Поршневой компрессор без смазки

Изобретение относится к области компрессоростроения и может быть использовано преимущественно при создании поршневых компрессоров без смазки цилиндропоршневой группы средней и большой производительности. Компрессор состоит из цилиндра 1 с обратными самодействующими клапанами 2 и 3, в котором размещен поршень 4 с образованием рабочей камеры 5. Внутри поршня 4 размещена группа сообщающихся сосудов, заполненных охлаждающей жидкостью и представляющих собой продольные отверстия 6, расположенные вдоль наружной образующей поршня 4, и центральное отверстие 7, выполненное в виде цилиндра, разбитого массивным поршнем 8 на полости 9 и 10, которые соединены с продольными отверстиями 6 радиальными каналами 11. Поршень 8 имеет сердцевину 12, изготовленную из материала с большим удельным весом (например, из свинца), установлен в отверстии 7. В нижней части поршень 4 снабжен ребрами 15 для отвода теплоты в окружающую среду. Улучшается отвод теплоты от сжимаемого газа и повышается КПД компрессора, а также возможно использование минимального зазора между поршнем и цилиндром, что снижает утечки и также повышает КПД. Уменьшение теплонапряженности поршня позволит продлить ресурс работы поршневого уплотнения, если оно выполнено из самосмазывающихся композиционных материалов. 3 з.п. ф-лы, 8 ил.

 

Изобретение относится к области компрессоростроения и может быть использовано преимущественно при создании поршневых компрессоров без смазки цилиндропоршневой группы средней и большой производительности.

Известен поршневой вертикальный компрессор без смазки, содержащий цилиндр с обратными всасывающим и нагнетательным клапанами и размещенный в нем с образованием рабочей камеры поршень, частично заполненный охлаждающей жидкостью (см., например, Авторское свидетельство СССР №731038 от 30.04.1980, кл. F04B 31/00).

Известен также поршневой компрессор без смазки, содержащий цилиндр с обратными всасывающим и нагнетательным клапанами и размещенный в нем с образованием рабочей камеры поршень с ребрами охлаждения в нижней части, частично заполненный охлаждающей жидкостью и снабженный системой ее прокачки жидкости по телу поршня (см., например, Авторское свидетельство СССР №985417 от 30.12.1982, кл. F04B 31/00).

Недостатком известных конструкций является низкая эффективность системы охлаждения поршня, что приводит к необходимости работы с большими зазорами в цилиндропоршневой паре при использовании щелевых уплотнений и к быстрому износу самосмазывающихся материалов поршневых колец контактных уплотнений. Все это вместе взятое снижает КПД цикла и работоспособность компрессора.

Задачей изобретения является повышение КПД цикла и работоспособности компрессора путем организации эффективной прокачки охлаждающей жидкости по телу поршня для снижения его температуры и выравнивания теплонапряженности вдоль образующей поршня.

Данный технический результат достигается тем, что в поршневом компрессоре без смазки, содержащем цилиндр с обратными всасывающим и нагнетательным клапанами и размещенный в нем с образованием рабочей камеры поршень с ребрами охлаждения в нижней части, частично заполненный охлаждающей жидкостью и снабженный системой ее прокачки жидкости по телу поршня, система охлаждения поршня выполнена в виде замкнутых сообщающихся сосудов, по крайней мере один из которых изготовлен в виде цилиндра с массивным поршнем, ось которого параллельна оси цилиндра, при этом разность объемов поршня системы охлаждения и цилиндра, в котором он находится, может быть равна или больше суммарного объема сосудов, сообщающихся с этим цилиндром, а часть сообщающихся сосудов может быть расположена в теле ребер охлаждения.

Сущность изобретения поясняется чертежами.

На фиг.1 изображено продольное сечение цилиндропоршневой группы бессмазочного компрессора с гладким щелевым поршневым уплотнением, на фиг.2 и 3 - ее поперечное сечение, на фиг.4 - продольное сечение при выполнении поршня в виде газового подвеса, на фиг.5 - при использовании самосмазывающихся уплотнений зазора между поршнем и цилиндром, на фиг.6 - продольное сечение цилиндропоршневой группы, в которой жидкостные каналы системы охлаждения поршня частично размещены в ребрах охлаждения, на фиг.7 и 8 показана динамика движения поршня системы охлаждения.

Компрессор состоит (фиг.1-3) из цилиндра 1 с обратными самодействующими клапанами 2 и 3 (соответственно всасывающий и нагнетательный клапаны), в котором размещен поршень 4 с образованием рабочей камеры 5. Внутри поршня 4 размещена группа сообщающихся сосудов, заполненных охлаждающей жидкостью и представляющих собой продольные отверстия 6, расположенные вдоль наружной образующей поршня 4, и центральное отверстие 7, выполненное в виде цилиндра, разбитого массивным поршнем 8 на полости 9 и 10, которые соединены (сообщены) с продольными отверстиями 6 радиальными каналами 11. Поршень 8 изготовлен из антифрикционного материала (например, композит на основе фторопласта-40) и имеет сердцевину 12, изготовленную из материала с большим удельным весом (например, из свинца). Он установлен в отверстии 7 на пружинах сжатия 13 и 14, которые служат для предотвращения ударов поршня 8 о поршень 4. В нижней части поршень 4 снабжен ребрами 15 для отвода теплоты в окружающую среду (подпоршневое пространство). Поршень 4 имеет гладкую наружную поверхность, образующую с внутренней поверхностью цилиндра 1 гладкое щелевое уплотнение с зазором 16.

При использовании газостатического подвеса в конструкции цилиндропоршневой пары (газовый подвес поршня, фиг.4) в поршне 4 размещается полость 17, соединенная с рабочей полостью 5 через обратный клапан 18 и с зазором 16 через равномерно расположенные по окружности поршня 4 дроссельные устройства (в данном примере - отверстия) 19.

При использовании в компрессоре самосмазывающихся контактных уплотнений (фиг.5) на поршне устанавливаются поршневые кольца 20 и направляющее кольцо (башмак) 21.

С целью наиболее эффективного отвода теплоты от поршня 4 сообщающиеся сосуды в виде отверстий могут проходить непосредственно через ребра охлаждения 15 (фиг.6).

Компрессор работает следующим образом (фиг.1).

При возвратно-поступательном движении поршня 4 из крайнего нижнего (нижняя мертвая точка - НМТ) в верхнее крайнее (верхняя мертвая точка - ВМТ) положение и обратно объем камеры 5 изменяется, что при ее увеличении (поршень 4 идет вниз) приводит к разрежению, открытию клапана 2 и всасыванию газа. При ходе поршня 4 вверх объем камеры 5 уменьшается, давление газа в ней растет, что приводит к закрытию клапана 2, происходит сжатие газа до давления за клапаном 3, после чего клапан 3 открывается и сжатый газ поршнем 4 вытесняется из камеры 5 потребителю. Уплотнение поршня осуществляется за счет гидравлического сопротивления зазора 16 (фиг.1, 4, 6-8) или за счет поршневых колец (фиг.5). Удержание поршня в концентричном положении относительно цилиндра 1 осуществляется либо направляющим механизмом (фиг.1, на рисунке не показан), либо антифрикционным кольцом (башмаком) 21 (фиг.5), либо за счет работы газового несущего слоя, образующегося при истечении сжатого газа из полости 17 через дроссельные отверстия 19 в зазор 16. Сжатый газ попадает в полость 17 из камеры 5 через клапан 18 в процессе сжатия-нагнетания газа в камере 5 (фиг.4). В процессе сжатия-нагнетания газ в камере 5 нагревается до величины, определяемой отношением давления нагнетания к давлению всасывания (чем это отношение больше, тем сильнее нагревается газ), и за счет конвективного теплообмена передает теплоту стенкам цилиндра и днищу поршня 4, от которого теплота распространяется на все тело поршня.

Работа системы охлаждения поршня 4 происходит следующим образом (фиг.7 и 8).

При подходе поршня 4 к ВМТ (фиг 7) его скорость падает от максимального значения до нуля в самой ВМТ, но под действием сил инерции поршень 8 продолжает движение, уменьшая объем полости 9 и увеличивая объем полости 10, в связи с чем жидкость из полости 9 через каналы 11 и отверстия 6 перетекает в полость 10, перенося теплоту Q, отнятую от нагретой верхней части поршня (днища) в нижнюю часть поршня, где теплота передается путем конвективного теплообмена и теплопроводности ребрам 15 и далее от них за счет конвективного теплообмена - в подпоршневое пространство. При этом температура жидкости, находящейся в нижней части поршня 4, снижается.

При ходе поршня 4 вниз (фиг.8) сначала поршень 8 под действием сил инерции прижимается к верхней части поршня 4 (к днищу), но после прохождения поршнем 4 середины хода его движение замедляется, а поршень 8 под действием сил инерции продолжает движение вниз, при этом объем полости 9 увеличивается, а полости 10 - уменьшается и остывшая жидкость из полости 10 начинает перетекать в верхнюю часть поршня.

Далее процесс повторяется.

Таким образом, теплота от верхней части поршня 4 переносится в его нижнюю часть и далее - в окружающую среду. Наиболее эффективно это происходит в том случае, если жидкость протекает непосредственно через ребра 15. Кроме того, чтобы жидкость полностью перетекала из верхней части поршня 4 (из полости 9) в нижнюю часть (полость 10), что обеспечивает полноценную и наиболее эффективную работу системы охлаждения поршня 8, суммарный объем этих полостей должен быть как минимум равен объему всех отверстий и каналов, соединяющих эти полости. Это конструктивно выполняется в том случае, если разность объемов поршня 8 системы охлаждения и цилиндра (отверстия 7), в котором он находится, по абсолютной величине равна или больше суммарного объема сосудов (каналы 11, отверстия 6), сообщающихся с этим цилиндром и соединяющих верхнюю 9 и нижнюю 10 полости.

Таким образом, в предложенной конструкции компрессора без смазки происходит интенсивная перекачка охлаждающей жидкости из верхней (нагретой) в нижнюю (холодную) часть поршня 4 и наоборот, что позволяет как снизить температуру самого поршня 4 (особенно важно - днища поршня), так и выровнять его температуру вдоль образующей.

Снижение температуры днища поршня 4 приводит к повышению эффективности процесса сжатия за счет лучшего охлаждения сжимаемого газа, приближая его к изотермическому, что повышает КПД цикла компрессора. Кроме того, при установке в верхней части поршня 4 поршневых колец 20 из композитов существенно улучшаются условия их работы, т.к. одним из основных критериев работоспособности композиционных самосмазывающихся материалов на основе политетрафторэтилена (фторопласт-40, «Тефлон»), которые в основном и используются при изготовлении поршневых колец (например, Ф4К20, Ф4К15М5, «Криолон» и т.д.), является температура, повышение которой сопровождается увеличением износа.

Интенсивный перенос теплоты из верхней части поршня 4 в нижнюю также способствует более равномерному распределению теплонапряженности поршня 4 вдоль его образующей, что очень важно для сохранения формы поршня 4 и, следовательно, зазора 16, который при использовании щелевых уплотнений при жестком направлении поршня 4 (фиг.1) или при использовании несущего газового слоя (фиг.4) должен быть чрезвычайно мал (например, при диаметре поршня порядка 100 мм этот зазор должен быть в пределах 10-30 мкм). Неравномерность нагрева поршня 4 приводит к тому, что разные поперечные сечения поршня 4 прогреваются по-разному, и в связи с тем, что при нагреве поршень 4 увеличивается в диаметре, это увеличение также происходит неравномерно и для обеспечения обязательного наличия зазора в цилиндропоршневой группе приходится искусственно увеличивать зазор 16, чтобы не допустить заклинивания, что ведет к снижению КПД компрессора из-за больших утечек через зазор 16 в процессах сжатия и нагнетания. Равномерный прогрев позволяет организовать работу цилиндропоршневой пары с минимально (технологически) возможными зазорами 16, что существенно повышает КПД цикла компрессора.

1. Поршневой компрессор без смазки, содержащий цилиндр с обратными всасывающим и нагнетательным клапанами и размещенный в нем с образованием рабочей камеры поршень с ребрами охлаждения в нижней части, частично заполненный охлаждающей жидкостью и снабженный системой ее прокачки жидкости по телу поршня, отличающийся тем, что система охлаждения поршня выполнена в виде замкнутых сообщающихся сосудов по крайней мере один из которых, изготовлен в виде цилиндра с массивным поршнем, ось которого параллельна оси цилиндра.

2. Поршневой компрессор без смазки по п.1, отличающийся тем, что разность объемов поршня системы охлаждения и цилиндра, в котором он находится, по абсолютной величине равна или больше суммарного объема сосудов, сообщающихся с этим цилиндром.

3. Поршневой компрессор без смазки по п.1, отличающийся тем, что часть сообщающихся сосудов расположена в теле ребер охлаждения.



 

Похожие патенты:

Способ рекуперации энергии при сжатии газа компрессорной установкой (1), имеющей две или более ступеней сжатия. Каждая из ступеней образована компрессором (2, 3).

Изобретение относится к управлению компрессорными установками, эксплуатируемыми в различных отраслях народного хозяйства, находящихся в климатических условиях с длительным воздействием отрицательных температур, и особенно для шахтных предприятий горной промышленности.

Изобретение относится к области компрессоростроения и может найти применение в технике транспортных средств в качестве агрегата для создания сжатого воздуха. .

Изобретение относится к поршневому компрессору, в частности поршневому компрессору возвратно-поступательного типа для создания сжатого воздуха, который содержит, по меньшей мере, один, соединенный с коленчатым валом посредством сопряженного, установленного при помощи подшипников качения шатуна, поршень, который в сопряженном цилиндре осуществляет возвратно-поступательное движение и через интегрированный в головку цилиндра адаптер вызывает сжатие всасываемого воздуха, причем через впускной вентиль на основании разряжения в картере, создаваемого посредством движения поршня, охлаждающий воздух из входного трубопровода попадает в картер и на основании избыточного давления в картере, создаваемого посредством обратного движения поршня, через выпускной вентиль выходит из картера, так что в картере создается внутренний поток охлаждающего воздуха.

Изобретение относится к поршневым компрессорам с охлаждением, работающим без смазки рабочей полости и предназначенным для сжатия и перемещения газов. .

Изобретение относится к области сжатия и перекачки газа, в частности представляет собой устройство для дожимания газа низкого давления до давления 20-30 МПа при подаче его потребителю, и может найти применение при бурении, освоении и эксплуатации нефтяных и газовых скважин.

Изобретение относится к холодильной технике и может быть использовано при проектировании, конструировании, изготовлении и эксплуатации герметичных компрессоров. .

Изобретение относится к охлаждаемому воздухом поршневому компрессору для транспортных средств. Нагнетатель (2) имеет несколько цилиндров (1a, 1b), приводится в действие двигателем (3) и имеет вентилятор (4) для производства потока охлаждающего воздуха. Вентилятор (4) расположен на промежуточном валу (5) между двигателем (3) и нагнетателем (2), засасывает охлаждающий воздух из окружающей среды и транспортирует его в следующий далее канал (6) для охлаждающего воздуха. Канал (6) для охлаждающего воздуха, по меньшей мере частично опоясывающий цилиндры (1а, 1b), образован так, что все расположенные в ряд цилиндры (1а, 1b) могут равномерно обтекаться охлаждающим воздухом. Поперечные сечения канала (6) для охлаждающего воздуха сформированы таким образом, что цилиндр (1b), более близкий к вентилятору (4), посредством дросселирования поперечного сечения испытывает уменьшение в подводе охлаждающего воздуха. При этом, по меньшей мере другой цилиндр (1а), который дальше удален от вентилятора (4), получает, в основном, такой же охлаждающий воздух, как и расположенный ближе цилиндр (1b). 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к области компрессоростроения и может быть использовано в компрессорах с автономным жидкостным охлаждением. Компрессор состоит из цилиндра 1 с поршнем 2 с образованием рабочего объема 4, полости нагнетания 5, нагнетательного клапана 6, полости всасывания 7, всасывающего клапана 8. Вокруг рабочего объема 4 размещена жидкостная рубашка охлаждения 9. Ее нижняя часть соединена с источником охлаждающей жидкости в виде кольцевой рубашки 10 через два канала 11 и 12. Верхняя часть рубашки охлаждения 9 соединена каналом 13 с полостью нагнетания 5. За счет движения жидкости в рубашках 9 и 10 интенсифицируется отдача теплоты сжатия газа в окружающую среду, что происходит без применения дополнительных механических затрат. Повышается КПД и снижаются удельные затраты на получение сжатого газа. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области машин объемного действия поршневого типа и может быть использовано при создании высокоэффективных поршневых машин малой и средней производительности с автономной жидкостной системой охлаждения. Способ работы заключается в попеременном всасывании и нагнетании газа путем изменения объема рабочей полости цилиндра. Цилиндр обтекается охлаждающей жидкостью. Картер соединяют с окружающей средой при положении поршня в верхней и нижней мертвых точках. Поршневая машина для осуществления способа содержит цилиндр 1 с жидкостной рубашкой 2, установленный на частично заполненном жидкостью картере 3 с механизмом привода, соединенным с поршнем 7, рабочую полость 8, полости всасывания 9 и нагнетания 10, всасывающий клапан 11 и нагнетательный клапан 12. Рубашка 2 соединена с нижней частью картера 3 через обратные клапаны 13 и 14, канал 15, бачок 16 с поплавком 17 и канал 18, канал 19. Нижняя часть цилиндра 1 образует с картером 3 общий объем 20, который соединен с атмосферой при положении поршня в верхней (ВМТ) и нижней (НМТ) мертвых точках: через отверстие (21) в положении ВМТ и через клапан (22) с управляющим элементом (23) в положении НМТ. Снижаются затраты на работу системы охлаждения, повышаются эффективность и КПД машины. 2 н. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к области компрессоростроения и может быть использовано в компрессорах с жидкостным охлаждением. Компрессорное устройство содержит компрессорный элемент 2 с камерой сжатия, с одним входом 8 охлаждающего агента и выходом 4 газа. Разделительная емкость 5 для отделения газа от охлаждающего агента соединена с выходом 4 газа. Контур охлаждения с охлаждающим устройством 10 проходит между разделительной емкостью 5 и входом 8 охлаждающего агента и оснащен блоком управления для регулирования температуры потока охлаждающего агента, подаваемого в компрессорный элемент 2. Блок управления содержит первый и второй вспомогательный регуляторы 25, 26 с различными регулируемыми параметрами. Блоки управления содержат переключающие средства 37,38, служащие для приведения одного из двух вспомогательных регуляторов 25,26 в активированное состояние, а другого из двух вспомогательных регуляторов 25,26 - в деактивированное состояние. Гибкость регулирования, возможность работы с оптимальными энергозатратами, повышается надежность. 2 н. и 25 з.п. ф-лы, 8ил.

Изобретение относится к области машин объемного действия поршневого типа. Способ заключается в том, что при возвратно-поступательном движении поршня происходит всасывание, сжатие и нагнетание газа потребителю с одновременным сжатием смазочно-охлаждающей жидкости в картере машины при ходе поршня вниз и ее подача в зазор между поршнем и цилиндром через питающие круговые щели в цилиндре и в сам цилиндр в конце хода всасывания и начале хода сжатия. В конце хода поршня вверх соединяют картер машины с атмосферой. Машина состоит из цилиндра 1 с установленным в нем с зазором поршнем 2 с механизмом движения, размещенным в частично заполненной смазочно-охлаждающей жидкостью 6 полости 7 картера 8. В цилиндр 1 запрессованы втулки 9, 10 и 11, которые при контакте образуют своими шероховатыми торцовыми поверхностями питающие круговые щели 12. Наружная окружность щелей 12 соединена с полостью 7 через обратный самодействующий клапан 13 и канал 14, подсоединенные к картеру 8 ниже уровня 15 жидкости. Цилиндр 1 имеет сквозное отверстие 29, которое служит для соединения свободной от жидкости полости 7 картера 8 с атмосферой при положении поршня 2 в верхней мертвой точке. Изобретение обладает высоким ресурсом безостановочной работы, высокой экономичностью. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с индивидуальным жидкостным охлаждением цилиндропоршневой группы. Поршневая машина содержит цилиндр 1 и размещенный в нем поршень 2, полость сжатия 3, всасывающий 4 и нагнетательный 5 клапаны, установленные соответственно в полости всасывания 6 и нагнетания 7 и соединенные соответственно с всасывающей 8 и нагнетательной 9 линиями. Цилиндр 1 имеет жидкостную рубашку 10, соединенную через теплообменник 11 с устройством для прокачки жидкости, которое выполнено в виде зауженного участка 12 линии всасывания 8. Изобретение позволяет уменьшить габариты и массу машины, а также снизить удельные затраты на сжатие газа. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области энергетики и компрессоростроения и может быть использовано при создании поршневых компрессоров. Поршневая машина содержит цилиндр 1 с поршнем 2 с образованием рабочего объема 4, клапанную коробку 5 с полостью всасывания 6, линию всасывания 7, всасывающий клапан 8, полость нагнетания 11, линию нагнетания 12, нагнетательный клапан 13. Рубашка охлаждения 14 соединена с источником давления жидкости, выполненным в виде размещенной в клапанной коробке 5 полости 15 с гибкой мембраной 16. Полость 15 соединена каналами 17 и 18, выполненными в виде теплообменников, с рубашкой 14 через обратные клапаны 19 и 20. Оборотная сторона мембраны 16 перекрыта газовой полостью 21. Снижаются общие масса и габариты компрессорной установки, появляется возможность создавать передвижные конструкции, снижаются удельные затраты на сжатие газа. 11 з.п. ф-лы, 7 ил.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с независимым активным жидкостным охлаждением. Устройство содержит цилиндр 1 с поршнем 2 и рабочей полостью 3, имеющей всасывающий 4 и нагнетательный 5 клапаны, соединенные со всасывающей 6 и нагнетательной 7 линией, соединенной с газовым ресивером 8. На линии нагнетания 7 имеются участки сужения 9 и расширения 10. Зона перехода 11 соединена каналом 12 с выходом жидкости из рубашки охлаждения 13. Канал входа 14 соединен с рубашкой охлаждения 13 через бачок 15, уровень жидкости в котором ниже зоны перехода 11, и канал 16. Ресивер 8 соединен с бачком 15 через канал 17. При работе машины газ попадает в участок сужения 9, где, в соответствии с уравнением Бернулли, его скорость возрастает, а давление падает. Под действием перепада давления жидкость поднимается из рубашки 13 по каналу 12, потоком газа перемещается к входу в канал 14 и стекает в него под действием гравитационных сил, возвращаясь в бачок 15. Охлаждение цилиндра производится без дополнительных устройств, снижается масса и габариты машины при сохранении высокого КПД. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным жидкостным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с поршнем 2 с образованием камеры сжатия 4, всасывающий клапан 6, нагнетательный клапан 11. Цилиндр 1 содержит рубашку 15 охлаждения, соединенную с источником охлаждающей жидкости 16 в виде поплавковой камеры 17 с подпружиненным пустотелым поплавком 19 с штоком 20 с выступами 21 и 22, воздействующими на подвижный элемент 23 золотника 24. Подвижный элемент 23 имеет две проточки 26 и 27 для фиксаторов 28. Один выход 29 золотника 24 соединен с атмосферой, а другой 30 - с камерой 4 через канал 31 и клапан 43. Камера 17 соединена каналом 33 с рубашкой 15 охлаждения и с теплообменником 34 каналами 38 и 39, в которых установлены группы разнонаправленных гидродиодов 40 и 41. Достигается полноценное, полностью автономное охлаждение цилиндра с минимальными затратами энергии, повышение КПД компрессора при снижении его габаритов и массы, обеспечивается возможность создания передвижных компрессоров с эффективным жидкостным охлаждением. 6 з.п. ф-лы, 8 ил.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5. Полости всасывания 6 и 7 соединены с источником газа и с рабочими объемами 4 и 5 через всасывающие клапаны 8 и 9. Полости нагнетания 10 и 11 соединены с потребителем газа и с рабочими объемами 4 и 5 через нагнетательные клапаны 12 и 13. Вокруг цилиндра 1 имеется жидкостная рубашка охлаждения 14. Полости всасывания 6 и 7 соединены с жидкостной рубашкой 14 через теплообменники 15 и 16, часть рабочего объема которых, подключенная к полостям всасывания, находится выше уровня охлаждающей жидкости в рубашке охлаждения. Теплообменники 15 и 16 являются сообщающимися через рубашку 14 сосудами. Постоянно движущаяся по теплообменникам 15 и 16 и в рубашке 14 жидкость отводит теплоту сжатия от цилиндра 1. Достигается уменьшение габаритов при использовании жидкостного охлаждения, упрощается его схема, снижаются удельные затраты на сжатие газа. 1 з.п. ф-лы, 4 ил.
Наверх