Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией

Изобретение относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы. Достигаемый технический результат - повышение помехоустойчивости и достоверности обнаружения широкополосных сигналов с фазовой манипуляцией. Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией содержит преселектор 1, преобразователь 2 частоты, первый 3 и второй 17 усилители промежуточной частоты, полосовые фильтры 4.i и 5.i, нелинейный элемент 6.i, узкополосный фильтр 7.i, детектор 8.i огибающей, ключи 9.i (i=1, 2, … n), решающий блок 10, сумматор 11, блок 12 регистрации, первый 13 и второй 14 смесители, первый 15 и второй 16 гетеродины, коррелятор 18, пороговый блок 19, ключ 20, перемножитель 21, первый 22 и второй 24 узкополосные фильтры, удвоитель 23 фазы, фазовый детектор 25 и инверсный усилитель 26. 2 ил.

 

Предлагаемое устройство относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы.

Известны радиоприемные устройства для обнаружения сигналов на фоне шумов и помех (авт. свид. СССР №№211.599, 309.326, 540.230, 1.718.695, 1.758.883, 1.785.410, 1.799.226, 1.799.227, 1.840.539, 1.840.708; патенты РФ №№2.001.533, 2.007.046, 2.181.528, 2.196.395, 2.379.837, 2.479.120; патенты США №№3.702.475, 3.815.028, 3.510.313, 7.742.914; патент EP №1.947.642; Сабинов В.А. Цифровое устройство для обнаружения и грубого измерения частоты сигнала. - Труды МАИ, 1970, вып. 201 и другие).

Из известных устройств наиболее близким к предлагаемому является «Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией» (патент РФ №2.479.120, H03K 7/00, 2011), которое и выбрано в качестве прототипа.

Известное устройство обеспечивает обнаружение широкополосных сигналов с фазовой манипуляцией на фоне шумов и узкополосных помех. Оно построено по супергетеродинной схеме, в которой существуют дополнительные (зеркальные и комбинационные) каналы приема. Подавление ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам, основано на использовании двух гетеродинов 15 и 16, частоты fГ1 и fГ2 которых разнесены на удвоенное значение промежуточной частоты

fГ2-fГ1=2fпр

и выбраны симметричными относительно частоты fc основного канала приема, (фиг.2):

fС-fГ1=fГ2-fС=fпр.

Это обстоятельство приводит к удвоению числа дополнительных каналов приема, но создает благоприятные условия для их подавления за счет корреляционной обработки канальных напряжений.

Однако под воздействием различных дестабилизирующих факторов, в том числе и эффекта Доплера, когда источник излучения ФМн-сигналов и радиоприемное устройство взаимно перемещаются, указанная симметричность нарушается и снижается помехоустойчивость и достоверность обнаружения широкополосных сигналов с фазовой манипуляцией.

Технической задачей изобретения является повышение помехоустойчивости и достоверности обнаружения широкополосных сигналов с фазовой манипуляцией путем обеспечения симметричности частот fГ1 и fГ2 первого и второго гетеродинов относительно частоты fС основного канала приема

fС-fГ1=fГ2-fС=fпр..

Поставленная задача решается тем, что радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией, содержащее, в соответствии с ближайшим аналогом, последовательно включенные преселектор и преобразователь частоты, n каналов нелинейной обработки, каждый из которых состоит из последовательно включенных нелинейного элемента, узкополосного фильтра и ключа, а также двух полосовых фильтров, выходы которых подключены к входам нелинейного элемента, при этом выход узкополосного фильтра через детектор огибающей соединен с одной из входов решающего блока, соответствующий выход которого подключен к управляющему входу ключа, выходы ключей подключены к входам сумматора, выход которого соединен с входом блока регистрации, преобразователь частоты выполнен в виде последовательно включенных первого гетеродина, первого смесителя, второй вход которого соединен с выходом преселектора, первого усилителя промежуточной частоты, коррелятора, порогового блока и ключа, второй вход которого соединен с выходом первого усилителя промежуточной частоты, а выход подключен к входам полосовых фильтров, последовательно включенных второго гетеродина, второго смесителя, второй вход которого соединен с выходом преселектора и второго усилителя промежуточной частоты, выход которого соединен с вторым входом коррелятора, при этом частоты fГ1 и fГ2 первого и второго гетеродинов разнесены на удвоенное значение промежуточной частоты

fГ2-fГ1=2fпр

и выбраны симметричными относительно несущей частоты fС основного канала приема

fС-fГ1=fГ2-fС=fпр.,

отличается от ближайшего аналога тем, что оно снабжено перемножителем, двумя узкополосными фильтрами, удвоителем фазы, фазовым детектором и инверсным усилителем, причем к выходу первого гетеродина последовательно подключены перемножитель, второй вход которого соединен с выходом второго гетеродина, первый узкополосный фильтр, фазовый детектор и инверсный усилитель, два выхода которого соединены с выходами первого и второго гетеродинов соответственно, к выходу ключа преобразователя частоты последовательно подключены удвоитель фазы и второй узкополосный фильтр, выход которого соединен с вторым входом фазового детектора.

Структурная схема предлагаемого устройства представлена на фиг.1. Частотная диаграмма, поясняющая принцип образования дополнительных каналов приема, изображена на фиг.2.

Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией содержит последовательно включенные преселектор 1, преобразователь 2 частоты и n каналов нелинейной обработки, каждый из которых состоит из последовательно соединенных нелинейного элемента 6.i, узкополосного фильтра 7.i и ключа 9.i, а также двух полосовых фильтров 4.i и 5.i, выходы которых подключены к входам нелинейного элемента 6.i, причем выход узкополосного фильтра 7.i через детектор 8.i огибающей соединен с одним из входов решающего блока 10, соответствующий выход которого подключен к управляющему входу ключа 9.i, выходы ключей 9.i подключены к выходам сумматора 11, выход которого соединен с входом блока 12 регистрации (i=1, 2, …, n).

Преобразователь 2 частоты выполнен в виде последовательно включенных первого гетеродина 15, первого смесителя 13, второй вход которого соединен с выходом преселектора 1, первого усилителя 3 промежуточной частоты, коррелятора 18, порогового блока 19 и ключа 20, второй вход которого соединен с выходом первого усилителя 3 промежуточной частоты, а выход подключен к полосовым фильтрам 4.i и 5.i, последовательно включенных второго гетеродина 16, второго смесителя 14, второй вход которого соединен со выходом преселектора 1, и второго усилителя 17 промежуточной частоты, выход которого соединен с вторым входом коррелятора 18, последовательно подключенных к выходу первого гетеродина 15 перемножителя 21, второй вход которого соединен с выходом второго гетеродина 16, первого узкополосного фильтра 22, фазового детектора 25 и инверсного усилителя 26, два выхода которого соединен с входами первого 15 и второго 16 гетеродинов соответственно, последовательно подключенных к выходу ключа 20 преобразователя 2 частоты удвоителя 23 фазы и второго узкополосного фильтра 24, выход которого соединен с вторым входом фазового детектора 25.

Устройство работает следующим образом. Если широкополосный ФМн-сигнал принимается по основному каналу на частоте fC

uC(t)=UCcos[2πfCt+φk(t)+φС], 0≤t≤TC,

где φk(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции,

то он с выхода преселектора 1 поступает на первый вход первого 13 и второго 14 смесителей, на второй вход которых подается напряжение первого 15 и второго 16 гетеродинов соответственно

uГ1(t)=UГ1cos(2πfГ1t+φГ1),

uГ2(t)=UГ1cos(2πfГ2t+φГ2).

При этом частоты fГ1 и fГ2 разнесены на удвоенное значение промежуточной частоты (фиг.2)

fГ2-fГ1=2fпр

и выбраны симметричными относительно частоты fС основного канала приема

fС-fГ1=fГ2-fС=fпр..

Это обстоятельство приводит к удвоению числа дополнительных каналов приема, но создает благоприятные условия для их подавления за счет корреляционной обработки канальных напряжений.

На выходе смесителей 13 и 14 образуются напряжения комбинационных частот. Усилителями 3 и 7 промежуточной частоты выделяются напряжения промежуточной частоты:

uпр1(t)=Uпр1cos[2πfпрt+φk(t)+φпр1],

uпр2(t)=Uпр2cos[2πfпрt-φk(t)+φпр2], 0≤t≤TС

где U п р 1 = 1 2 U С U Г 1 ;

U п р 2 = 1 2 U С U Г 2 ;

fпр=fС-fГ1=fГ2-fС - промежуточная частота;

φпр1СГ1; φпр2Г2С,

которые поступают на два входа коррелятора 18, на выходе которого образуется напряжение, пропорциональное корреляционной функции R(τ).

Следует отметить, что корреляционная функция R(τ) ФМн-сигналов обладает замечательным свойством: она имеет значительный главный лепесток и сравнительно низкий уровень боковых лепестков. Это свойство используется для подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам. Напряжение, пропорциональное корреляционной функции R(τ), сравнивается с пороговым уровнем Uпор1 в пороговом блоке 19. Пороговое напряжение Uпор1 превышается только при максимальном значении корреляционной функции R(τ). Так как корреляционные напряжения uпр1(t) и uпр2(t) образуются одним и тем же ФМн-сигналом uС(t), принимаемым по двум каналам на одной и той же частоте fС, то между указанными канальными напряжениями существует сильная корреляционная связь. Корреляционная функция R(τ) имеет ярко выраженный главный лепесток, который превышает пороговый уровень Uпор1 в пороговом блоке 19. При превышении порогового уровня Uпор1 в пороговом блоке 19 формируется постоянное напряжение, которое поступает на управляющий вход ключа 20, открывая его.

В исходном состоянии ключ 20 всегда закрыт. При этом канальное напряжение промежуточной частоты uпр1(t) с выхода первого усилителя 3 промежуточной частоты через открытый ключ 20 поступает на n каналов нелинейной обработки. В каждом i-м канале параллельно включены два полосовых фильтра 4.i и 5.i, имеющие полосу пропускания ΔF. Их центральные частоты расположены симметрично относительно центральной частоты f J Δ f Δ F полосы обработки и равны

[ f о + ( i 1 2 ) Δ f ] и [ f о + ( i 1 2 ) Δ f ] ,

где выходные сигналы полосовых фильтров перемножителя в нелинейном элементе 6.i и фильтруются в узкополосном фильтре 7i, частота настройки которого равна 2fo.

Выходные сигналы узкополосных фильтров 7i суммируются в сумматоре 11, в результате чего образуется вторая гармоника сигнала, частота несущей которого равна fo. Вторая гармоника сигнала фиксируется блоком 12 регистрации.

Канал, в который попадает мощная узкополосная помеха (результат перемножения двух узкополосных помех), отключается решающим блоком 10 от сумматора 11. В решающем блоке 10 наличие помехи определяется по значительному превышению уровня сигнала в канале среднего по каналам уровня.

С выходов узкополосных фильтров 7.i сигналы через ключи 9.i (i=1, 2, …, n) подаются на входы сумматора 11, с выхода которого сумма сигналов поступает в блок 12 регистрации, где ее уровень сравнивается с порогом Uпор1. При превышении порога Uпор2 фиксируется обнаружение сигнала.

С выходов узкополосных фильтров 7.i сигналы подаются также на детекторы 8.i огибающей, в которых выделяются огибающие сигналов, подаваемых на входы решающего блока 10. В решающем блоке 10 сравниваются уровни сигналов всех n каналов и для каналов, в которых уровни сигналов значительно превышают средний по каналам уровень, вырабатывается управляющий сигнал, подаваемый на ключи 9.i (i=1, 2, …, n) этих каналов, вследствие чего ключи размыкаются и соответствующие каналы отключаются от сумматора 11.

Количественный выигрыш в помехоустойчивости существенно зависит от уровня и количества помеховых составляющих.

Для обеспечения симметричности

fС-fГ1=fГ2-fС=fпр.

используется система фазовой автоподстройки частоты (ФАПЧ), состоящая из перемножителя 21, первого узкополосного фильтра 22, удвоителя 23 фазы, второго узкополосного фильтра 24, фазового детектора 25 и инверсного усилителя 26.

Напряжения uГ1(t) и uГ2(t) с выходов первого 15 и второго 16 гетеродинов поступают на два входа первого перемножителя 21, на выходе которого образуется гармоническое напряжение

u1(t)=U1cos[2π(fГ2-fГ1Г]=U1cos(4πfпрt+2φпр), 0≤t≤TС,

где U 1 = 1 2 U Г 1 U Г 2 ;

fГ2-fГ1=2fпр;

φUГ2Г1=2φпp,

которое выделяется первым узкополосным фильтром 22 и поступает на первый вход фазового детектора 25. Напряжение uпр1(t) с выхода первого усилителя 3 промежуточной частоты через открытый ключ 20 подается на вход удвоителя 23 фазы, на выходе которого образуется гармоническое напряжение

u2(t)=U2cos[4πfпрt+2φk(t)+2φпр1]=U2cos(4πfпрt+φпр1), 0≤t≤TС,

где U 2 = 1 2 2 U п р 1 ;

л(t)={0,2π},

которое выделяется вторым узкополосным фильтром 24 и поступает на второй вход фазового детектора 25.

Если нарушается указанная симметрия, то на выходе фазового детектора 25 формируется управляющее напряжение. Причем амплитуда и полярность управляющего напряжения зависят от степени и направления отклонения несущей частоты fС от частот fГ1 и fГ2 первого 15 и второго 16 гетеродинов. Указанное напряжение через инверсный усилитель 26 воздействует на управляющие входы первого 15 и второго 16 гетеродинов так, чтобы выполнялось условие симметрии

fС-fГ1=fГ2-fС=fпр.

Описанная выше работа устройства соответствует случаю приема полезных ФМн-сигналов по основному каналу на частоте fС (фиг.2).

Если сложный сигнал (помеха) принимается по первому зеркальному каналу на частоте fЗ1, то в первом 13 и втором 14 смесителях он преобразуется в напряжения следующих частот:

f11=fГ1-fЗ1=fпр; f12=fГ2-fЗ1-fпр.

Однако только напряжение с частотой f11 попадает в полосу пропускания первого усилителя 3 промежуточной частоты. Выходной сигнал коррелятора 18 равен нулю, ключ 20 не открывается и ложный сигнал (помеха), принимаемый по первому зеркальному каналу на частоте fЗ1, подавляется.

Если ложный сигнал (помеха) принимается по второму зеркальному каналу на частоте fЗ2, то в первом 13 и втором 14 смесителях он преобразуется в напряжения следующих частот:

f21=fЗ2-fГ1=3fпр, f22=fЗ2-fГ2=fпр.

Однако только напряжение с частотой f22 попадают в полосу пропускания второго усилителя 17 промежуточной частоты, выходной сигнал коррелятора 18 также равен нулю, ключ 20 не открывается и ложный сигнал (помеха), принимаемый по второму зеркальному каналу на частоте fЗ2, подавляется.

По аналогичной причине подавляется и ложный сигнал (помеха), принимаемый по первому комбинационному каналу на частоте fк1, по второму комбинационному каналу на частоте fк2 или по любому другому дополнительному каналу.

Если ложные сигналы (помехи) одновременно принимаются по первому fЗ1 и второму fЗ2 зеркальным каналам, то в первом 13 и втором 14 смесителях они преобразуются в напряжения следующих частот:

f11=fГ1-fЗ1=fпр; f12=fГ2-fЗ1-fпр.

f21=fЗ2-fГ1=3fпр, f22=fЗ2-fГ2=fпр.

При этом напряжение с частотами f11 и f22 попадают в полосу пропускания первого 3 и второго 17 усилителей промежуточной частоты, а затем подаются на два входа коррелятора 18. Но ключ 20 в этом случае не открывается. Это объясняется тем, что разные ложные сигналы (помехи) принимаются на разных частотах fЗ1 и fЗ2, поэтому между канальными напряжениями с частотами f11 и f22 существует слабая корреляционная связь.

Кроме того, следует отметить, что корреляционная функция помех не имеет ярко выраженного главного лепестка, как это имеет место у сложных ФМн-сигналов. Выходное напряжение коррелятора 18 в этом случае не превышает первого уровня Uпор1 в пороговом блоке 19, ключ 20 не открывается и ложные сигналы (помехи), принимаемые одновременно по первому fЗ1 и второму fЗ2 зеркальным каналам, подавляются.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые одновременно по первому комбинационному каналу на частоте f11 и второму комбинационному каналу на частоте f22, или по другим любым дополнительным каналам.

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает повышение помехоустойчивости и достоверности обнаружения широкополосных сигналов с фазовой манипуляцией. Это достигается путем обеспечения симметричности частот fГ1 и fГ2 первого и второго гетеродинов относительно частоты fC основного канала приема fС-fГ1=fГ2-fС=fпp. за счет использования системы фазовой автоподстройки частоты.

Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией, содержащее последовательно включенные преселектор и преобразователь частоты, n каналов нелинейной обработки, каждый и которых состоит из последовательно включенных нелинейного элемента, узкополосного фильтра и ключа, а также двух полосовых фильтров, выходы которых подключены к входам нелинейного элемента, при этом выход узкополосного фильтра через детектор огибающей соединен с одним из входов решающего блока, соответствующий выход которого подключен к управляющему входу ключа, выходы ключей подключены к входам сумматора, выход которого соединен с входом блока регистрации, преобразователь частоты выполнен в виде последовательно включенных первого гетеродина, первого смесителя, второй вход которого соединен с выходом преселектора, первого усилителя промежуточной частоты, коррелятора, порогового блока и ключа, второй вход которого соединен с выходом первого усилителя промежуточной частоты, а выход подключен к входам полосовых фильтров, последовательно включенных второго гетеродина, второго смесителя, второй вход которого соединен с выходом преселектора, и второго усилителя промежуточной частоты, выход которого соединен с вторым входом коррелятора, при этом частоты fГ1 и fГ2 первого и второго гетеродинов разнесены на удвоенное значение промежуточной частоты
fГ2-fГ1=2fпр
и выбраны симметричными относительно несущей частоты fС основного канала приема
fС-fГ1=fГ2-fС=fпр.,
отличается тем, что оно снабжено перемножителем, двумя узкополосными фильтрами, удвоителем фазы, фазовым детектором и инверсным усилителем, причем к выходу первого гетеродина последовательно подключены перемножитель, второй вход которого соединен с выходом второго гетеродина, первый узкополосный фильтр, фазовый детектор и инверсный усилитель, два выхода которого соединены с входами первого и второго гетеродинов соответственно, к выходу ключа преобразователя частоты последовательно подключены удвоитель фазы и второй узкополосный фильтр, выход которого соединен с вторым входом фазового детектора.



 

Похожие патенты:

Изобретение относится к области радиотехники, в частности к радиоприемным устройствам прямого преобразования, и может быть использовано в составе программно-определяемых радиоприемных устройств (Software Defined Radio).Технический результат заключается в увеличении степени подавления помех по зеркальному каналу при одновременном упрощении устройства.

Изобретение относится к области радиотехники и предназначено для цифровых каналов радиосвязи, подверженных воздействию селективных замираний и аддитивных помех как узкополосных (сосредоточенных по частоте), так и импульсных.

Изобретение относится к радиотехнике, в частности к радиоприемным устройствам, применяемым на линиях многоканальной цифровой связи и в системах множественного доступа, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Изобретение относится к области радиотехники и может быть использовано при реализации систем связи и радионавигации с фазоманипулированными сигналами. Достигаемый технический результат - восстановление сигнала несущей частоты из принятого фазоманипулированного сигнала, искаженного шумами с уменьшением дисперсии фазовых шумов в шумовой полосе ФАПЧ.

Изобретение относится к области приема двоичных сигналов, передаваемых методом относительной модуляции (ОФМ), и может быть использовано для построения аппаратуры передачи дискретной информации.

Изобретение относится к радиотехнике, а именно к способам обнаружения сигналов. .

Изобретение относится к системе цифровой широковещательной передачи видео (DVB) и, в частности, к устройству и способу для передачи и приема преамбул для компонентов кадра в DVB-системе.

Изобретение относится к способам обнаружения радиосигналов (PC). .

Изобретение относится к области оптических способов измерения физических величин с использованием волоконных интерферометров. .

Изобретение относится к технике связи и может быть использовано при передаче дискретной информации аналоговыми сигналами по каналам, в которых применяется амплитудная модуляция с подавленной несущей, а данные представлены в виде взаимно ортогональных фазоманипулированных синусоидальных сигналов или наборов таких сигналов.

Изобретение относится к технике радиосвязи и может быть использовано в системах передачи данных для оценки качества канала связи. Способ оценивания отношения сигнал/шум (ОСШ) при использовании при передаче данных сигналов с фазовой модуляцией основывается на восстановлении плотности распределения вероятности случайной величины, параметром которой является ОСШ, и оценивании этого параметра по статистике амплитуд сигнала, соответствующих длительности элементарной посылки, которые доступны для измерения при приеме полезного информационного сигнала. Способ обеспечивает технический результат - получение оценки отношения сигнал/шум при непрерывной передаче полезной информации, и не требует введения избыточности или применения тестовых сигналов. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и цифровой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное улучшение основных параметров квазикогерентного модулятора, а именно: расширение полос захвата и удержание синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение точности и стабильности установа дискретов манипулируемой фазы при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства. Устройство содержит подстраиваемый генератор 1, генератор эталонного колебания 2, первый и второй фазовые детекторы 3 и 4, фазовращатель 5 на π/2, первый и второй компараторы напряжений 6 и 7, формирователь импульсов 8, линию 9 временной задержки, логическую схему «ИСКЛЮЧАЮЩЕЕ ИЛИ» 10, реверсивный счетчик 11, цифро-аналоговый преобразователь (ЦАГТ) 12, первый сумматор 13, коммутатор 14 полярности сигнала, первый перемножитель сигналов 15, интегратор 16, первый масштабирующий делитель напряжения 17, второй сумматор 18 и блок 19 установки и стабилизации петлевого усиления (БУСПУ), содержащий первый и второй блоки возведения текущего значения напряжения во вторую степень 20 и 21, третий сумматор 22, блок возведения текущего значения напряжения в 1 2 степень 23 и второй делитель напряжений 24, а также содержит блок 25 управления манипуляцией (БУМ), включающий в себя второй, третий, четвертый и пятый перемножители сигналов 26, 27, 28 и 29. 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано для формирования помехоустойчивых радиосигналов. Технический результат - повышение помехоустойчивости радиосигналов в системах связи за счет увеличения ширины спектра (занимаемой ими полосы частот). В способе формирования помехоустойчивых сигналов предварительно задают числовую бинарную псевдослучайную последовательность, в которой значения нулей и единиц модулируют предварительно сформированными парами радиоимпульсов, представляющих произведение противоположных биортогональных вейвлет-функций и фрагментов сигналов с линейной частотной модуляцией. 10 ил.

Изобретение относится к радиотехнике и может быть использовано в системах телекоммуникации и вой передачи данных в составе радиотехнических комплексов. Технический результат - комплексное (одновременное) улучшение основных параметров квазикогерентного демодулятора, а именно: расширение полос захвата и удержания синхронного режима работы, сокращение времени вхождения в синхронный режим работы, повышение помехоустойчивости при наличии дестабилизирующих факторов, воздействующих на коэффициент петлевого усиления устройства. Устройство содержит подстраиваемый генератор 1, фазовращатель 2 на π/2, первый и второй фазовые детекторы 3 и 4, коммутатор 5 полярности сигнала, первый и второй компараторы напряжений 6 и 7, формирователь импульсов 8, первую линию 9 временной задержки, логическую схему «ИСКЛЮЧАЮЩЕЕ ИЛИ» 10, реверсивный счетчик 11, цифроаналоговый преобразователь (ЦАП) 12, первый сумматор 13, первый перемножитель сигналов 14, второй сумматор 15, интегратор 16, первый масштабирующий делитель напряжения 17, блок 18 установки и стабилизации петлевого усиления (БУСПУ) и блок 19 управления фазой (БУФ). Блок БУСПУ содержит первый и второй блоки возведения текущего значения напряжения во вторую степень 20 и 21, третий сумматор 22, блок возведения текущего значения напряжения в 1 2 степень 23 и второй делитель напряжений 24. Блок БУФ включает в себя второй, третий, четвертый и пятый перемножители сигналов 25, 27, 28, 29, а также вторую линию 26 временной задержки. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и может использоваться в радиоприемных устройствах систем радиосвязи. Достигаемый технический результат - повышение помехоустойчивости приема шумоподобных фазоманипулированных сигналов путем подавления ложных сигналов и помех. Способ приема шумоподобных фазоманипулированных сигналов характеризуется тем, что принимают и разветвляют шумоподобный фазоманипулированный сигнал, генерируют перестраиваемый по частоте синусоидальный сигнал, которым преобразуют одну ответвленную часть принимаемого сигнала, в процессе преобразования которой выделяют низкочастотное напряжение, перемножают его с другой ответвленной частью принимаемого сигнала, выделяют гармоническое колебание, сравнивают его по частоте и фазе с генерируемым синусоидальным сигналом и формируют управляющий сигнал, которым воздействуют на генерируемый сигнал и обеспечивают равенство по частоте генерируемого сигнала и несущей частоты принимаемого сигнала. 4 ил.

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов. Приемник содержит последовательно включенные антенну, входную цепь и усилитель радиочастоты, последовательно включенные первый гетеродин, первый смеситель и первый усилитель первой промежуточной частоты, последовательно включенные второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, демодулятор и выходную цепь, выход которой является выходом приемника, два узкополосных фильтра, три фазоинвертора, четыре сумматора, два фазовращателя на 90°, перемножитель, амплитудный детектор, ключ, третий смеситель и второй усилитель первой промежуточной частоты. 4 ил.

Изобретение относится к радиотехнике и может быть использовано для повышения помехоустойчивости радиосигналов в системах связи. Технический результат - повышение помехоустойчивости радиосигналов в системах связи путем увеличения ширины полосы занимаемой ими частот. Способ формирования помехоустойчивых радиосигналов основан на формировании широкополосного сигнала, для которого используют расширение спектра методом формирования псевдослучайной последовательности, и характеризуется тем, что для модуляции логических элементов псевдослучайной последовательности используют радиоимпульсы, которые получают в результате перемножения биортогональных вейвлет-функций и сигналов с линейной частотной модуляцией, у которых для модуляции логического элемента «1» и логического элемента «0» псевдослучайной последовательности задают различную скорость увеличения частоты, при этом в качестве биортогональных вейвлет-функций используют функции второй производной от функции Гаусса. 11 ил.

Изобретение относится к радиотехнике. Технический результат - расширение функциональных возможностей способа автокорреляционного приема шумоподобных сигналов путем точного и однозначного определения местоположения источника излучения сигнала, размещенного на борту летательного аппарата. Для этого устройство, реализующее предлагаемый способ, содержит измеритель 1 длительности сигнала, частотный детектор 2, счетчик 3 импульсов, арифметические блоки 4 и 19, масштабирующие перемножители 5 и 6, линии задержки 7, 10 и 14, перемножители 8, 11, 15, 22.1, 22.2 и 22.3, полосовые фильтры 9 и 12, генератор 13 пилообразного напряжения, фильтры 16, 26.1, 26.2, 26.3 нижних частот, пороговый блок 17, ключ 18, блок 20 регистрации, приемные антенны 21.1, 21.2 и 21.3, узкополосные фильтры 23.1, 23.2 и 23.3, фазовращатели 24.1 и 24.2 на 90 градусов, фазовые детекторы 25.1, 25.2 и 25.3, измерительные приборы 27.1, 27.2 и 27.3, экстремальные регуляторы 28.1, 28.2 и 28.3, блоки 29.1, 29.2 и 29.3 регулируемой задержки, корреляторы 30.1, 30.3 и 30.3, вычислительный блок 31 и указатель 32 местоположения источника излучения шумоподобных сигналов. 3 ил.

Изобретение относится к области радиосвязи и может найти применение в системах беспроводного доступа, сухопутной подвижной и спутниковой связи, призванных функционировать в условиях радиоэлектронной борьбы. Технический результат - обеспечение надежного приема сигналов с высокой структурной скрытностью в перспективных системах связи в условиях их длительной эксплуатации. Многоканальный приемник с кодовым разделением каналов для приема квадратурно-модулированных сигналов повышенной структурной скрытности содержит, в частности, первое, второе и третье коммутационные устройства, а также генератор маскирующей ортогональной кодовой последовательности, генератор канальных ортогональных кодовых последовательностей, устройство повторного обнаружения сигнала, элемент развязки и соответствующие связи между ними для обеспечения надежного приема квадратурно-модулированных сигналов, сигнально-кодовая конструкция которых изменяется в процессе эксплуатации системы связи, и повторного обнаружения сигналов при срыве синхронизации в системе. 1 з.п. ф-лы, 3 ил..

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении надежности связи. Для этого способ средневолновой зоновой сети двусторонней радиосвязи с временным разделением режимов приема и передачи сообщений заключается в создании средневолновой многоканальной зоновой сети двусторонней мобильной автоматической радиосвязи с временным разделением режимов приема и передачи сообщений, которая дает возможность в одной и той же ограниченной полосе частот одновременно обмениваться дискретными сообщениями большому количеству абонентов, которые удалены друг от друга на значительные расстояния и используют малогабаритные возимые и носимые антенны, не требующие высокого подъема над поверхностью Земли при проведении сеансов связи на расстояниях, не удовлетворяющих требованиям прямой видимости между антеннами передающей и приемной радиостанций. Абонентские радиостанции имеют относительно маломощные передатчики и передача сообщений с их стороны осуществляется сигналами с предельно низкой скоростью с целью повышения как помехоустойчивости каналов связи, так и с целью размещения максимального числа абонентов в полосе частот, отведенной для работы сети радиосвязи. Сигналы со стороны абонентских радиостанций передаются одновременно по параллельным каналам на частотах, удовлетворяющих требованию обеспечения взаимной ортогональности этих сигналов. Изобретение относится к области радиотехники и предназначено для одновременной двусторонней мобильной автоматической радиосвязи большого числа абонентов, использующих параллельные частотно-разнесенные радиоканалы в общей ограниченной полосе частот (например, в однополосном телефонном канале связи) для передачи дискретных сообщений на территории зоны, граница которой может находиться далеко за пределами прямой видимости между антенной базовой радиостанции и антеннами периферийных радиостанций. Базовая радиостанция имеет передатчик относительно большой мощности, который позволяет передавать сообщения на большие расстояния с высокой скоростью в режиме уплотнения по времени и с использованием обычных методов манипуляции, например методов двухпозиционной или многопозиционной фазовой манипуляции. Данная сеть радиосвязи может быть использована подразделениями МЧС для мониторинга потенциально опасных объектов, оповещения и передачи сигналов тревоги. 8 ил.
Наверх