Магнитные линии изогнуты следующим образом: идут по направлению к наружной части ролика 2 для напыления от полюса N периферического магнита 17, находящегося внутри каждого ролика 2 для напыления, сгибаются в виде дуги окружности и вновь идут назад к полюсу S периферического магнита 17, установленного в ролике 2 для напыления.

[0041] Что касается такого центрального магнита 16 и периферического магнита 17, их положение относительно друг друга фиксируют с помощью фиксированного элемента 18. Иными словами, центральный магнит 16 и периферический магнит 17 соединены между собой фиксированным элементом 18. Фиксированный элемент 18 сформирован из магнитного вещества и служит в качестве магнитной цепи, способствующей генерированию магнитного поля. Кроме того, фиксированный элемент 18 имеет конфигурацию, не позволяющую изменять генерирующее направление магнитного поля, генерируемого центральным магнитом 16 и периферическим магнитом 17, соединенными между собой таким фиксированным элементом 18, даже при вращении ролика 2 для напыления.

[0042] В состоянии, когда такие первые генерирующие магнитное поле секции 8 встроены в каждый ролик 2 для напыления и технологический газ подается в вакуумную камеру 4 из секции 7 для подачи газа, а переменное напряжение подается на оба ролика 2 и 2 для осаждения, гомогенная магнетронная плазма в виде беговой дорожки в направлении центра оси такого ролика 2 для напыления генерируется поблизости от поверхности ролика, прилежащей к первой генерирующей магнитное поле секции 8 в ролике 2 для напыления, на стороне, к которой прикладывают негативное напряжение. Поскольку прикладываемое напряжение представляет собой переменный ток, полярность изменяется на противоположную по истечении времени, и отрицательное напряжение прикладывается к тому времени к противоположному ролику 2 для напыления, в результате чего магнетронная плазма генерируется таким же образом. В этот период, поскольку переменное напряжение, прикладываемое к обоим роликам 2 и 2 для напыления, представляет собой высокочастотную волну с частотой 1 кГц или более, плазма, вероятно, всегда генерируется в обоих роликах 2 и 2 для напыления по внешнему виду. Таким образом, что касается участка осаждения, сформированного в контрпространстве 3 между парой роликов 2 и 2 для напыления, далее он называется «первым участком 19 для напыления».

[0043] Повышение скорости напыления в плазменном устройстве для CVD только с помощью такого первого участка 19 для напыления не обеспечивает размер достаточного участка для напыления. По этой причине участок для напыления (второй участок 20 для напыления), отличный от первого участка 19 для напыления, создают в плазменном устройстве 1А для CVD согласно данному варианту воплощения, в результате чего обеспечивается достаточная скорость напыления при осуществлении напыления даже на втором участке 20 для напыления.

[0044] Второй участок 20 для напыления представляет собой участок для напыления, создаваемый отдельно от первого участка 19 для напыления в контрпространстве 3 и согласно данному варианту воплощения формируется вдоль участка, более низкого, чем контрпространство 3 на поверхности каждого ролика 2 для напыления. А именно второй участок 20 для напыления формируется второй генерирующей магнитное поле секцией 15.

[0045] Вторую генерирующую магнитное поле секцию 15 устанавливают на ином участке, чем первую генерирующую магнитное поле секцию 8. Конфигурация второй генерирующей магнитное поле секции 15 приблизительно такая же, как и конфигурация первой генерирующей магнитное поле секции 8. Иными словами, вторая генерирующая магнитное поле секция 15 имеет, например, конфигурацию, подобную конфигурации генерирующей магнитное поле секции, используемой в напыляющем катоде плоского магнетрона, как проиллюстрировано на фиг.4.

[0046] Как проиллюстрировано на фиг.2, вторая генерирующая магнитное поле секция 15 согласно настоящему варианту воплощения расположена внутри каждого ролика 2 для напыления и вдоль нижнего участка периферической стенки такого ролика 2 для напыления. Расположения нижнего участка периферической стенки ролика 2 для напыления и второй генерирующей магнитное поле секции 15 примыкают одно к другому. В примере, представленном на чертежах, например, вторая генерирующая магнитное поле секция 15 расположена между пятью и семью часами циферблата часов.

[0047] В состоянии, когда такие вторые генерирующие магнитное поле секции 15 встроены в каждый ролик 2 для напыления и технологический газ подается в вакуумную камеру 4 из секции 7 для подачи газа, а переменное напряжение подается на оба ролика 2 и 2 для напыления, гомогенная магнетронная плазма в виде беговой дорожки в направлении центра оси такого ролика 2 для напыления генерируется поблизости, т.е. на нижней стороне ролика 2 для напыления, поверхности ролика, прилежащей ко второй генерирующей магнитное поле секции 15 в ролике 2 для напыления, на стороне, к которой прикладывают отрицательное напряжение. Поскольку прикладываемое напряжение представляет собой переменный ток, полярность изменяется на противоположную по истечении времени, и отрицательное напряжение прикладывается к тому времени к противоположному ролику 2 для напыления, в результате чего магнетронная плазма генерируется таким же образом. В этот период, как и ранее, поскольку переменное напряжение, прикладываемое к обоим роликам 2 и 2 для напыления, представляет собой высокочастотную волну с частотой 1 кГц или более, плазма, вероятно, всегда генерируется в обоих роликах 2 и 2 для напыления по внешнему виду.

[0048] Как описано выше, в данном варианте воплощения первый участок 19 для напыления формируется в контрпространстве 3 между парой роликов 2 и 2 для напыления первой и второй генерирующими магнитное поле секциями 8 и 15, а второй участок 20 для осаждения формируется на участке отдельно внизу от нижней наружной периферии каждого ролика 2 для напыления на желаемом расстоянии, в результате чего напыление соответственно осуществляют на этих двух участках 19 и 20 для напыления.

[0049] В этот период, поскольку магнитный полюс наружной части в радиальном направлении ролика 2 для напыления в конце (прямая часть) второй генерирующей магнитное поле секции 15 в периферическом магните 17 первой генерирующей магнитное поле секции 8 имеет такой же полюс, как и наружная часть в радиальном направлении в конце (прямая часть) первой генерирующей магнитное поле секции 8 в периферическом магните 17 второй генерирующей магнитное поле секции 15, он способен предотвратить негомогенность плазмы на промежуточном участке между первой генерирующей магнитное поле секцией 8 и второй генерирующей магнитное поле секцией 15, тем самым стабилизируя осаждение покрытия.

[0050] Далее настоящее изобретение будет описано со ссылкой на методики, включающие осаждение на подложку W с использованием плазменного устройства 1А для CVD согласно описанному выше первому варианту воплощения.

[0051] Намотанную в виде рулона подложку W прикрепляют к подающему ролику 10 внутри вакуумной камеры 4. Кроме того, подложка W, поступающая от подающего ролика 10, направляется к наматывающему ролику 11 через пару роликов 2 и 2 для напыления и несколько направляющих роликов 12.

[0052] Затем внутри вакуумной камеры 4 может быть создан вакуум или низкое давление, эквивалентные вакууму, получаемому в результате откачивания вакуумным насосом 5. Кроме того, технологический газ поступает внутрь вакуумной камеры 4 из секции 7 для подачи газа, расположенной на верхней стороне контрпространства 3 между парой роликов 2 и 2 для напыления. В это время внутри вакуумной камеры 4 устанавливают нужное давление в результате баланса между выходом из вакуумного насоса (откачивающей газ секцией) 5 и подачей воздуха из секции 7 для подачи газа.

[0053] Затем технологический газ подают по направлению к контрпространству 3 через небольшое отверстие 13, проделанное в нижней части секции 7 для подачи газа, в результате чего контрпространство 3 заполняется технологическим газом. При таких условиях, когда плазменный источник 6 тока создает переменное напряжение между парой роликов 2 и 2 для напыления, соответственно включающих первую генерирующую магнитное поле секцию 8 и вторую генерирующую магнитное поле секцию 15, магнетронный разряд генерируется первой генерирующей магнитное поле секцией 8 на желаемом участке (первый участок 19 для напыления) вдоль поверхности ролика в контрпространстве 3 между парой роликов 2 и 2 для напыления и соответственно на желаемом участке (второй участок 20 для напыления) вдоль нижней поверхности ролика 2 для напыления.

[0054] Соответственно, технологический газ, подаваемый из секции 7 для подачи газа, ионизируют в двух местах первого участка 19 для напыления и второго участка 20 для напыления с целью его превращения в плазму, многократно осуществляя напыление на обеих областях первого участка 19 для напыления и второго участка 20 для напыления, при этом скорость напыления повышается в результате увеличения числа мест напыления.

[0055] Второй вариант воплощения

Далее плазменное устройство для CVD будет описано согласно второму варианту воплощения.

[0056] Как проиллюстрировано на фиг.5, в плазменном устройстве 1В для CVD согласно второму варианту воплощения вторая генерирующая магнитное поле секция 15 расположена внутри ролика 2 для напыления в виде детали, отличной от первой генерирующей магнитное поле секции 8, как и в первом варианте воплощения, однако несколько вторых генерирующих магнитное поле секций 15 (две вторые генерирующие магнитное поле секции 15 в данном варианте воплощения) установлены в направлении вдоль окружности соответствующего ролика 2 для напыления внутри каждого ролика 2 для напыления, в отличие от плазменного устройства 1А для CVD согласно первому варианту воплощения.

[0057] Иными словами, вторые генерирующие магнитное поле секции 15 расположены, например, в двух местах между четырьмя и пятью часами и между пятью и семью часами на циферблате часов в левом ролике 2 для напыления. Кроме того, вторые генерирующие магнитное поле секции 15 расположены, например, в двух местах между семью и восемью часами и между восемью и десятью часами на циферблате часов в правом ролике 2 для напыления.

[0058] Подобным образом, поскольку несколько вторых генерирующих магнитное поле секций 15 установлены в направлении вдоль окружности соответствующего ролика 2 для напыления в каждом ролике 2 для напыления, диапазон второго участка 20 для напыления в направлении вдоль поверхности ролика 2 для напыления расширяется по мере увеличения числа вторых генерирующих магнитное поле секций 15, в результате чего скорость напыления повышается благодаря расширенной площади такого участка для напыления.

[0059] Третий вариант воплощения

Далее плазменное устройство для CVD будет описано согласно третьему варианту воплощения.

[0060] Как проиллюстрировано на фиг.6 и 7, плазменные устройства 1С и 1D для CVD согласно третьему варианту воплощения схожи с плазменным устройством 1А для CVD согласно первому варианту воплощения и плазменным устройством 1В для CVD согласно второму варианту воплощения тем, что в них имеется первая генерирующая магнитное поле секция 8 и вторая генерирующая магнитное поле секция 15, но отличаются от плазменного устройства 1А для CVD согласно первому варианту воплощения и плазменного устройства 1В для CVD согласно второму варианту воплощения тем, что первая генерирующая магнитное поле секция 8 и вторая генерирующая магнитное поле секция 15 выполнены интегрально. А именно первая и вторая генерирующие магнитное поле секции 8 и 15, сконфигурированные центральным магнитом 16 и периферическим магнитом 17 в форме беговой дорожки, являются смежными в направлении вдоль окружностей роликов 2А и В для напыления. В этот момент часть периферического магнита 17 генерирующих магнитное поле секций 8 и 15, прилежащие друг к другу, используются совместно. Соответственно, магнитное поле генерируется как на участке, где формируется первый участок 19 для напыления, так и на участке, где формируется второй участок 20 для напыления, одной генерирующей магнитное поле секцией (неразрывно соединяющей первую и вторую генерирующие магнитное поле секции между собой). Иными словами, первую генерирующую магнитное поле секцию 8 и вторую генерирующую магнитное поле секцию 15 формируют как одну деталь, непрерывную в направлении окружности каждого ролика 2 для напыления в плазменном устройстве 1С для CVD согласно третьему варианту воплощения.

[0061] В примере, проиллюстрированном на фиг.6, например, центральные магниты 16 соответственно находятся в позиции между тремя часами и пятью часами на циферблате часов вокруг центра оси ролика 2 для напыления, а периферические магниты 17 в форме беговой дорожки соответственно расположены вокруг каждого центрального магнита 16 в том случае, когда генерирующая магнитное поле секция установлена в левом ролике 2 для напыления. В этот период магнит (прямая часть периферического магнита 17), находящийся в позиции четыре часа на циферблате часов, используют вместе с периферическим магнитом 17, окружающим каждый центральный магнит 16. Соответственно, первая и вторая генерирующие магнитное поле секции 8 и 15 эффективно расположены внутри узкого ролика 2 для напыления, при этом магнитное поле генерируется в широком диапазоне (диапазон 120º) в направлении вдоль окружности поблизости от поверхности ролика 2 для напыления.

[0062] Кроме того, в примере, проиллюстрированном на фиг.7, три центральных магнита 16 находятся в позиции между тремя часами, пятью часами и семью часами на циферблате часов вокруг центра оси ролика 2 для напыления, а периферические магниты 17 в форме беговой дорожки соответственно расположены вокруг каждого центрального магнита 16 в том случае, когда генерирующая магнитное поле секция установлена в левом ролике 2 для напыления. В этот период в периферическом магните 17, окружающем каждый центральный магнит 16, магнит (прямая часть периферического магнита 17), находящийся в позиции четыре часа и шесть часов на циферблате часов, используют вместе в смежных двух периферических магнитах 17 в форме беговой дорожки. Соответственно, первая генерирующая магнитное поле секция 8 и две вторые генерирующие магнитное поле секции 15 и 15 эффективно расположены внутри узкого ролика 2 для напыления, при этом магнитное поле генерируется в широком диапазоне (диапазон 160°) в направлении вдоль окружности поблизости от поверхности каждого ролика 2 для напыления.

[0063] При использовании таких генерирующих магнитное поле секций участок, соответствующий контрпространству 3 в генерирующей магнитное поле секции, генерирует плазму на первом участке 19 для напыления, а другие участки, исключая участок, соответствующий контрпространству 3, генерирует плазму на втором участке 20 для напыления. По этой причине скорость напыления еще больше повышается.

[0064] Четвертый вариант воплощения

Далее плазменное устройство для CVD будет описано согласно четвертому варианту воплощения.

[0065] Как проиллюстрировано на фиг.8, плазменное устройство 1Е для CVD согласно четвертому варианту воплощения схоже с плазменными устройствами 1А, 1В, 1С и 1D для CVD согласно первому-третьему вариантам воплощения тем, что первая генерирующая магнитное поле секция 8 установлена внутри ролика 2 для напыления с целью генерирования плазмы на первом участке 19 для напыления. И, напротив, плазменное устройство 1Е согласно четвертому варианту воплощения характеризуется следующими признаками. Плазменное устройство 1Е согласно четвертому варианту воплощения отличается от плазменных устройств 1А, 1В, 1С и 1D для CVD согласно первому-третьему вариантам воплощения тем, что вторая генерирующая магнитное поле секция 15 установлена ниже обоих роликов 2 и 2 для напыления с целью генерирования плазмы на втором участке 20 для напыления.

[0066] А именно, в плазменном устройстве 1Е для CVD согласно четвертому варианту воплощения вторая генерирующая магнитное поле секция 15 имеет такую же конфигурацию, как и секция в первом варианте воплощения, и находится за пределами каждого из роликов 2 и 2 для напыления, будучи расположенной под роликами 2 и 2 для напыления. Между второй генерирующей магнитное поле секцией 15 и самым нижним участком на внешней периферии ролика 2 для напыления формируется промежуток, достаточный для генерирования плазмы в вертикальном направлении. Этот промежуток примерно равен промежутку в горизонтальном направлении между парой роликов 2 и 2 для напыления на первом участке для напыления 19 и является достаточным для генерирования плазмы. Даже если вторая генерирующая магнитное поле секция 15 расположена за пределами ролика 2 для напыления, магнитное поле генерируется на том участке, где формируется второй участок 20 для напыления, вдоль нижней поверхности ролика 2 для напыления.

[0067] Кроме того, вторая генерирующая магнитное поле секция 15 расположенная за пределами ролика 2 для напыления согласно четвертому варианту воплощения, как проиллюстрировано на фиг.8, может быть покрыта чехлом 21 в виде кожуха. В этом случае, в отличие от первого варианта воплощения, центральный магнит 16 и периферический магнит 17 в форме беговой дорожки могут иметь одинаковую высоту в вертикальном направлении.

[0068] Настоящее изобретение не ограничено описанными выше вариантами воплощения, однако форма, конфигурация, материал, комбинация или т.п. каждой детали могут быть несколько изменены без изменения сущности настоящего изобретения.

[0069] Кроме того, пара роликов 2 и 2 для напыления предпочтительно имеет одинаковый диаметр и одинаковую длину по направлению центра оси, но может не иметь одинаковый диаметр и одинаковую длину по направлению центра оси. Более того, пара роликов 2 и 2 для напыления предпочтительно расположена таким образом, что центр каждой оси находится на одной горизонтальной поверхности, однако центр каждой оси может необязательно находиться на одной горизонтальной поверхности.

[0070] Краткое изложение вариантов воплощения

Описанные выше варианты воплощения могут быть кратко описаны следующим образом.

[0071] Плазменное устройство для CVD согласно настоящему изобретению включает вакуумную камеру, пару роликов для напыления, расположенную в вакуумной камере, вокруг которых намотана подложка, которая является мишенью для напыления, и секцию для генерирования магнитного поля, которая генерирует магнитное поле, вызывающее образование плазмы на поверхностях роликов для напыления с целью формирования участка для напыления, на котором напыляют покрытие на подложку, намотанную вокруг роликов для напыления. Кроме того, пара роликов для напыления включает первый ролик для напыления и второй ролик для напыления, отделенный от первого ролика для напыления промежутком таким образом, что центр его оси параллелен центру оси первого ролика для напыления. Генерирующая магнитное поле секция расположена таким образом, что первый участок для напыления формируется в контрпространстве, которое представляет собой пространство между парой роликов для напыления, а второй участок для напыления формируется на участке, смежном с поверхностями роликов для напыления в виде участка для напыления, при этом второй участок находится не в контрпространстве.

[0072] Согласно такой конфигурации напыление осуществляют на подложку на участке для напыления (первый участок для напыления), сформированном в контрпространстве между парой роликов для напыления, и даже на втором участке для напыления, который находится не в контрпространстве и сформирован на участке, смежном с поверхностью ролика для напыления, тем самым повышая скорость напыления. Иными словами, поскольку генерирующая магнитное поле секция расположена таким образом, чтобы формировать первый участок для напыления в контрпространстве между парой роликов для напыления, а второй участок для напыления, который находится вне контрпространства и прилежит к поверхности ролика для напыления, площадь напыления расширяется по сравнению с устройством для осуществления напыления только на первом участке для напыления.

[0073] Кроме того, предпочтительно, чтобы пара роликов для напыления была расположена таким образом, чтобы центры осей были соответственно направлены в горизонтальном направлении и были параллельны одна другой с промежутком в горизонтальном направлении. Более того, предпочтительно, чтобы второй участок для напыления был сформирован на участке, более низком, чем контрпространство на поверхности ролика для напыления.

[0074] При таком расположении предпочтительно, чтобы плазменное устройство для CVD включало секцию для подачи газа, которая подает используемый при напылении технологический газ в вакуумную камеру и выпускающую газ секцию, которая выпускает технологический газ из вакуумной камеры, секция для подачи газа подает технологический газ в вакуумную камеру из верхней части контрпространства, а выпускающая газ секция выпускает технологический газ за пределы вакуумной камеры с нижней стороны ролика для напыления.

[0075] Согласно вышеописанной конфигурации, поскольку технологический газ проходит по направлению к выпускающей газ секции из секции для подачи газа в вакуумной камере, технологический газ наверняка попадает на второй участок для напыления с первого участка для напыления всего лишь в результате подачи технологического газа из верхней части контрпространства через секцию для подачи газа. По этой причине плазма наверняка может быть генерирована на обоих участках.

[0076] Кроме того, в плазменном устройстве для CVD генерирующая магнитное поле секция включает первую генерирующую магнитное поле секцию, которая генерирует плазму на первом участке для напыления, и вторую генерирующую магнитное поле секцию, которая генерирует плазму на втором участке для напыления, при этом первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция могут быть соответственно установлены внутри ролика для напыления.

[0077] Согласно такой конфигурации все компактное устройство может быть выполнено в результате установки первой генерирующей магнитное поле секции и второй генерирующей магнитное поле секции внутри ролика для напыления. Кроме того, может быть легко сформирован участок для напыления поблизости (участок, смежный с поверхностью) от поверхности ролика для напыления.

[0078] Кроме того, генерирующая магнитное поле секция включает первую генерирующую магнитное поле секцию, которая генерирует плазму на первом участке для напыления, и вторую генерирующую магнитное поле секцию, которая генерирует плазму на втором участке для напыления, при этом первая генерирующая магнитное поле секция установлена внутри ролика для напыления, а вторая генерирующая магнитное поле секция может находиться за пределами ролика для напыления и быть установлена с нижней стороны ролика для напыления.

[0079] Согласно такой конфигурации в качестве второй генерирующей магнитное поле секции может быть использована обычно используемая пластинчатая генерирующая магнитное поле секция (так называемая «генерирующая магнитное поле секция» и т.п., используемая для распыляющего катода плоского магнетрона).

[0080] В плазменном устройстве для CVD, где первая и вторая генерирующие магнитное поле секции непрерывно расположены внутри ролика для напыления, как первая, так и вторая генерирующая магнитное поле секция включает несколько магнитов для генерирования магнитного поля, конвергирующего плазму, расположенных с промежутками в направлении окружности ролика для напыления, при этом магнитный полюс наружной части в радиальном направлении окружности ролика для напыления в магните, расположенном на боковом конце первой генерирующей магнитное поле секции, обращенном ко второй генерирующей магнитное поле секции, может быть таким же, как и полюс наружной части в радиальном направлении ролика для напыления в магните, расположенном на боковом конце второй генерирующей магнитное поле секции, обращенном к первой генерирующей магнитное поле секции.

[0081] Согласно такой конфигурации предотвращается негомогенность плазмы на промежуточном участке между первой генерирующей магнитное поле секцией и второй генерирующей магнитное поле секцией, при этом напыление покрытия становится стабильным.

[0082] Кроме того, когда первая и вторая генерирующие магнитное поле секции одновременно расположены внутри ролика для напыления, первая и вторая генерирующие магнитное поле секции непрерывно расположены в направлении окружности ролика для напыления, и каждая генерирующая магнитное поле секция включает несколько магнитов для генерирования магнитного поля, конвергирующего плазму, при этом первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция могут делить между собой часть магнита.

[0083] Согласно такой конфигурации может быть уменьшено пространство для установки первой генерирующей магнитное поле секции и второй генерирующей магнитное поле секции, что позволяет получить компактное плазменное устройство для CVD. Промышленная применимость

[0084] Как описано выше, плазменное устройство для CVD согласно настоящему изобретению может быть использовано для непрерывного напыления покрытия методом CVD на подложку, такую как пластмассовый лист, и подходит для достижения высокой производительности при напылении покрытия методом CVD.

1. Плазменное устройство для химического осаждения из паровой фазы (CVD) на подложку в виде пленки или листа, содержащее вакуумную камеру, пару роликов для напыления, расположенных в вакуумной камере, вокруг которых намотана подложка, которая является мишенью для осаждения, и генерирующую магнитное поле секцию, которая генерирует генерирующее плазму магнитное поле на поверхности роликов для напыления, формируя участок для осаждения, на котором напыляют покрытие на упомянутую подложку, при этом пара роликов для напыления включает первый ролик для напыления и второй ролик для напыления, отделенный от первого ролика для напыления промежутком таким образом, что оси упомянутых роликов параллельны, и генерирующая магнитное поле секция расположена таким образом, что первый участок для напыления сформирован в контрпространстве, которое представляет собой пространство между парой роликов для напыления, а второй участок для напыления сформирован на участке, смежном с поверхностью роликов для напыления, при этом данный участок находится вне контрпространства.

2. Устройство по п.1, в котором пара роликов для напыления расположена таким образом, что их оси параллельны и расположены с промежутком в горизонтальном направлении, при этом второй участок для напыления сформирован вдоль участка, расположенного ниже, чем контрпространство на поверхности ролика для напыления.

3. Устройстве по п.2, которое содержит секцию для подачи газа, обеспечивающую подачу в вакуумную камеру технологического газа, используемого при напылении, и секцию, выпускающую газ, которая обеспечивает удаление технологического газа из вакуумной камеры, при этом секция для подачи газа обеспечивает подачу технологического газа в вакуумную камеру из верхней части контрпространства, а выпускающая газ секция обеспечивает удаление технологического газа за пределы вакуумной камеры с нижней стороны каждого ролика для напыления.

4. Устройство по п. 1, в котором генерирующая магнитное поле секция включает первую генерирующую магнитное поле секцию, которая генерирует плазму на первом участке для напыления, и вторую генерирующую магнитное поле секцию, которая генерирует плазму на втором участке для напыления, при этом первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция установлены внутри ролика для напыления.

5. Устройство по п.1, в котором генерирующая магнитное поле секция включает первую генерирующую магнитное поле секцию, которая генерирует плазму на первом участке для напыления, и вторую генерирующую магнитное поле секцию, которая генерирует плазму на втором участке для напыления, при этом первая генерирующая магнитное поле секция установлена внутри ролика для напыления, а вторая генерирующая магнитное поле секция находится за пределами ролика для напыления и установлена с нижней стороны ролика для напыления.

6. Устройство по п. 4, в котором первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция имеют несколько магнитов для генерирования магнитного поля, которые конвергируют плазму, и расположены с промежутками по окружности ролика для напыления, при этом магнитный полюс наружной части в радиальном направлении окружности ролика для напыления в магните, расположенном на боковом конце первой генерирующей магнитное поле секции, обращенном ко второй генерирующей магнитное поле секции, такой же, как и полюс наружной части в радиальном направлении ролика для напыления в магните, расположенном на боковом конце второй генерирующей магнитное поле секции, обращенном к первой генерирующей магнитное поле секции.

7. Устройство по п.4, в котором первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция непрерывно расположены по окружности ролика для напыления, и каждая генерирующая магнитное поле секция имеет несколько магнитов для генерирования магнитного поля, которое конвергирует плазму, при этом первая генерирующая магнитное поле секция и вторая генерирующая магнитное поле секция совместно содержат часть магнита.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов и стабилизации горения факела (подсветки), для воспламенения мелкодисперсного твердого топлива с предварительной электротермохимической подготовкой (ЭТХП).

Изобретение относится к технике радиосвязи, в частности к способам создания плазменных антенн. Способ создания импульсной плазменной антенны включает облицовку внутренней поверхности выемки в заряде взрывчатого вещества, инициирование заряда взрывчатого вещества со стороны, противоположной выемке, и метание материала облицовки в окружающее пространство со скоростью, достаточной для ионизации ионизируемого материала при их движении в атмосфере, с формированием плазменной антенны.

Изобретение относится к плазменной технике и может быть использовано при стерилизации товаров и/или дезинфекции поверхностей. Устройство генерирования плазмы содержит первый, запитанный, электрод и вторую конструкцию электрода, расположенную напротив первого электрода.

Изобретение относится к плазменной технике и к плазменным технологиям и может использоваться, в частности, в качестве электроракетного двигателя. Катод (1) и два электрически изолированных анода (2, 3) образуют ускорительный канал эрозионного импульсного плазменного ускорителя (ЭИПУ).

Изобретение относится к области преобразования электрической энергии в тепловую посредством дугового разряда в генераторе низкотемпературной плазмы (плазмотроне) и может быть использовано в энергетике для розжига и подсветки пылеугольного факела в топочных устройствах, в металлургической и химической промышленности, для получения ультрадисперсной сажи, которая является сырьем для получения наноструктурированного технического углерода.

Ускоритель плазмы предназначен для получения тяги при перемещении космических объектов и в технологии для получения композитных порошков, напыления и обработки материалов.

Предложен анодный узел вакуумно-дугового источника катодной плазмы. Изобретение может быть использовано в основном в прямолинейных источниках вакуумно-дуговой катодной плазмы с фильтрацией от макрочастиц в комплекте с различными вакуумно-дуговыми испарителями и с плазмоводами для транспортировки плазмы.

Изобретение относится к области плазменных технологий и может быть использовано при разработке и создании источников высокоинтенсивных потоков частиц для научных и технологических применений.

Изобретение относится к электротехнике, а именно к области электрического нагрева газов дуговым разрядом, и может быть использовано в плазмотронах при проведении различных технологических процессов, в частности для подогрева расплава металла в промежуточном ковше МНЛЗ в металлургической промышленности, а также научных исследований высокотемпературных процессов.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами.

Изобретение относится к устройству и способу для нанесения атомного слоя на поверхность подложки. Упомянутое устройство содержит инжекторную головку для газообразного прекурсора с выступающими частями, содержащую систему подачи газообразного прекурсора, причем упомянутая инжекторная головка выполнена с возможностью инжекции газообразного прекурсора из системы подачи газообразного прекурсора в пространство нанесения для контакта с поверхностью подложки.

Изобретение относится к области нанесения на гибкую подложку органических материалов, в частности к испарителям для испарения органических материалов, например меламина.

Изобретение относится к устройству для осаждения атомного слоя и к способу загрузки этого устройства. Устройство содержит реакторы ALD, каждый из которых выполнен с возможностью приема партии подложек для ALD-обработки и включает реакционную камеру с верхней загрузкой, систему крышек, подъемное устройство для подъема системы крышек для загрузки реакционной камеры, и загрузочный робот.

Изобретение относится к области высоковольтной техники, к силовым полупроводниковым устройствам и, в частности, к способу и устройству для одностадийного двустороннего нанесения слоя покрытия из аморфного гидрогенизированного углерода на поверхность кремниевой пластины, а также к держателю подложки для поддержки кремниевой пластины.

Изобретение относится к способу и устройству нанесения тонкопленочных покрытий на подложки и может быть использовано для нанесений тонкопленочных покрытий с заданными оптическими, электрическими и другими характеристиками.

Изобретение относится к технологии вакуумной обработки подложек большой площади путем осаждения пленок из паровой или газовой фазы, используемых, в частности, при изготовлении тонкопленочных солнечных элементов.

Изобретение относится к устройству для плазменного химического парофазного осаждения пленки на поверхности полосообразной подложки и может найти применение при изготовлении дисплеев.

Реактор // 2405063
Изобретение относится к реактору для послойного атомного осаждения. .

Изобретение относится к источнику твердого или жидкого материала для реакторов для осаждения из газовой фазы, устройству для установки источника в реакторе для осаждения из газовой фазы и способу установки источника в реакторе.

Изобретение относится к устройству плазмохимического осаждения из паровой фазы намоточного типа для образования слоя покрытия на пленке. .

Группа изобретений относится к способу обработки поверхности подложки (28) при помощи коронного электрического разряда, к устройству для его осуществления и подложке, обработанной способом по изобретению. Способ обработки подложки (28) при помощи коронного электрического разряда поверхности, при котором во время разряда в область разряда, определенную рабочим зазором, образованным между коронирующим электродом и подложкой (28), распыляют аэрозоли (5). Причем распыление аэрозолей (5) осуществляют в значительной степени против направления силы тяжести. Устройство для осуществления способа включает по меньшей мере два коронирующих электрода, один из которых образует электрод подложки с поверхностью для прилегания подложки (28), а другой - противоположный, оно также имеет также распылитель для распыления аэрозолей (5). Подложка обработана способом по изобретению и снабжена по меньшей мере одним покрытием. Технический результат, достигаемый при использовании способа и устройства по изобретению, заключается в том, чтобы улучшить качество покрытия или адгезии поверхности подложки. 3 н. и 13 з.п. ф-лы, 3 ил.
Наверх