Способ изготовления световодов на основе кварцевого стекла, легированного дейтерием



Способ изготовления световодов на основе кварцевого стекла, легированного дейтерием

 


Владельцы патента RU 2546711:

ЕРОНЬЯН МИХАИЛ АРТЕМЬЕВИЧ (RU)

Изобретение относится к методам химического парофазного осаждения для изготовления кварцевых световодов с малыми оптическими потерями. Согласно способу внутрь трубки заготовки волоконного световода вводят сухие, содержащие дейтерий газы, например пары диметилсульфоксида Д6. Легирование осаждаемых слоев стекла сердцевины и оболочки малыми добавками дейтерия производят как в процессе осаждения слоев, так и при высокотемпературном сжатии трубки. Технический результат - снижение оптических потерь световода и массоуноса заготовок, сокращение длительности процесса их изготовления. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к волоконной оптике, в частности к изготовлению волоконных световодов (ВС) модифицированным методом химического парофазного осаждения (modified chemical vapor deposition - MCVD). Оптические волокна, получаемые таким способом, отличаются дополнительными оптическими потерями в спектральной области прозрачности кварцевого стекла (1300-1550 нм) из-за поглощения излучения примесными гидроксильными группами, в которых атомы водорода содержатся в виде широко распространенного в природе изотопа - протия (Н).

Сердцевина ВС, изготавливаемых MCVD методом, окружена синтетической отражающей оболочкой, изолирующей сердцевину от примесей материала опорных кварцевых трубок промышленного производства. Примесь водорода создает основные проблемы в технологии ВС, так как он обладает наиболее высокой диффузионной подвижностью по сравнению с другими примесями. Когда протий проникает в германосиликатную сердцевину, происходит реакция восстановления GeO2:

При этом возникают дополнительные оптические потери на всем участке спектра прозрачности стекла, особенно на длине волны 1.38 мкм, соответствующей положению пика поглощения основным обертоном колебаний связанных атомов протия и кислорода (Iino A., Kuwabara М., Kokura К. Mechanism of hydrogen-induced loss in silica-based optical fibers. - Journal of lightwave technology. 1990, v. 8, No 11, p. 1675-1679).

Обработка дейтерием исходных кварцевых труб, используемых в MCVD процессе изготовления ВС, устраняет в оптических волокнах поглощение на длине волны 1.38 мкм, смещая эту полосу поглощения в область 1.9 мкм за счет изотопного обмена протия на дейтерий (Shang Н.Т., Stone J., Burrus С.A. Low - ОН MCVD fibers without a barrier layer using OH-OD exchange substrate tubes. - Electronics letters. 1983, v 19, No 3, p. 95-96). Однако дополнительные оптические потери из-за восстановления GeO2 не устраняются: дейтерий, так же как и протий, при высокой температуре диффундирует в германосиликатное стекло сердцевины и восстанавливает диоксид германия.

Наиболее близкий к предлагаемому техническому решению «Способ изготовления световодов на основе кварцевого стекла с малыми оптическими потерями» по патенту РФ на изобретение №2462737, опубликованному 03.03.2011 по индексу МПК G02B 6/024; С03В 37/18, принят за прототип. Этим способом изготавливаются ВС MCVD методом на основе кварцевого стекла, дополнительно легированного малыми добавками оксида дейтерия в процессе высокотемпературного сжатия трубки. При этом устраняются оптические потери из-за восстановления GeO2. Дейтерий внедряется в сетку стекла по реакции:

Образующиеся по реакции (2) OD группы разрывают регулярные Si-О связи стекла, понижая его вязкость, и смещают реакцию (1) в левую сторону, снижая тем самым степень восстановления GeO2 и дополнительные оптические потери.

Использование этого технического решения для MCVD метода изготовления ВС имеет существенный недостаток:

- рекомендуемые этим патентом добавки оксида дейтерия могут быть использованы только в процессе высокотемпературного сжатия трубки, обеспечивая тем самым желаемый эффект только для одномодовых ВС с малым диаметром сердцевины. Введение оксида дейтерия в парогазовую смесь (ПГС) при осаждении легированных слоев оболочки и сердцевины неосуществимо, так как реагенты взаимодействуют с D2O при комнатной температуре и блокируют линию подачи ПГС твердыми продуктами гидролиза.

Задача настоящего изобретения заключается в усовершенствовании технологии изготовления кварцевых волоконных ВС, легированных дейтерием, при которой возможно изготовление многомодовых и одномодовых световодов с более низкими оптическими потерями, повысить производительность изготовления заготовок с увеличением их диаметра.

Технический результат достигается тем, что дейтерий вводят в стекло как в процессе осаждения слоев, так и при сжатии трубки. В результате этого:

- понижается вязкость стекла сердцевины и оболочки для многомодовых и одномодовых ВС, что приводит к снижению оптических потерь на рэлеевское рассеяние;

- за счет сокращения длительности процесса высокотемпературного сжатия повышается производительность процесса изготовления заготовок и увеличивается диаметр заготовок из-за снижения массоуноса стекла.

Поставленная задача решается новым способом изготовления ВС на основе кварцевого стекла, легированного дейтерием, включающим процессы изготовления световода MCVD методом с легированием осаждаемых слоев стекла дейтерием и последующую вытяжку ВС, в котором, в отличие от прототипа, дейтерий вводят как в процессе осаждения слоев оболочки и сердцевины, так и при высокотемпературном сжатии трубки, причем в качестве дейтерийсодержащих реагентов используют сухие (с точкой росы менее -50°C) дейтерийсодержащие газы или пары легколетучих веществ, например диметилсульфоксида Д6 (C2D6SO), содержание которых в кислороде ниже предела взрываемости этой смеси.

Усовершенствование технологии изготовления ВС заключается в том, что введение таких добавок обеспечивает решение указанных проблем, позволяя легировать дейтерием как одномодовые, так и многомодовые световоды. Образующиеся в осажденном стекле OD группы снижают его вязкость, обеспечивая тем самым снижение оптических потерь на рэлеевское рассеяние и сокращение длительности высокотемпературного процесса сжатия трубки. Ограничение содержания влаги в дейтерийсодержащих веществах (до точки росы менее -50°C) обусловлено тем, что при введении их в ПГС галогениды (SiCl4, GeCl4, POCl3, BCl3) взаимодействуют с влагой при комнатной температуре и блокируют линию подачи реагентов твердыми продуктами гидролиза (SiO2, GeO2, Р2О5 и В2О3).

Совокупность изложенных признаков и анализ отличий от прототипа по существующему уровню техники позволяет сделать вывод о «новизне» и «изобретательском уровне» нового способа.

Предлагаемое новое техническое решение реализовано экспериментально в следующих примерах способа изготовления ВС.

Пример №1. По известной MCVD технологии изготовлен многомодовый ВС при нагреве исходной вращающейся трубки кислородо-водородной горелкой, совершающей возвратно-поступательные движения. На внутреннюю поверхность метровой трубы из кварцевого стекла с наружным диаметром 22 мм, толщиной стенки 2,1 мм методом MCVD наносили 10 слоев защитной оболочки (0,963SiO2-0,03Р2О5-0,007F), 4 слоя изолирующей оболочки (0,973SiO2-0,02GeO2-0,007F) и 2 слоя сердцевины (0,948SiO2-0,05GeO2-0,002F). В процессе осаждения слоев стекла и сжатия трубки в линию подачи реагентов вводили байпасный кислород после его барботажа через жидкий диметилсульфоксид Д6 (ДМС Д6) при 25°C. Его содержание в ПГС при осаждении всех слоев было на уровне 0.05 об. %, а в процессе сжатия - 0.1 об. %. Высокотемпературное сжатие трубки в штабик производили за два прохода горелки при температурах 2000°C и 2150°C. На втором проходе горелки при обратном направлении ее движения и скорости перемещения 10 мм/мин внутренний канал захлопывался. Получена круглая заготовка с наружным диаметром, равным 12,5 мм и диаметром германосиликатной сердцевины ≈0,7 мм. Показатель преломления (ПП) всех оболочек соответствовал ПП кварцевого стекла опорной кварцевой трубы. Разность ПП сердцевины и изолирующей оболочки, измеренная на рефрактометре Р-101, равна 0,0065.

Из полученной таким образом заготовки вытягивали одномодовый ВС №1 диаметром 125 мкм и длиной 1 км при нагреве заготовки до 2000°C в печи с графитовым нагревателем. В процессе вытягивания волокно покрывали слоем мягкого и жесткого эпоксиакрилатного полимера, отверждаемого ультрафиолетовым облучением. Диаметр ВС в двойном покрытии составлял 250 мкм. Длина волны отсечки высшей моды ≈1,38 мкм.

Пример №2. Аналогичным образом изготовлен образец ВС №2, отличающийся от предыдущего способа тем, что для получения многомодового ВС осаждали не 2, а 20 слоев сердцевины. Скорость обратного хода горелки при схлопывании внутреннего канала составляла 11 мм/мин. Получена круглая заготовка с наружным диаметром, равным 12,8 мм и аналогичным значением ПП сердцевины и оболочек с диаметром сердцевины ≈2,2 мм.

Из полученной таким образом заготовки вытягивали многоомодовый ВС №2 с диаметром 125 мкм и длиной 2 км. В процессе вытягивания волокно покрывали слоем мягкого и жесткого эпоксиакрилатного полимера, отверждаемого ультрафиолетовым облучением. Диаметр световода в двойном покрытии составлял 250 мкм.

Пример №3. Аналогичным образом изготовлен контрольный образец одномодового ВС №3, отличающийся от примера №1 тем, что ДМС Д6 не использовали в процессе изготовления заготовки. При высокотемпературном сжатии трубка продувалась кислородом, прошедшим каталитическое дожигание водородсодержащих примесей и сушку на молекулярном сите. Концентрация водородсодержащих примесей в кислороде, подвергнутом такой обработке, не превышала 10-4 мол. %. Скорость перемещения горелки при схлопывании внутреннего канала в этом способе оказалась на 40% ниже (6 вместо 10 мм/мин), чем в примере №1. Это обусловлено повышением вязкости материала сердцевины и оболочки из-за отсутствия OD групп в стекле. Наружный диаметр заготовки равен 11,9 мм, что на 0,6 мм меньше, чем в примере №1 из-за повышенного испарения стекла при увеличении длительности процесса высокотемпературного сжатия трубки.

Из заготовки вытягивали одномодовый ВС №3 диаметром 125 мкм и длиной 1 км. В процессе вытягивания волокно покрывали слоем мягкого и жесткого эпоксиакрилатного полимера, отверждаемого ультрафиолетовым облучением. Диаметр ВС в двойном покрытии составлял 250 мкм. Длина волны отсечки высшей моды ≈1,45 мкм.

Пример №4. Аналогичным образом изготовлен контрольный образец многомодового ВС №4 километровой длины, отличающийся от примера №2 тем, что ДМС Д6 не использовали в процессе изготовления заготовки. При высокотемпературном сжатии трубка продувалась кислородом, концентрация водородсодержащих примесей в котором не превышала 10-4 мол. %. Скорость перемещения горелки при схлопывании внутреннего канала в этом способе оказалась на 36% ниже (7 вместо 11 мм/мин), чем в примере №2. Это обусловлено повышением вязкости осажденного стекла из-за отсутствия OD групп в нем. Получена круглая заготовка с наружный диаметром, равным 12,3 мм, и диаметром сердцевины ≈2,2 мм при тех же значениях ПП сердцевины и оболочек.

В таблице сопоставлены оптические потери на длине волны 1,55 мкм для ВС, полученных при разных концентрациях ДМС Д6 в газовой фазе при высокотемпературном сжатии заготовки.

По мере увеличения содержания дейтерия в газовой фазе внутри опорной трубки оптические потери ВС снижаются, что обусловлено снижением вязкости стекла и, как следствие, понижением величины рэлеевского рассеяния. Снижается масса испарившегося стекла ориентировочно на 4-5%.

Вышеизложенные сведения подтверждают очевидную промышленную применимость предлагаемого способа изготовления ВС для использования в системах связи и волоконно-оптических датчиках.

1. Способ изготовления волоконных световодов на основе кварцевого стекла, легированного дейтерием, включающий процессы изготовления заготовки световода модифицированным методом химического парофазного осаждения легированного кварцевого стекла с легированием осаждаемых слоев стекла дейтерием и последующую вытяжку ВС, отличающийся тем, что дейтерий вводят как в процессе осаждения слоев оболочки и сердцевины, так и при высокотемпературном сжатии трубки, причем используют сухие с точкой росы менее -50°C дейтерийсодержащие газы, содержание которых в кислороде менее нижнего предела взрываемости этой смеси.

2. Способ по п. 1, отличающийся тем, что в качестве дейтерийсодержащего газа используют пары диметилсульфоксида Д6 (C2D6SO).



 

Похожие патенты:

Изобретение относится к одномодовым оптическим волокнам, имеющим низкий коэффициент затухания. Оптическое волноводное волокно включает сердцевину и оболочку.

Изобретение относится к осветительным устройствам. В светоизлучающем устройстве источник света имеет узкое или ограниченное распределение интенсивности света.

Изобретение относится к осветительному устройству, содержащему волновод. Устройство содержит волноводный элемент с первой и второй наружной поверхностями и границей волновода.

Изобретение относится к устройству удаления оболочки оптического волокна. В устройстве (11) удаления оболочки оптического волокна для вытягивания стеклянного волокна (1а) из покрытия (1b) путем разрезания покрытия (1b) в части (31) для удаления оболочки и перемещения части (13) для удержания оптического волокна в сторону от основного блока (12) устройства удаления оболочки в нагретом состоянии часть (31) для удаления оболочки выполнена с опорным элементом (43) нагревателя, на котором установлен нагреватель (42), опорный элемент (43) нагревателя размещен в углубленной приемной части, образованной в корпусе (12а), теплоизолирующий промежуток (55) образован между углубленной приемной частью (51) и опорным элементом (43) нагревателя, боковая поверхность опорного элемента (43) нагревателя и внутренняя поверхность боковой стенки (51b) углубленной приемной части (51) входят в контакт друг с другом посредством бокового ребра (61), выполненного на опорном элементе (43) нагревателя, Технический результат - обеспечение возможности удаления покрытия без проникновения воды и с меньшим тяговым усилием, которое требуется для удаления покрытия.

Изобретение относится к области сварки оптических волокон. Картридж для устройства сварки оптических волокон содержит основание в виде позиционируемой на рабочей поверхности пластины прямоугольной формы в плане, на лицевой поверхности которой по краям одних противоположно лежащих сторон расположены выступающие вверх призматической формы блоки с гнездами для закрепления стержневых электродов, выставленных соосно заостренными концами навстречу друг другу над центральной частью пластины между блоками.

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов.

Изобретение относится к одномодовым оптическим волокнам с низкими изгибными потерями. Оптическое волокно включает в себя центральную область стеклянной сердцевины, имеющую максимальное приращение Δ1макс показателя преломления в процентах.

Изобретение относится к коллиматорам, которые могут быть использованы для освещения жидкокристаллических экранов. Коллиматор выполнен в виде клиновидного оптического волновода, который имеет первый конец, второй конец, противолежащий первому концу.

Изобретение относится к области лазерной техники, в частности к устройствам для передачи лазерного излучения. Устройство содержит полый наносветовод, сердцевина которого заполнена водой или водным раствором с показателем преломления, большим показателя преломления оболочки.

Изобретение относится к области защищенных документов, таких как банкноты, паспорта и кредитные карты. Защищенный документ содержит непрозрачную подложку, оптический волновод, расположенный на подложке и/или в ней и по меньшей мере один ответвитель для введения света в волновод или выведения света из волновода.

Изобретение касается идентификации оптических волокон. Сущность заявленного решения заключается в том, что в каждое волокно оптической линии вводят оптический зондирующий сигнал. Последовательно считывают каждый указанный сигнал, прошедший через соответствующее волокно линии, и идентифицируют оптическое волокно в линии на основании полученного сигнала. При этом зондирующий сигнал для каждого волокна линии имеет неповторяющуюся последовательность оптических импульсов, которая характеризует номер оптического волокна в линии. Технический результат - автоматизация процесса идентификации оптических волокон, повышение достоверности идентификации концов оптических волокон независимо от их числа, расположения и цветовой маркировки. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к волоконной оптике. Фотонно-кристаллическое халькогенидное волокно состоит из центрального волноведущего стержня из халькогенидного стекла, микроструктурной волноведущей оболочки из чередующихся слоев халькогенидного стекла и воздушных зазоров и второй защитной микроструктурной оболочки из многокомпонентного стекла. Способ его изготовления включает предварительную вытяжку стержней. Далее формируют халькогенидную вставку путем укладки стержней из халькогенидного стекла с соответствующими воздушными зазорами, а затем укладывают внешние поддерживающие тонкостенные капилляры из многокомпонентного стекла в толстостенную трубку из многокомпонентного стекла. Технический результат - обеспечение высокой нелинейности. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к осветительному устройству. Устройство содержит источник света и линзу, размещенную перед источником света. Линза снабжена поверхностью входа света на стороне, обращенной к источнику света, и поверхностью выхода света на стороне, удаленной от источника света. Линза включает в себя некоторое количество полосковых взаимно соединенных вблизи вторых концов удлиненных световодных элементов, которые содержат поверхность входа света и поверхность выхода света. Световые лучи, излучаемые источником света, передаются в удлиненных световодных элементах за счет полного внутреннего отражения. Технический результат - уменьшение воспринимаемой яркости за счет увеличения поверхности выхода света относительно поверхности излучения света. 2 н. и 7 з.п. ф-лы, 12 ил.

Изобретение относится к оптическим волокнам с малыми изгибными потерями. Волокно содержит легированную диоксидом германия центральную область сердцевины, имеющую внешний радиус r1 и Δ1 показателя преломления. Первая область внутренней оболочки имеет внешний радиус r2 больше 8 мкм и Δ2 показателя преломления. Вторая область внешней оболочки окружает область внутренней оболочки, имеющую Δ3 показателя преломления, где Δ1>Δ3>Δ2. Разность между Δ3 и Δ2 больше чем 0,01. Волокно имеет отсечку 22-метрового кабеля меньше чем или равную 1260 нм, а r1/r2 больше или равно 0,25. 9 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к способам образования канала передачи оптического сигнала. Из материала, который выбирают исходя из длины волны используемого оптического излучения, изготавливают оптическую деталь, которая представляет собой волновод оптического излучения, выполненный в виде двух зеркально-симметричных дифракционных решеток и прямолинейного участка между ними. Берут кристалл, являющийся источником излучения VCSEL, и кристалл, являющийся приемником излучения PD, и приклеивают их на подложку. Наносят изолирующий слой или изолирующие слои до верхней плоскости кристаллов, известным способом формируют токопроводящие межсоединения от контактных площадок кристаллов, вскрывают изолирующие слои над излучающей и принимающей площадками соответствующих кристаллов и устанавливают оптическую деталь с рассчитанной точностью на соответствующее место. Деталь фиксируют полимерным слоем по периметру или тонким слоем фоторезиста, который наносят на контактируемые поверхности перед установкой оптической детали, и наносят изолирующие слои. Технический результат - упрощение в образовании канала для передачи оптического сигнала между компонентами электронного модуля, улучшение эксплуатационных характеристик этого канала. 5 ил.

Изобретение относится к области светотехники. Техническим результатом является повышение равномерности освещения. Оптический элемент включает в себя световод, в который подается свет от одного или более светодиодов в световой головке, расположенной на одном конце световода, и отражатель, расположенный на другом конце световода, способный к отражению света, падающего на отражатель. Световод дополнительно включает в себя призматическую поверхность, содержащую множество призм, причем каждая из призм расположена под углом к осевому направлению световода для направления света, излученного от световой головки, по направлению к выходному концу световода. Источник света включает в себя оптический элемент по любому из пп.1-12, и выполнен с возможностью переоснащения светильника, использующего источник света с нитью накаливания. 2 н. и 13 з.п. ф-лы, 8 ил.

Волновод // 2572900
Изобретение относится к волноводу, который может быть деформирован в требуемую форму и зафиксирован в этой форме за счет полимеризации материала. Деформируемый волновод содержит гибкую подложку волновода и полимеризуемую часть, при этом полимеризуемая часть встроена в гибкую подложку волновода и полимеризуемая часть содержит мономер, который позволяет полимеризуемой части образовать жесткое ребро через деформируемый волновод после полимеризации, причем жесткое ребро предназначено для поддержки оставшейся части деформируемого волновода. Источники света, такие как светодиоды и/или фотогальванические элементы, могут быть встроены в подложку волновода, чтобы волновод являлся осветительным устройством или концентратором солнечной энергии соответственно. Технический результат - создание волновода, которому можно с большей легкостью придать требуемую форму. 5 з.п. ф-лы, 19 ил.

Изобретение относится к светоизлучающей системе, которая содержит множество смежно расположенных светоизлучающих устройств. Каждое светоизлучающей устройство содержит пластинообразный световод, имеющий переднюю, заднюю и торцевые поверхности. Источник света расположен у пластинообразного световода в таком положении, что испускаемый свет входит в световод и распространяется в главном направлении, которое параллельно передней поверхности. Участок световода содержит трехмерную поверхностную структуру, обеспечивающую управляемый выход света через переднюю, заднюю и одну из торцевых поверхностей. Управляемый световой выход управляется относительно характеристик выходящего света. Технический результат - повышение равномерности освещения за счет уменьшения контрастных эффектов в виде темных линий между пограничными поверхностями световодов. 6 з.п. ф-лы, 9 ил.

Изобретение относится к коллиматору света и к осветительному прибору. Коллиматор (1) содержит диффузный отражающий слой и удлиненный световой волновод (100) длиной (wl), шириной (ww) и высотой (wh) волновода. Отношение размеров длины волновода к его ширине (ww) составляет wl/ww>1. Волновод содержит множество удлиненных полостей (110) длиной (cl), шириной (cw) и высотой (ch). Отношение размеров длины (cl) полости к ее ширине (cw) составляет cl/cw>1. Продольные оси (111) множества полостей (110) перпендикулярны к продольной оси (101) волновода. Изобретение также обеспечивает осветительный прибор (2) с использованием такого коллиматора (1). Технический результат - повышение равномерности выводимого света. 2 н. и 13 з.п. ф-лы, 13 ил.

Изобретение относится к области осветительных устройств, основанных на использовании волоконной оптики, и может использоваться в осветительных устройствах в светотехнике, в медицине для фототерапии и косметологии. Способ изготовления светорассеивающего волоконно-оптического элемента (ВОЭ) заключается в раздельной вытяжке стержней одинакового или взаимосогласующегося различного сечения 0,4-6,0 мм из штабиков круглого или многоугольного сечения, изготовленных из силикатных стекол с высоким и низким показателем преломления. Набирают пакет со случайным распределением стержней из стекол с высоким и низким показателем преломления в поперечном сечении. Соотношение высокопреломляющих и низкопреломляющих стержней в пакете от 1:10 до 10:1, причем размер поперечного сечения единичных волокон в ВОЭ составляет от 40 нм до 1000 нм. Пакет перетягивают в многожильные световоды (МЖС) с размером сечения от 50 мкм до 6 мм, из которых в дальнейшем изготавливают сверхмногожильные (СМЖС) и сверхсверхмногожильные (ССМЖС) световоды. Технический результат - упрощение процесса изготовления светорассеивающего волоконно-оптического элемента, снижение трудоемкости и повышение экономичности процесса изготовления. 2 н. и 2 з.п. ф-лы, 4 ил.
Наверх