Способ формирования коррелированных случайных сигналов



Способ формирования коррелированных случайных сигналов
Способ формирования коррелированных случайных сигналов

 


Владельцы патента RU 2546579:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ГОСУДАРСТВЕННОЕ МАШИНОСТРОИТЕЛЬНОЕ КОНСТРУКТОРСКОЕ БЮРО "РАДУГА" ИМЕНИ А.Я. БЕРЕЗНЯКА" (RU)

Изобретение относится к способам создания широкополосных случайных процессов с заданными собственными и взаимными спектральными плотностями мощности и может быть использовано в приборостроении, машиностроении, вычислительной технике для создания, в частности, многоканальных автоматических систем, в испытаниях на вибростойкость к воздействиям случайной вибрации. Техническим результатом является генерирование двух случайных сигналов с заданной функцией когерентности. Способ включает формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(f), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике fi фазами Θi и Ωi, определяемыми методом случайной выборки случайной величины, одна из которых - Θi для сигнала x(t) равномерно распределена в диапазоне [-π, π], а другая - Ωi для второго сигнала y(t) определяется как сумма Ωii+Δφi случайной величины Θi и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t). 1 ил.

 

Изобретение относится к способам создания широкополосных случайных процессов с заданными собственными и взаимными спектральными плотностями мощности и может быть использовано в приборостроении, машиностроении, вычислительной технике для создания, в частности, многоканальных автоматических систем, в испытаниях на вибростойкость к воздействиям случайной вибрации и т.д.

Известен («Автоматическое управление вибрационными испытаниями», Библиотека по автоматике, выпуск 579, Москва, Энергия, 1978 г.) способ формирования по заданной спектральной плотности случайного сигнала в форме разложения Райса-Пирсона со случайной на каждой гармонике фазой, равномерно распределенной в диапазоне [-π, π], и выполнения процедуры обратного быстрого преобразования Фурье (ОБПФ).

Сформированные таким способом случайные сигналы являются независимыми, что в некоторых случаях является недостатком.

Предлагаемым изобретением решается задача генерирования двух случайных сигналов x(t) и y(t) с заданной функцией когерентности γху(f).

Для достижения названного технического результата предлагается способ формирования коррелированных случайных сигналов, включающий формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(t), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике f1 фазами Θi и Ωi, определяемыми методом случайной выборки случайной величины, одна из которых - Θi для сигнала x(t) равномерно распределена в диапазоне [-π, π], а другая - Ωi для второго сигнала y(t) определяется как сумма Ωii+Δφi случайной величины Θi и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t) из решения уравнения:

sin ϕ i ϕ i = S x y ( f i ) S x ( f i ) S y ( f i ) ,

и выполнения процедуры ОБПФ.

Отличительным признаком предлагаемого способа является то, что случайные фазы Θi одного сигнала x(t) определяются на каждой гармонике fi методом случайной выборки случайной величины, равномерно распределенной в диапазоне [-π, π], а случайные фазы Ωi второго сигнала y(t) определяются на каждой гармонике fi как сумма Ωii+Δφi случайной величины Ωi, равномерно распределенной в диапазоне [-π, π], и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Ssy(f) случайных сигналов x(t) и y(t) из решения уравнения:

sin ϕ i ϕ i = S x y ( f i ) S x ( f i ) S y ( f i )

Благодаря наличию указанного отличительного признака в совокупности с известными приобретается возможность формирования двух случайных сигналов x(t) и y(t) с заданной функцией когерентности γху(f).

В результате поиска по источникам патентной и научно-технической информации, решений, содержащих аналогичные признаки, не обнаружено.

Таким образом, можно сделать заключение о том, что предложенный способ неизвестен на уровне техники и, следовательно, соответствует критерию «патентоспособности».

Предложенный способ может найти применение везде, где возникает необходимость в случайных взаимно коррелированных сигналах с заданным уровнем когерентности, что позволяет сделать вывод о соответствии критерию «Промышленная применимость».

Способ реализуется следующим образом: в заданном спектральной плотностью Sx(f) диапазоне частот с шагом Δf выбирают дискретный ряд частот fi=i Δf. В каждом частотном диапазоне fi<f<fi+1 по заданной спектральной плотности Sx(f) определяют амплитуды гармоник A i = A ( f i ) = 2 S x ( f i ) Δ f , из случайной, равномерно распределенной в диапазоне [-π, π] величины по случайному закону выбирают фазы Θi, вычисляют реальные и мнимые составляющие вектора гармоник единичной длины Re(fi)=cosΘi, Im(fi)=SinΘi, производят умножение Re(fi) и Im(fi) на величину A i = 2 S x ( f i ) Δ f , выполняют процедуры ОБПФ для перехода от частотного блока комплексных амплитуд {Re(fi), Im(fi)} во временную область и получают однокомпонентный сигнал x(iΔt) в форме разложения Райса-Пирсона, длиной Т=1/Δf, содержащего N точек с периодом дискретизации Δt [сек] и случайными амплитудами Ai (i=0, 1, …, N-1), распределенными по нормальному закону Гаусса.

По заданной спектральной плотности Sy(f) в каждом частотном диапазоне fi<f<fi+1 определяют амплитуды гармоник B i = 2 S x ( f i ) Δ f , из случайной, равномерно распределенной в диапазоне [-π, π] величины по случайному закону выбирают фазы Θi.

На каждой гармонике fi по заданным в частотной области спектрам амплитуд Sx(f), Sy(f) и взаимной спектральной плотности мощности Sxy(f) случайных сигналов x(f) и y(t) вычисляют функции когерентности:

γ x y ( f i ) = S x y ( f i ) 2 S x ( f i ) Δ f = f i f i + Δ f S x y ( f ) d f f i f i + Δ f S x ( f ) d f f i f i + Δ f S y ( f ) d f

и диапазон {±φi} случайных фаз Δφi:

sin ϕ i ϕ i = γ x y ( f i ) .

Из случайной, равномерно распределенной в диапазоне [-φi, φi] величины по случайному закону выбирают фазы Δφi. Вычисляют фазы Ωii+Δφi гармоник сигнала y(f). Формируют блок комплексных амплитуд {Re(fi), Im(fi)}:

Re ( f i ) = cos ( Ω i ) 2 S y ( f i ) Δ f , Im ( f i ) = sin ( Ω i ) 2 S y ( f i ) Δ f ,

выполняют процедуры ОБПФ и получают во временной области однокомпонентный сигнал y(iΔt) в форме разложения Райса-Пирсона, длиной T=1/Δf, содержащего N точек с периодом дискретизации Δt [сек] и случайными амплитудами Bi (i=0, 1, …, N-1), распределенными по нормальному закону Гаусса, коррелированный с сигналом x(iΔt с заданной функцией когерентности γxy(fi).

В качестве иллюстрации на фигуре 1 приведены примеры взаимосвязанных сигналов (2-20 Гц, белый шум, lg скз) с когерентностью 0,9; 0,7; 0,5 и 0,0 соответственно, полученные предложенным способом.

Способ формирования коррелированных случайных сигналов, включающий формирование во временной области по заданным спектральным плотностям Sx(f) и Sy(f) стационарных случайных сигналов x(t), y(t) в форме разложения Райса-Пирсона со случайными на каждой гармонике fi фазами Θi и Ωi, отличающийся тем, что случайные фазы Θi одного сигнала x(t) определяются на каждой гармонике fi методом случайной выборки случайной величины, равномерно распределенной в диапазоне [-π, π], а случайные фазы Ωi второго сигнала y(t) определяются на каждой гармонике fi как сумма Ωii+Δφi, случайной величины Θi, равномерно распределенной в диапазоне [-π, π], и случайной величины ΔφI, равномерно распределенной в диапазоне [-φ, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t) из решения уравнения:
.



 

Похожие патенты:

Изобретение относится к вычислительной технике и предназначено для генерации случайной последовательности значений из заданного множества значений с требуемыми характеристиками генерируемой последовательности.

Предлагаемые способ и устройство относятся к области электронных детекторов, регистрирующих изменения электромагнитного фона окружающей среды. Основная сфера применения - определение эмоционального состояния сознания, развлечения и электронные игры с интерактивным управлением, технические средства для решений в области декоративных и дизайнерских работ, для обустройства интерьеров, устройств освещения и подсветки.

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации, может использоваться при построении генераторов псевдослучайных чисел, а также криптографических примитивов хеширования, блочного и поточного шифрования.

Изобретение относится к вычислительной технике и может быть использовано при вычислениях методом Монте-Карло и для генерации случайных ключей в схемах шифрования.

Изобретение относится к радиотехнике и может быть использовано в качестве источника гиперхаотических электромагнитных колебаний. .

Изобретение относится к цифровой технике и может быть использовано для генерации случайных чисел и преобразования данных, обработки шумоподобных сигналов, идентификации, аутентификации и авторизации, в стохастических системах и устройствах, системах представления и отображения информации, информационно-коммуникационных и сенсорных устройствах и системах.

Изобретение относится к цифровой технике и может быть использовано для генерации случайных чисел и преобразования данных, обработки шумоподобных сигналов, идентификации, аутентификации и авторизации, в стохастических системах и устройствах, системах представления и отображения информации, информационно-коммуникационных и сенсорных устройствах и системах.

Изобретение относится к приборостроению и может быть использовано в качестве имитатора импульсных высокочастотных сигналов, образуемых на выходе матричного фотоприемного устройства с размерностью m n - элементов в матрице, принимающего лазерные излучения, переотраженные бликами морской поверхности, хаотически распределенные во времени и по пространству, при решении локационной задачи по низколетящим ракетам морского базирования (m - число столбцов, n - число строк в матрице).

Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах для формирования кодовых последовательностей. .

Изобретение относится к связи, более конкретно к технологиям для формирования последовательностей скремблирования и дескремблирования в системе связи. .

Изобретение относится к вычислительной технике и предназначено для генерации случайной последовательности значений из заданного множества значений с требуемыми характеристиками генерируемой последовательности.

Изобретение относится к радиотехнике и может быть использовано в системах передачи дискретной информации для формирования групповых носителей информации со свойством «не более одного совпадения» любой длины и сложных частотно-фазоманипулированных сигналов на их основе, характерной особенностью которых является возможность формирования автокорреляционной функции с единичным уровнем боковых лепестков.

Изобретение относится к области электросвязи, в частности к генераторам ортогональных сигналов, и может быть использовано для создания генераторного оборудования многоканальных систем и сетей связи.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в стохастических функциональных преобразователях, стохастических вычислительных устройствах при вероятностном моделировании и стохастической обработке данных, а также в системах и сетях связи, в том числе, использующих технологию LTE.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах передачи и обработки информации, при построении фильтров и функциональных преобразователей, в системах управления, а также для анализаторов и синтезаторов сигналов.

Изобретение относится к области технической физики и может быть использовано в аппаратуре для создания тока в подземных или подводных токопроводах (кабелях, трубопроводах и других изолированных от среды проводниках), как при непосредственном подключении к ним, так и с помощью индукционной катушки.

Изобретение относится к автоматике и вычислительной технике и может использоваться в устройствах спектрального анализа и связи для генерирования ортогональных сигналов.

Изобретение относится к автоматике и вычислительной технике и может быть использовано для создания генераторного оборудования многоканальных систем связи. .

Изобретение относится к автоматике и вычислительной технике и может быть использовано для создания генераторного оборудования многоканальных систем связи. .

Изобретение относится к области вычислительной техники и может быть использовано для генерирования широкополосных случайных стационарных сигналов с заданными собственными и взаимными спектральными плотностями мощности. Техническим результатом является генерирование двух случайных сигналов с заданной функцией когерентности. Устройство содержит однопроцессорный компьютер, программное обеспечения для формирования по заданным спектральным плотностям Sx(f) и Sy(f) случайных сигналов в форме разложения Райса-Пирсона со случайными на каждой гармонике fi фазами Θi и Ωi, определяемыми методом случайной выборки случайной величины, одна из которых - Θi для сигнала x(f) равномерно распределена в диапазоне [-π, π], а другая - Ωi для второго сигнала y(t), определяется как сумма Ωi=Θi+Δφi случайной величины Θi и случайной величины Δφi, равномерно распределенной в диапазоне [-φi, φi], границы которого определяются через взаимную спектральную плотность Sxy(f) случайных сигналов x(t) и y(t) с последующим выполнением процедуры ОБПФ, модуля цифро-аналогового преобразователя для перевода сформированных цифровых сигналов в аналоговые сигналы генератора. 1 ил.
Наверх