Металлорежущий станок

Станок содержит станину, шпиндельную головку, состоящую из соосно расположенных в корпусе приводного электродвигателя и инструментального шпинделя для закрепления фрезы, размещенные на станине стол для закрепления заготовки и механизм параллельной кинематики для перемещения шпиндельной головки, выполненный в виде вертикальных направляющих с установленными на них с возможностью перемещения салазками, и шарнирно-рычажных звеньев, шарнирно соединенных с корпусом шпиндельной головки и салазками. Для упрощения конструкции при сохранении высоких динамических характеристик станина выполнена Т-образной формы с продольной и поперечной частями, расположенными в горизонтальной плоскости, вертикальные направляющие выполнены в виде двух стоек Т-образного профиля, закрепленных оппозитно друг другу на поперечной части станины, шпиндельная головка расположена между стойками, и плоскость ее перемещения расположена в плоскости стоек, при этом шпиндельный узел выполнен полым и установлен в упорном подшипнике с устройством предварительного натяга для упорных подшипников и с предохранительным уплотнением. 6 ил.

 

Изобретение относится к металлообработке, более конкретно к металлорежущим станкам с числовым программным управлением.

Наиболее близким по технической сущности и достигаемому результату является высокоскоростной металлорежущий пятикоординатный обрабатывающий центр по патенту РФ №2285602 - прототип, который предназначен для комплексной обработки деталей и содержит суппорт шпинделя со шпиндельной головкой, станину, несущую систему для установки и перемещения суппорта шпинделя вдоль первой и второй перпендикулярных горизонтальных осей.

Недостатками такой конструкции является ее сложность и как следствие высокая стоимость.

Технически достижимый результат - упрощение конструкции при одновременном достижении высоких динамических и точностных характеристик, а также уменьшение металлоемкости, что вместе с упрощением конструкции должно обеспечить снижение его себестоимости и упрощение эксплуатации, а также уменьшение энергопотребления.

Это достигается тем, что в обрабатывающем центре, содержащем станину, инструментальный шпиндель со шпиндельной головкой, салазки для перемещения шпинделя, станина выполнена Т-образной формы и состоит из двух частей, при этом на первой части станины оппозитно друг другу крепятся Т-образиого профиля стойки, между которыми расположен инструментальный шпиндель, корпус которого шарнирно соединен с элементами механизма параллельной кинематики, представляющими собой шарнирно-рычажные звенья, которые обеспечивают перемещение инструментального шпинделя по двум координатам в вертикальной плоскости за счет вертикальных перемещений салазок, охватывающих верхние полочки Т-образного профиля стоек, причем салазки по стойкам перемещаются за счет передачи винт-гайка, при этом шарнирно-рычажные звенья шарнирно связаны с салазками, а для предотвращения попадания стружки на элементы механизма параллельной кинематики на первой части станины, по ее периметру, закреплен кожух, выполненный в виде поверхности прямоугольного параллелепипеда, охватывающей пространство размещения стоек с инструментальным шпинделем, который содержит приводной электродвигатель и соосно расположенный с ним шпиндель для закрепления инструмента, например фрезы, а на второй части станины, расположенной в горизонтальной плоскости первой части станины и перпендикулярно ей, установлен суппорт для перемещения в горизонтальной плоскости стола, служащего для закрепления заготовки сложного обрабатываемого контура, при этом суппорт перемещается по направляющим, параллельным между собой и жестко закрепленным на другой части Т-образной формы станины, перпендикулярно вертикальной плоскости перемещения инструментального шпинделя, а на суппорте перпендикулярно горизонтальной плоскости его перемещения, и с возможностью поворота вокруг своей оси установлен стол для закрепления заготовки.

На фиг.1 представлена схема обрабатывающего центра, на фиг.2 - схема высокоскоростного шпиндельного узла, на фиг.3 - конструкция гидростатической опоры шпиндельного узла, на фиг.4 - схема уплотнения для высокоскоростного шпиндельного узла, на фиг.5 - схема подачи охлаждающей жидкости в уплотнение с естественной циркуляцией; на фиг.6 - схема подачи охлаждающей жидкости в уплотнение с принудительной циркуляцией.

Обрабатывающий центр содержит станину Т-образной формы, состоящую из двух частей. На первой части 1 станины оппозитно друг другу крепятся Т-образного профиля стойки 3 и 4, между которыми расположен инструментальный шпиндель 10, корпус которого шарнирно соединен (на чертеже шарниры не показаны) с элементами механизма параллельной кинематики, представляющими собой шарнирно-рычажные звенья 8 и 9, обеспечивающими перемещение инструментального шпинделя 10 по двум координатам в вертикальной плоскости за счет вертикальных перемещений салазок 6 и 7, охватывающих верхние полочки Т-образного профиля стоек 3 и 4. Салазки 6 и 7 по стойкам 3 и 4 перемещаются за счет передачи винт-гайка (на чертеже не показано), при этом шарнирно-рычажные звенья 8 и 9 шарнирно связаны с салазками 6 и 7. Для предотвращения попадания стружки на элементы механизма параллельной кинематики на первой части 1 станины, по ее периметру, закреплен кожух, выполненный в виде поверхности прямоугольного параллелепипеда 5, охватывающей пространство размещения стоек 3 и 4 с инструментальным шпинделем 10. Инструментальный шпиндель 10 содержит приводной электродвигатель 11 и соосно расположенный с ним высокоскоростной шпиндельный узел 12 для закрепления инструмента, например фрезы.

На второй части 2 станины, расположенной в горизонтальной плоскости первой части 1 станины и перпендикулярно ей, установлен суппорт 14 для перемещения в горизонтальной плоскости стола 15, служащего для закрепления заготовки 16 сложного обрабатываемого контура (привод перемещения суппорта 14, например, типа передачи винт-гайка, на чертеже не показан). Суппорт 14 перемещается по направляющим 13, параллельным между собой и жестко закрепленным на другой части 2 Т-образной формы станины, перпендикулярно вертикальной плоскости перемещения инструментального шпинделя 10. На суппорте 14 перпендикулярно горизонтальной плоскости его перемещения и с возможностью поворота вокруг своей оси установлен стол 15 для закрепления заготовки 16 (привод вращения стола 15 на чертеже не показан).

Высокоскоростной шпиндельный узел 12 включает в себя соосно расположенный внутри подшипниковых узлов шпиндель, выполненный полым и установленный в упорном шариковом подшипнике 20 с устройством 19 предварительного натяга для упорных подшипников и радиально-упорном роликовом подшипнике, внутреннее кольцо 22 которого контактирует с поверхностью шпинделя 12 по конической поверхности и поджимается с левой стороны, соосной шпинделю, втулкой 21 посредством гаек 17 и 18, а с правой - расположенной перпендикулярно оси шпинделя крышкой 23 уплотнением.

В передней опоре шпинделя предусмотрено устройство 19 предварительного натяга, которое позволяет компенсировать износ деталей шпиндельного узла. В прецизионных станках используют гидростатические подшипники, которые создают высокую точность вращения шпинделя. Их несущая способность, жесткость и точность зависят от величины зазоров, давления, схемы опоры.

На фиг.3 показана конструкция гидростатической опоры, которая может заменить радиально-упорный роликовый подшипник шпинделя. Гидростатическая опора содержит корпус, выполненный в виде охватывающей шпиндель цилиндрической втулки, в которой выполнены, по крайней мере, три гидравлических, радиалыю расположенных элемента, каждый из которых состоит из соосно расположенных подводящего отверстия 25, и кармана 24, взаимодействующего со шпинделем посредством масляного клина. Масло под давлением подводится в карманы 24 через отверстие 25 и вытесняется из этих карманов через зазор между шейкой корпуса и внешней поверхностью шпинделя через радиально расположенные выходные отверстия 26, выполненные в корпусе по числу, равному количеству гидравлических, радиально расположенных элементов, после чего в резервуар (на чертеже не показано). Карманы 24 представляют собой углубления, например, выполненные в виде отверстий круглой или некруглой формы, которые, в свою очередь, соединены через дроссель и фильтр с подающей магистралью с насосом, размещенным в масленой ванне (на чертеже не показано).

Система подачи охлаждающей жидкости к предохранительному уплотнению для высокоскоростного шпиндельного узла (фиг.4) содержит камеру 23 уплотнения с отверстиями для входа и выхода охлаждающей жидкости к предохранительному уплотнению.

Система естественной циркуляции запирающей жидкости (фиг.5) выполнена в виде камеры 23 предохранительного уплотнения, вход которой связан с теплообменником 27, а выход - с пневмогидроаккумулятором 29 через манометр 32. Теплообменник 27 через запорную арматуру 33 и фильтр 28 также соединен с пневмогидроаккумулятором 29, который, в свою очередь, соединен с баком 30, имеющим воронку 31, и соединен через байпас с запорной арматурой через манометр 34 с пневмогидроаккумулятором 29.

Система принудительной циркуляции запирающей жидкости (фиг.6) выполнена в виде камеры 23 предохранительного уплотнения, вход которой связан с теплообменником 27 через манометр 37 и фильтр 28, которые последовательно соединены с регулирующим клапаном 34, который, в свою очередь, последовательно соединен с баком 30, имеющим воронку 31. На выходе теплообменника 27 установлен насос 35 с обратным клапаном 36, последовательно соединенным с запорной арматурой 33 и с пневмогидроаккумулятором 29, связанным с выходом камеры 23 предохранительного уплотнения, при этом давление в системе контролируется манометром 32.

Обрабатывающий центр работает следующим образом.

Инструментальный шпиндель 10, перемещаясь по сложной двухкоординатной траектории, за счет шарнирной связи с элементами механизма параллельной кинематики, обрабатывает при помощи высокоскоростного шпиндельного узла 12 с закрепленным в нем инструментом, например фрезой, сложный профиль заготовки 16. При этом перемещение заготовки 16 в направлении, перпендикулярном плоскости обработки, осуществляется посредством перемещения суппорта 14, а поворот заготовки 16 вокруг своей оси осуществляется приводом вращения стола 15, служащего для ее закрепления. Основной принцип высокоскоростной обработки (ВСО): малое сечение среза, снимаемое с высокой скоростью резания, и соответственно высокие обороты шпиндельного узла и высокая минутная подача. Предлагаемый станок для ВСО имеет скорость вращения шпинделя 12÷25 тыс.оборотов в минуту и оснащен предохранительным уплотнением опор шпинделя, а скорости подач 40÷60 м/мин, при этом скорость быстрых перемещений - до 90 м/мин. Станок отрабатывает малые перемещения (от 5 до 20 мкм) и имеет повышенную жесткость.

Имея возможность вести лезвийную обработку закаленных сталей, можно обеспечить качество поверхности, соизмеримое с электроэрозионной обработкой. Это позволяет пересмотреть структуру производственного процесса изготовления формообразующих элементов пресс-форм и штампов. Но главный эффект ВСО заключается не в сокращении машинного времени за счет интенсификации режимов резания, а в общем упрощении производственного процесса и в повышении качества обработки. Условием успеха в высокоскоростной обработке может стать правильный выбор всех составляющих факторов, участвующих в этом процессе: станок, система ЧПУ, режущий инструмент, вспомогательный инструмент с системой закрепления инструмента, система программирования, квалификация технолога программиста и оператора станка с ЧПУ.

Высокоскоростной шпиндельный узел 12 работает следующим образом.

Масло под давлением подводится в карманы 24 через отверстия 25. При вращении шпинделя масло вытесняется из этих карманов через зазор между шейкой и подшипником и из отверстия 26 в резервуар. При увеличении внешней силы, стремящейся уменьшить зазор, возрастает давление масла в резервуаре, и зазор восстанавливается. Гидростатические подшипники стабилизируют режим трения со смазочным материалом при самых малых скоростях вращения. Шпиндель изготовлен из стали 45 с улучшением (закалка и высокий отпуск), а при повышенных силовых нагрузках применяют сталь 45 с низким отпуском. Для шпинделей, требующих высокой поверхностной твердости и вязкой сердцевины, применяют сталь 45 с закалкой ТВЧ и низким отпуском. Передние концы шпинделей станков общего назначения стандартизированы. Шпиндельные узлы должны обладать высоким качеством. Поэтому подшипники качения, используемые в опорах шпинделей, должны быть высоких классов точности. Выбор класса точности подшипника определяется допуском на биение исполнительных поверхностей шпинделя (коническое отверстие и базирующие поверхности для установки патронов, для крепления инструмента и заготовок), который зависит от требуемой точности обработки. Обычно в передней опоре используют более точные подшипники, чем в задней.

Система подачи охлаждающей жидкости к предохранительному уплотнению 23 высокоскоростного шпиндельного узла 12 работает следующим образом.

Схему обвязки с естественной циркуляцией запирающей жидкости (фиг.5) рекомендуется применять при работе уплотнения в следующих условиях: частота вращения вала до 5 с-1; температура рабочей среды в аппарате от -30 до +150°С. Давление запирающей жидкости поддерживается за счет давления в аппарате, если среда не вредная и не взрывоопасная, или за счет подачи азота под давлением при взрывоопасной и токсичной среде. Запирающая жидкость циркулирует в замкнутом контуре вследствие разности плотностей нагретых и охлажденных слоев жидкости на разных уровнях. Для лучшей циркуляции холодильник и пневмогидроаккумулятор следует устанавливать в непосредственной близости от уплотнения на высоте не менее 2 м.

Схему обвязки с принудительной циркуляцией уплотняющей жидкости (фиг.6) рекомендуется применять при диаметре уплотняемого вала более 80 мм, частоте вращения не менее 5 с-1 и температуре рабочей среды в аппарате до 150°С. Запирающая жидкость подается в уплотнение специальным насосом или централизованно из общей магистрали. Для сглаживания пульсаций давления и поддержания работоспособности уплотнения при кратковременных остановках насоса в схему обвязки включен ресивер.

Давление запирающей жидкости поддерживается за счет давления в аппарате, если среда не вредная и не взрывоопасная, или за счет подачи азота под давлением при взрывоопасной и токсичной среде. Запирающая жидкость циркулирует в замкнутом контуре вследствие разности плотностей нагретых и охлажденных слоев жидкости на разных уровнях. Для лучшей циркуляции пневмогидроаккумулятор 29 следует устанавливать в непосредственной близости от уплотнения, на высоте не менее 2 м. В качестве запирающей жидкости применяют обессоленную воду, масло или другие жидкости, химически совместимые с рабочей средой, но не вредные и не взрывоопасные. Температура запирающей жидкости на выходе из уплотнения не должна превышать 80°С. Давление запирающей жидкости должно быть выше давления среды в аппарате на 0,05-0,1 МПа.

Металлорежущий станок, содержащий станину, шпиндельную головку, состоящую из соосно расположенных в корпусе приводного электродвигателя и инструментального шпинделя для закрепления фрезы, размещенные на станине стол для закрепления заготовки и механизм параллельной кинематики для перемещения шпиндельной головки, выполненный в виде вертикальных направляющих с установленными на них с возможностью перемещения салазками, и шарнирно-рычажных звеньев, шарнирно соединенных с корпусом шпиндельной головки и салазками, отличающийся тем, что станина выполнена Т-образной формы с продольной и поперечной частями, расположенными в горизонтальной плоскости, вертикальные направляющие выполнены в виде двух стоек Т-образного профиля, закрепленных оппозитно друг другу на поперечной части станины, шпиндельная головка расположена между стойками и плоскость ее перемещения расположена в плоскости стоек, салазки оснащены передачей винт-гайка и размещены на верхних полочках Т-образного профиля стоек, а стол для закрепления заготовки выполнен поворотным в горизонтальной плоскости и размещен на суппорте, выполненном с возможностью перемещения по горизонтальным направляющим, жестко закрепленным на продольной части станины параллельно друг другу и перпендикулярно плоскости перемещения шпиндельной головки, при этом шпиндельный узел выполнен полым и установлен в упорном подшипнике с устройством предварительного натяга для упорных подшипников и с предохранительным уплотнением, причем в передней опоре шпинделя предусмотрено устройство предварительного натяга для компенсации износа деталей шпиндельного узла, причем упорный подшипник выполнен в виде гидростатической опоры, которая содержит корпус в виде охватывающей шпиндель цилиндрической втулки, в которой выполнены по крайней мере три гидравлических радиально расположенных элемента, каждый из которых состоит из соосно расположенных подводящего отверстия и кармана, взаимодействующего со шпинделем посредством масляного клина, а между шейкой корпуса и внешней поверхностью шпинделя радиально расположены выходные отверстия, выполненные в корпусе по числу, равному количеству гидравлических радиально расположенных элементов, при этом карманы выполнены в виде углублений, например в виде отверстий круглой или некруглой формы, которые соединены через дроссель и фильтр с подающей магистралью с насосом, размещенным в масляной ванне, при этом система подачи охлаждающей жидкости к предохранительному уплотнению содержит корпус и камеру с отверстиями для входа и выхода охлаждающей жидкости к предохранительному уплотнению, камера предохранительного уплотнения имеет вход, который связан с теплообменником через манометр и фильтр, которые последовательно соединены с регулирующим клапаном, последовательно соединенным с баком, а выход - с пневмогидроаккумулятором через манометр, при этом теплообменник через запорную арматуру и фильтр соединен с пневмогидроаккумулятором, который соединен с упомянутым баком, а на выходе теплообменника установлен насос с обратным клапаном, последовательно соединенным с запорной арматурой и с пневмогидроаккумулятором.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано для прецизионной обработки фасонных поверхностей деталей. Станок содержит протяженную станину коробчатого типа с горизонтальными направляющими, на одном из концов которой перпендикулярно ей закреплена вертикальная стойка с вертикальными направляющими, на которых с возможностью перемещения в вертикальной плоскости размещена шпиндельная бабка с электродвигателем и расточной головкой, установленные на станине с возможностью перемещения по ее направляющим нижние салазки и верхние салазки, установленные с возможностью перемещения в плоскости, перпендикулярной направляющим станины, а также поворотный стол с монтажной плитой, закрепленный на верхних салазках, для базирования заготовки.

Отводимый шпиндель для металлорежущих станков состоит из вала, на котором установлен по меньшей мере один передний узел, образованный вращающейся втулкой, связанной посредством подшипников с неподвижной частью конструкции станка, причем передний узел выполнен с возможностью его удаления путем извлечения наружу или перемещения внутрь, в результате чего остается пространство, в которое можно поместить задний вращающийся вал головки, а также настоящее изобретение относится к металлорежущим станкам, оснащенным таким отводимым шпинделем.

Металлорежущий станок содержит протяженную станину коробчатого типа с горизонтальными направляющими, на одном из концов которой перпендикулярно ей закреплена вертикальная стойка с вертикальными направляющими для перемещения в вертикальной плоскости шпиндельной бабки с электродвигателем и расточной головкой, на станине установлены нижние салазки с возможностью движения по направляющим станины и верхние салазки, имеющие возможность движения в плоскости, перпендикулярной направляющим станины, на которых закреплен поворотный стол с установленной на нем монтажной плитой для базирования заготовки.

Изобретение относится к области станкостроения и может быть использовано для растачивания в деталях отверстий простой и сложной формы в продольном сечении, в частности в горизонтально-расточных станках.

Изобретение относится к области машиностроения, в частности к обработке внутренней поверхности длинномерных изделий, например гидроцилиндров. .

Изобретение относится к станку для сверления и/или шлифовки деталей. .

Изобретение относится к металлообработке, более конкретно к металлорежущим станкам. Технически достижимый результат - упрощение конструкции при одновременном достижении высоких динамических и точностных характеристик, а также уменьшение металлоемкости, что вместе с упрощением конструкции должно обеспечить снижение его себестоимости и упрощение эксплуатации, а также уменьшение энергопотребления. Это достигается тем, что в металлорежущем станке, содержащем станину, инструментальный шпиндель со шпиндельной головкой, салазки для перемещения шпинделя, станина выполнена Т-образной формы и состоит из двух частей, при этом на первой части станины оппозитно друг другу крепятся Т-образного профиля стойки, между которыми расположен инструментальный шпиндель, корпус которого шарнирно соединен с элементами механизма параллельной кинематики, представляющими собой шарнирно-рычажные звенья, которые обеспечивают перемещение инструментального шпинделя по двум координатам в вертикальной плоскости за счет вертикальных перемещений салазок, охватывающих верхние полочки Т-образного профиля стоек, причем салазки по стойкам перемещаются за счет передачи винт-гайка, при этом шарнирно-рычажные звенья шарнирно связаны с салазками, а для предотвращения попадания стружки на элементы механизма параллельной кинематики на первой части станины, по ее периметру закреплен кожух, выполненный в виде поверхности прямоугольного параллелепипеда, охватывающей пространство размещения стоек с инструментальным шпинделем, который содержит приводной электродвигатель и соосно расположенный с ним шпиндель для закрепления инструмента, например фрезы, а на второй части станины, расположенной в горизонтальной плоскости первой части станины, и перпендикулярно ей установлен суппорт для перемещения в горизонтальной плоскости стола, служащего для закрепления заготовки сложного обрабатываемого контура, при этом суппорт перемещается по направляющим, параллельным между собой и жестко закрепленным на другой части Т-образной формы станины, перпендикулярно вертикальной плоскости перемещения инструментального шпинделя, а на суппорте перпендикулярно горизонтальной плоскости его перемещения, и с возможностью поворота вокруг своей оси, установлен стол для закрепления заготовки. 1 ил.

Станок содержит станину коробчатого типа с секциями, заполненными полимербетоном, вертикальную стойку, установленную на направляющих станины, шпиндельную бабку, имеющую возможность перемещения по направляющим вертикальной стойки, поворотный стол с фиксатором заготовки и электропривод. Для расширения технологических возможностей вертикальная стойка выполнена с секциями, заполненными полимербетоном. На направляющих станины напротив поворотного стола установлена дополнительная вертикальная стойка с секциями, заполненными полимербетоном. Дополнительная вертикальная стойка имеет направляющие, на которых расположена первая револьверная инструментальная головка, снабженная первым захватом, выполненным для подачи заготовки из загрузочного модуля к фиксатору заготовки. Вторая револьверная инструментальная головка расположена напротив шпиндельной бабки, снабженной вторым захватом, выполненным для подачи заготовки ко второй револьверной инструментальной головке и к модулю разгрузки. Секции станины, секции вертикальной стойки и секции дополнительной вертикальной стойки, имеют размеры для заполнения полимербетоном массой не менее 60% от массы станины, от массы вертикальной стойки и от массы дополнительной вертикальной стойки. 5 з.п. ф-лы, 2 ил.
Наверх