Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления



Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления
Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления
Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления
Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления
Способ управления водородным показателем ph и окислительно-восстановительным потенциалом eh технологических жидкостей нефтепромыслов и устройство для его осуществления

 


Владельцы патента RU 2546736:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" (RU)

Изобретение относится к нефтяной промышленности с целью снижения скорости коррозионных процессов на металлической поверхности оборудования. Способ осуществляют путем обработки технологической жидкости электрическим током, затем поток жидкости разделяют на два разноименно заряженных потока, один из которых направляют в трубопровод подготовленной технологической жидкости, а другой собирают в емкость для слива. Устройство для управления электрохимическими параметрами технологических жидкостей включает корпус, в котором установлены электрод и мембрана, крышку с патрубком для ввода технологической среды с одной стороны и крышку с патрубком для отвода подготовленной жидкости с другой стороны, к которой прикреплен медный электрод, имеющий закругление в вершине, расположенный параллельно потоку поступающей жидкости на расстоянии одной трети длины корпуса от входного патрубка, в корпус устройства с помощью направляющих из диэлектрика вставлена мембрана, расположенная вокруг электрода, при этом корпус устройства подключен к отрицательному, а электрод - к положительному полюсу источника постоянного тока. Технический эффект - снижение скорости коррозии металла, увеличение срока эксплуатации нефтепромыслового оборудования. 2 н. и 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к нефтяной промышленности, в частности к добыче и транспорту нефти, в частности к способам изменения параметров технологических жидкостей с целью снижения скорости коррозионных процессов на металлической поверхности оборудования.

Известны способы снижения коррозионной агрессивности технологических сред путем введения в среду ингибиторов коррозии, которые тормозят анодную или катодную коррозионную реакцию [Рахманкулов Д.Л., Бугай Д.Е., Габитов А.И. и др. Ингибиторы коррозии. Том 1. Основы теории и практики применения. - Уфа: Изд-во «Реактив», 1997. - 296 с].

Недостаток таких способов состоит в том, что введение дополнительных реагентов зачастую вызывает накопление их в технологической системе и приводит к ее загрязнению.

Известен способ изменения физико-химических свойств среды с применением омагничивания воды [Способ магнитной активации и деионизации воды. RU 2136603 С1 МПК C02F 1/48, 22.04.1999]. Способ заключается в том, что воздействию подвергают поток воды, движущийся со скоростью не менее 20 см/с и пересекающий четыре участка.

Недостатком способа является невысокая эффективность и сложность управления электрохимическими параметрами технологических сред.

Известен способ безреагентного воздействия на электрохимические параметры среды с применением электрохимических ячеек для обработки растворов электролитов [Электрохимическая ячейка для обработки растворов электролитов. RU 2454489 С1 МПК С25В 9/08, C02F 1/46, 12.01.2011].

Недостатком способа является необходимость использования дополнительного раствора, на который производится воздействие, что повышает затраты на использование способа.

Наиболее близким является способ безреагентного изменения физико-химических свойств воды или водных растворов [Способ безреагентного изменения физико-химических свойств воды и/или водных растворов. RU 2155717 C1 МПК C02F 1/46, 28.01.2000], заключающийся в том, что, регулируя окислительно-восстановительный потенциал растворов, изменяют их активность в окислительно-восстановительных реакциях и таким образом оказывают направленное воздействие на различные технологические процессы.

Недостатком способа является его относительная дороговизна, связанная с приготовлением минерализованного водного раствора; низкая производительность в связи с изготовлением корпуса из неэлектропроводного материала, а также сравнительная сложность, связанная с тем, что изменение физико-химических свойств исходной воды или водных растворов ведут с использованием несообщающихся емкостей, размещенных одна в другой.

Известна установка для электрохимической активации воды. Установка содержит снабженный патрубками для раздельного отвода обработанной воды с отрицательным и положительным потенциалом диэлектрический корпус, разделенный перегородками на анодные и катодные камеры с размещенными в них анодами и катодами. Разделенные сепараторами катодные и анодные камеры снабжены электрически соединенными вставками из профилированного листового металла, выполненными в виде оппозитно установленных гофр и образующими каналы [Установка для электрохимической активации воды. RU 2277511 C1 МПК C02F 1/461, 31.01.2005].

Недостатком установки является низкая эффективность активации воды вследствие турбулентного движения обрабатываемой жидкости за счет использования вставок из профилированного листового металла.

Известны устройства для электрохимической активации воды и водных растворов. Для увеличения площади контакта воды с устройством центральный электрод имеет сложную конфигурацию [Устройство для электрохимической активации воды и водных растворов. RU 225.1532 C1 МПК C02F 1/46, 13.04.2004; устройство для электрохимической активации воды и водных растворов. RU 2277070 C1 МПК C02F 1/46, 07.02.2005].

Недостатком устройств является возникновение повышенного гидродинамического сопротивления внутри корпуса, что приводит к потере герметичности и пробою электрического тока по корпусу.

Наиболее близкой является установка для электрохимической активации воды. Установка содержит диафрагменный электролизер с вертикально расположенными цилиндрическим и стержневым электродами, между которыми расположена трубчатая диафрагма из эластичного материала, представляющего собой нетканое полотно, состоящее из 70% полипропилена и 30% полиэфира, закрепленная на металлическом сетчатом каркасе [Установка для электрохимической активации воды. RU 2438988 C2 МПК C02F 1/46, 19.12.2011].

Недостатком устройства является быстрая забивка отверстий диафрагмы вследствие высокой загрязненности продукции нефтепромыслов, что требует замены диафрагмы или устройства, а также повышенное гидродинамическое сопротивление внутри корпуса.

Задачей изобретения в части способа является разработка более дешевого и производительного способа управления электрохимическими параметрами технологических жидкостей нефтепромыслов с достижением следующего технического результата - снижение коррозионной активности жидкостей, снижение скорости коррозии металла за счет его поляризации, увеличение срока эксплуатации нефтепромыслового оборудования.

Задачей изобретения в части устройства является создание устройства для управления электрохимическими параметрами технологических жидкостей нефтепромыслов с достижением следующего технического результата - повышение долговечности эксплуатации устройства, снижение гидродинамического сопротивления потоку.

Поставленная задача решается тем, что в способе управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей путем электрохимического воздействия, согласно изобретению технологическую жидкость обрабатывают электрическим током в устройстве для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей, при этом регулируют величину пропускаемого тока от блока питания, скорость и направление потока при помощи вентилей, затем поток жидкости разделяют на два разноименно заряженных потока, один из которых направляют в трубопровод подготовленной технологической жидкости, а другой собирают в емкость для слива с возможностью дальнейшего использования в качестве жидкости, подпитывающей систему.

Поставленная задача решается тем, что устройство для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей, включающее корпус, в котором установлен электрод и мембрана, согласно изобретению имеет крышку с патрубком для ввода технологической среды с одной стороны, крышку с патрубком для отвода подготовленной жидкости с другой стороны, в нижней части устройства расположен патрубок для отвода неиспользованной жидкости, к крышке с патрубком для отвода подготовленной жидкости прикреплен медный электрод, имеющий закругление в вершине, расположенный параллельно потоку поступающей жидкости на расстоянии одной трети длины корпуса от входного патрубка, в корпус устройства с помощью направляющих из диэлектрика вставлена мембрана, расположенная вокруг электрода, при этом корпус устройства подключен к отрицательному, а электрод - к положительному полюсу источника постоянного тока.

При этом мембрана выполнена из поливинилхлорида, направляющие для мембраны выполнены из полиэтилена.

На фиг. 1 представлена технологическая схема способа управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей.

На фиг. 2 приведен чертеж устройства для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей. На фиг. 3 представлена поляризационная кривая стали 20 в модельном растворе №3. На фиг. 4 представлена поляризационная кривая стали 20 в модельном растворе №3 после его обработки в устройстве. На фиг. 5 представлен график зависимости скорости коррозии стали 20 в водной среде от ее окислительно-восстановительного потенциала.

Схема включает емкость 1 с подготовленной для обработки технологической жидкостью; вентили 2 для управления скоростью и направлением потока; дренажный патрубок 3; устройство 4 для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей; патрубок 5 для отвода подготовленной технологической среды; блок 6 питания постоянного тока; патрубок 7 для отвода неиспользующейся жидкости; емкость 8 для сбора неиспользующейся жидкости; систему промывки устройства, которая включает в себя отвод 9 и электроцентробежный насос 10.

Устройство 4 для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей состоит из медного электрода 11, имеющего закругление в вершине для снижения гидравлического сопротивления; мембраны 12 из поливинилхлорида, обеспечивающей электроосмотический переток гидроксил-ионов и ионов гидроксония; корпуса 13, выполненного из углеродистой конструкционной стали; стальной крышки 14 с патрубком 5 для отвода подготовленной технологической среды; патрубком 7 для отвода неиспользующейся жидкости; прокладки из диэлектрика 15 и диэлектрической втулки 16; направляющей 17, выполненной из полиэтилена, для мембраны; стальной крышки 18 с патрубком 19 для ввода обрабатываемой жидкости.

Медный электрод 11 прикрепляется к крышке 14 с помощью резьбового соединения. В корпус 13 устройства с помощью полиэтиленовых направляющих 17 вставляется мембрана 12 из поливинилхлорида. Далее после проверки установки мембраны 12 к корпусу 13 крепится крышка 18 с патрубком 19 для ввода обрабатываемой жидкости.

Материал корпуса устройства и центральный электрод выполнены из электропроводящих материалов (сталь и медь соответственно), в связи с чем сквозь поток проходят силовые токовые линии и повышается плотность тока на поверхности электродов (в прототипе корпус - диэлектрик, соответственно активация будет менее эффективна).

Технологический поток, попадая в устройство 4, проходит с обеих сторон мембраны 12 и обрабатывается электрическим током, протекающим между медным электродом 11, подключенным к положительной клемме источника 6 постоянного тока, и стальным корпусом 13, подключенным к отрицательной клемме. Поток жидкости разделяется на два разноименно заряженных потока, которые выходят из устройства 4 с помощью патрубка 7 для отвода неиспользующейся жидкости и патрубка 5 для отвода подготовленной технологической среды. Патрубок 7 для отвода неиспользующейся жидкости направляет неиспользованную жидкость в емкость 8 для слива, где происходит перераспределение заряда за счет контакта с воздухом до нейтральных значений. В дальнейшем сливная жидкость может использоваться как жидкость, подпитывающая систему. Поток из патрубка 5 для отвода подготовленной технологической среды направляется в трубопровод подготовленной технологической жидкости.

Количество вносимой активированной жидкости определяется в зависимости от требуемых выходных электрохимических характеристик жидкости.

Управление водородным показателем рН и окислительно-восстановительным потенциалом Eh технологической жидкости производится за счет изменения величины пропускаемого электрического тока от блока питания, изменения напряжения на электродах устройства; а также за счет управления скоростью и направлением потока изменением скорости прохождения жидкости в устройстве при помощи вентилей; изменения количества подготовленной жидкости, вносимого в технологический поток (например, чем больше католита добавить в поток, тем ниже будет его коррозионная активность.

Конструктивные особенности устройства для управления параметрами потока:

- изменение длины и диаметра медного электрода;

- изменение диаметра входного и выпускных патрубков.

При засорении пор мембраны возможно включение промывки системы с устройством посредством центробежного насоса.

Экспериментально установлено, что применение предложенного устройства для управления электрохимическими параметрами технологических сред позволяет изменить кинетику электрохимических процессов и вызвать поляризацию металлической поверхности нефтепромыслового оборудования и прекращение электрохимических коррозионных реакций.

Развитие коррозионного разрушения тесно связано с электродным потенциалом металла поверхности. Электродный потенциал поверхности представляет собой совокупности потенциалов, составляющих потенциал двойного электрического слоя. Наиболее близкий слой Гельмгольца или адсорбционный слой примыкает непосредственно к межфазной поверхности. Он имеет толщину δ, равную радиусу потенциалопределяющих ионов в несольватированном состоянии. В жидкости на небольшом удалении от поверхности находится диффузный слой или слой Гуи, в котором находятся противоионы, имеет толщину λ, которая зависит от свойств системы и может достигать очень больших значений. Электрокинетический потенциал ζ соответствует плоскости скольжения и является частью потенциала диффузного слоя. При движении дисперсных частиц наиболее удаленная часть диффузного слоя не участвует в движении и остается неподвижной, в связи с чем образуется плоскость скольжения. Поэтому появляется нескомпенсированность поверхностного заряда частицы и становятся возможными электрокинетические явления.

Электрокинетические явления на поверхности металла значительно зависят от водородного показателя (pH) и окислительно-восстановительного потенциала (Eh) среды, в которой находится металл. Управляя процессом электрохимической обработки технологической жидкости, возможно изменение ее физико-химических свойств. Изменение pH и Eh технологической жидкости в ту или иную сторону позволяет сместить электрокинетический потенциал (ζ-потенциал), образующийся на поверхности металла, и вызвать поляризацию, которая препятствует развитию коррозионных процессов.

Для прекращения коррозии стальной конструкции ее необходимо заполяризовать до обратимого (или равновесного) потенциала железа в данном электролите. Обратимый потенциал железа в электролитах может быть рассчитан по уравнению Нернста

,

где V F в о - стандартный потенциал железа;

R - газовая постоянная;

Т - абсолютная температура;

n - валентность;

F - число Фарадея;

α F e 2 + - активность ионов железа в приэлектродном слое электролита.

Исследования скорости коррозии стали 20 проводились в модели пластовой воды (модельный раствор №3 ГОСТ 9.502-82 (Na2SO4 - 213,0 мг/дм3, NaHCO3 - от 210 до 336 мг/дм3, CaCl2 - 500 мг/дм3). Перед испытанием образцы зачищали шлифовальной бумагой, обезжиривали и погружали в испытываемую среду. Снятие поляризационных кривых проводилось с помощью потенциостата в трехэлектродной электрохимической ячейке, состоящей из рабочего электрода из стали 20, вспомогательного платинового электрода и хлорсеребряного электрода сравнения.

Скорость коррозии определяли методом тафелевской экстраполяции поляризационных кривых

,

aa, ba, ak, bk - тафелевские константы, определяемые графически,

i - плотность тока.

На поляризационных кривых (фиг. 3, 4), построенных для стали 20 в модельном растворе №3, видно смещение потенциала коррозии после обработки среды в устройстве в более благородную область.

Проведенные исследования показали, что изменение окислительно-восстановительного потенциала на 400 мВ позволяет снизить скорость коррозии стали 20 почти в 5 раз (фиг. 5).

Метод управления электрохимическими параметрами технологической среды, основанный на изменении окислительно-восстановительного потенциала и pH среды, позволит смещать электрокинетический потенциал двойного электрического слоя металла до тех пор, пока анодная реакция растворения металла и катодная реакция деполяризации станут энергетически невыгодными, что, в свою очередь, приведет к процессу поляризации металла.

1. Способ управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей нефтепромыслов путем электрохимического воздействия, отличающийся тем, что технологическую жидкость обрабатывают электрическим током в устройстве для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей, при этом регулируют величину пропускаемого электрического тока от блока питания, скорость и направление потока при помощи вентилей, затем поток жидкости разделяют на два разноименно заряженных потока, один из которых направляют в трубопровод подготовленной технологической жидкости, а другой собирают в емкость для слива с возможностью дальнейшего использования в качестве жидкости, подпитывающей систему.

2. Устройство для управления водородным показателем рН и окислительно-восстановительным потенциалом Eh технологических жидкостей нефтепромыслов, включающее корпус, в котором установлены электрод и мембрана, отличающееся тем, что устройство имеет крышку с патрубком для ввода технологической среды с одной стороны, крышку с патрубком для отвода подготовленной жидкости с другой стороны, в нижней части устройства расположен патрубок для отвода неиспользованной жидкости, к крышке с патрубком для отвода подготовленной жидкости прикреплен электрод, имеющий закругление в вершине, расположенный параллельно потоку поступающей жидкости на расстоянии одной трети длины корпуса от входного патрубка, в корпус устройства с помощью направляющих из диэлектрика вставлена мембрана, расположенная вокруг электрода, при этом корпус устройства подключен к отрицательному, а электрод - к положительному полюсу источника постоянного тока.

3. Устройство по п. 2, отличающееся тем, что электрод выполнен из меди.

4. Устройство по п. 2, отличающееся тем, что мембрана выполнена из поливинилхлорида.



 

Похожие патенты:

Изобретение относится к устройствам для электрохимической очистки воды. Устройство содержит одно или несколько устройств для электрохимической очистки воды с нерастворимыми или растворимыми электродами, один или несколько магнитов, источник электропитания и управления.

Изобретение относится к области экологии. Предложенный изолирующий материал включает глину, известковый материал, нефтяной шлам и буровой шлам при следующем содержании компонентов, вес.

Изобретение относится к области экологии и предназначено для обезвреживания, рекуперации и утилизации промышленных отходов и некондиционных продуктов (солома, опилки, ядохимикаты), сточных вод, растворимых, малорастворимых и нерастворимых органических веществ.

Изобретение относится к устройствам очистки воды и может найти применение в быту для очистки и обеззараживания питьевой воды. Устройство содержит корпус, выполненный из диэлектрического материала, преимущественно цилиндрической формы, с полостью внутри, две крышки: входную и выходную, установленные на торцах корпуса, входной и выходной топливные штуцера с подводящим и отводящим каналами, магнитную систему, образованную двумя постоянными магнитами кольцевой формы, размещенными в корпусе соосно друг за другом с зазором, перегородку, разделяющую полость на две рабочие полости: первую и вторую, центробежную гидротурбину, рабочее колесо которой установлено внутри второй рабочей полости, первый кольцевой магнит центрирован во входной крышке, перегородка выполнена с двумя центрирующими цилиндрическими выступами с обеих сторон, один из которых предназначен для центрирования второго постоянного магнита, а второй цилиндрический выступ служит для установки ступицы рабочего колеса центробежной гидротурбины, в перегородке по периферии выполнена кольцевая полость, соединенная радиальными отверстиями с несквозным заглушенным осевым отверстием, которое радиальными отверстиями сообщатся с входной полостью гидротурбины, выполненной в ее ступице, которая, в свою очередь, выходными радиальными отверстиями сообщается с полостью рабочего колеса центробежной гидротурбины.

Изобретение относится к области пищевой промышленности и предназначено для получения Байкальской питьевой воды. Способ включает забор глубинной воды из озера Байкал, ее фильтрацию, стерилизацию, розлив в емкость и укупорку.

Изобретение относится к области ионообменной водоподготовки и водоочистки. Предложен способ противоточной регенерации ионообменных материалов.

Изобретение относится к электростатической обработке жидкостей и изменению свойств жидкости, формированию центров кристаллизации или коагуляции. Способ обработки жидкости заключается в электростатическом воздействии через центральный электрод 8 сдвоенного конденсатора, имеющий контакт с жидкостью и не имеющий непосредственного подключения к источнику питания.

Изобретение относится к сельскому хозяйству, а именно к способу выращивания зеленых гидропонных кормов, включающему обработку посевного материала активированной водой - католитом.

Изобретение может быть использовано в промышленном производстве меламина из мочевины. Для осуществления способа проводят две стадии термического гидролиза сточной воды.
Изобретение относится к аэрации и может быть использовано при очистке сточных и промышленных вод. Способ ввода воздуха в флотомашину включает эжекционный ввод воздуха и последующую его диспергацию.

Изобретение относится к способу очистки кислых солевых растворов, в частности, образующихся при комплексной переработке апатита с получением концентрата редкоземельных металлов (РЗМ), от примесей фосфора, фтора и щелочных металлов. Способ включает осаждение фосфора, фтора в виде фосфатов и фторидов кальция, а щелочных металлов в виде кремнефторидов, при этом перед осаждением фосфатов и фторидов кальция и кремнефторидов щелочных металлов кислоту одновременно с РЗМ селективно экстрагируют в органический экстрагент, реэкстрагируют ценный компонент из органического экстракта, а после осаждения фосфатов и фторидов кальция и кремнефторидов щелочных металлов кислоту реэкстрагируют из экстракта в водный раствор. Указанный способ позволяет избавляться от примесей фосфора, фтора и щелочных металлов, извлекать РЗМ без потерь и регенерировать кислоту. 3 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к области охраны окружающей среды, в частности к обезвреживанию хозяйственно-бытовых сточных вод. Сточную воду, пропущенную через первичный отстойник, аэротенки, вторичный отстойник, очищают нанокластерами оксигидрата железа (III) от тяжелых металлов в течение 60 минут в контактном резервуаре с FeS фракцией 3 мм, массой 55536,8 г с подкислением воды технической серной кислотой в количестве 0,1 л/с, после чего ее подают в горизонтальный отстойник с электродной системой, установленной по всему его объему и состоящей из 7 плоских углеграфитовых пластин длиной 30 м, толщиной 2-3 мм с расстоянием между пластинами 5 см и медных шин между пластинами, где выдерживают в течение пяти часов, воздействуя нанотоками 25 нА. Технический результат - снижение содержания неорганических, органических токсикантов и патогенной микрофлоры в сточных водах, позволяющее сбрасывать их в естественный природный резервуар. 4 ил., 6 табл.
Изобретение может быть использовано при осветлении и утилизации промывных вод фильтровальных сооружений станций водоподготовки. Для осуществления способа проводят коагулирование, отстаивание в двухсекционном резервуаре-усреднителе и повторное использование очищенных вод в замкнутом цикле. В качестве коагулянта используют полимерколлоидный комплексный коагулянт, предварительно полученный путем смешения водорастворимого полиэлектролита-полидиметилдиаллиламмоний хлорида (ПДДАХ), полиоксихлорида алюминия (ПОХА) и сополимера акриламида с четвертичной аммониевой солью диметиламиноэтилметакрилата (АСДМАЭМ) с молекулярной массой 8-10 млн.ед. и степенью заряда 38-40 при их массовом соотношении 2:1:1. Способ обеспечивает повышение эффективности агрегатирования взвешенных веществ в отстойниках, увеличение производительности и технологической эффективности осветления и утилизации условно-чистых вод, обеспечивает экологическую безопасность работы станции водоподготовки. 6 табл., 1 пр.

Компактный передвижной концентратор жидкости содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие. Проточный канал содержит суженный участок, который увеличивает скорость протекания газа по проточному каналу. Через впускной патрубок жидкости впрыскивают жидкость в поток газа перед суженным участком таким образом, чтобы газожидкостная смесь полностью перемешивалась в проточном канале, вызывая частичное испарение жидкости. Туманоуловитель или газопромывной аппарат за суженным участком удаляет из потока газа унесенные им капельки жидкости и возвращает собранную жидкость во впускной патрубок жидкости по рециркуляционному контуру. Свежую жидкость, поступившую на концентрирование, также подают в рециркуляционный контур со скоростью, достаточно большой, чтобы компенсировать испарившееся в проточном канале количество жидкости. Предложенный компактный передвижной концентратор сточных вод легко можно подключать к источникам отбросного тепла и использовать для концентрирования жидкости. 4 н. и 26 з.п. ф-лы, 17 ил.

Изобретение относится к области устройств для отведения воды. Устройство содержит резервуар с силовым замыканием с цилиндром для самотека воды, имеющим впускное отверстие и выпускное отверстие. Впускное отверстие образует водосливной порог. Внутри цилиндра установлен соединенный с поплавком посредством направляющего штока дроссельный элемент. Дроссельный элемент в выпускном отверстии имеет фиксированный элемент и подвижный относительно фиксированного элемента элемент, соединенный с направляющим штоком. Между резервуаром с силовым замыканием и цилиндром для самотека воды расположены вертикальные щитки, демпфирующие закручивание воды. Резервуар с силовым замыканием имеет расположенный над водосливным порогом переливной выпуск. Обеспечивается минимальное образование пены. 4 з.п. ф-лы, 5 ил.

Изобретение относится к системе очистки воды с гидравлическим управлением и может быть использовано для обработки воды, преимущественно питьевой воды, с возможностью реализации алгоритмов различных переключений потоков воды и удаленного гидравлического управления системой. Система очистки воды с гидравлическим управлением снабжена эжекционным устройством, установленным с возможностью обеспечения подачи очищенной воды потребителю на удаленное расстояние от накопительной емкости. Техническим результатом, достигаемым при осуществлении заявляемого изобретения, является гидродинамическая компенсация перепадов длины и высоты между точкой подачи очищенной воды и накопительной емкостью системы очистки воды. 4 з.п. ф-лы, 1 ил.

Изобретение относится к водоочистным устройствам и может быть использовано для очистки сточных вод предприятий молочных заводов и фабрик, мясоперерабатывающих и рыбоперерабатывающих заводов, птицефабрик, маслозаводов, нефтеперерабатывающих заводов, предприятий по производству алкогольных и безалкогольных напитков, городских сточных вод. Устройство очистки сточных вод содержит флотатор 2 и биореактор 14, состоящий из двух, сообщенных между собой секций, где первая, считая по ходу сточных вод, секция биологической очистки сточных вод 21, а вторая - секция фильтрации 22 сточных вод с блоком мембран 20. Выход эрлифта ила 16 сообщен со входом флотатора, воздушный вход эрлифта сообщен с одним из выходов компрессора 9, свободный вход эрлифта ила сообщен с выходом ила биореактора, дно флотатора имеет наклон в сторону биореактора и кармана донного осадка 13, расположенного в нижней части дна флотатора. Технический результат - упрощение обслуживания, увеличение скорости очистки сточных вод за счет уменьшения или отсутствия трубопроводов между элементами устройства. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для очистки природных вод и сточных вод нефтеперерабатывающих заводов. Флокулянт на основе полиакриламида включает полиакриламид, использованный в виде водного раствора с молекулярной массой 30 млн, при степени гидролиза - 70% и рабочем диапазоне pH 5-11, при этом полимер набухал в воде при комнатной температуре в течение 1 суток, модифицирующий агент - пропиленгликоль и воду при следующем соотношении компонентов, в мас. %: полиакриламид 0,5-0,7; пропиленгликоль 0,15-0,3; вода - остальное. Для приготовления флокулянта в водный раствор полиакриламида с указанными характеристиками при комнатной температуре при перемешивании вводят пропиленгликоль при заявленном соотношении компонентов и используют для флокуляции загрязненных вод. Флокулянт обеспечивает повышение скорости и степени осветления очищаемых сточных вод за счет улучшенной флокулирующей способности состава реагента. 1 табл.

Изобретение относится к очистке хозяйственно-бытовых и промышленных сточных вод. Способ очистки сточных вод включает усреднение потока воды и биологическую очистку с активным илом. Исходные сточные воды подают через самоочищающееся фильтрующее устройство для процеживания, а механически очищенные сточные воды сливают в резервуар-усреднитель и подают в емкость биологической очистки. С помощью погружных мембранных кассет с мембранными модулями осуществляют разделение очищенной воды и активного ила. Отделение пермеата осуществляют действием слабого вакуума. Пермеат подают в резервуар чистой воды и далее самотеком на установку ультрафиолетового обеззараживания. Обеззараженную воду отводят в водный объект. Непрерывную аэрацию мембранных кассет с мембранными модулями осуществляют с помощью группы воздуходувок мембранного блока. Мембранные модули периодически промывают и чередуют с режимами релаксации. Также осуществляют периодическую профилактическую очистку мембранных кассет и периодическую восстановительную очистку. Изобретение позволяет улучшить качество очищенных стоков и обеспечить релаксацию используемых устройств. 2 ил.

Изобретение относится к способам очистки сточных вод от ионов хрома (VI) адсорбцией и может найти применение в цветной и черной металлургии, в производстве хрома и его соединений, для очистки стоков гальванических, кожевенных производств. Способ очистки сточных вод от ионов хрома (VI) включает пропускание сточных вод через слой адсорбента при 0,5≤pH≤0,9. В качестве адсорбента используют углеродный адсорбент размером частиц 0,5-2 мм при суммарной пористости не менее 0,5 см3/г и удельной поверхности не менее 500 м2/г, полученный на основе длиннопламенного каменного угля. Использование заявляемого изобретения позволяет производить очистку сточных вод от соединений хрома (VI) в одну стадию (без восстановления до хрома (III)) с применением доступных и недорогих адсорбентов, не требующих дополнительной обработки и обеспечивающих полное количественное удаление ионов хрома (VI). Технический результат заключается в повышении степени очистки сточных вод от ионов хрома (VI) за счет их адсорбции на углеродном адсорбенте. 4 ил., 1 табл., 4 пр.
Наверх