Способ установки кольцевого зазора при сборке волнового твердотельного гироскопа



Способ установки кольцевого зазора при сборке волнового твердотельного гироскопа
Способ установки кольцевого зазора при сборке волнового твердотельного гироскопа

 


Владельцы патента RU 2546987:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)

Изобретение относится к технологии сборки волновых твердотельных гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов и систем для самолетов, катеров, космических аппаратов, бурильных установок. Задачей изобретения является повышение равномерности кольцевого зазора между проводящей поверхностью цилиндрического или полусферического резонатора ВТГ и внешними электродами при сборке. Поставленная задача решается за счет повышения точности измерения переменного тока, протекающего через внешний электрод, что достигается уменьшением влияния паразитных емкостей на результат измерения. Предложенный способ установки кольцевого зазора между поверхностью цилиндрического или полусферического резонатора волнового твердотельного гироскопа и внешними электродами включает формирование переменного напряжения между внешними электродами и проводящей поверхностью резонатора, поочередное измерение величины тока, протекающего через каждый внешний электрод, и установку резонатора в положение, при котором эти токи равны между собой, отличающийся тем, что при измерении тока выбранный внешний электрод подключают к инвертирующему входу операционного усилителя, при этом инвертирующий вход операционного усилителя соединяют с его выходом через резистор, величину которого выбирают исходя из необходимой величины выходного напряжения и величины тока инвертирующего входа операционного усилителя, а неинвертирующий вход операционного усилителя и другие внешние электроды соединяют с общим проводом. Согласно сделанной оценке неравномерность кольцевого зазора при установке его предложенным способом составляет около 1%. 1 ил.

 

Область техники

Изобретение относится к технологии сборки волновых твердотельных гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов и систем для самолетов, катеров, космических аппаратов, бурильных установок.

Уровень техники

При сборке ВТГ необходимо обеспечить равномерный кольцевой зазор между поверхностью цилиндрического или полусферического резонатора и внешними электродами, используемыми для измерения параметров колебаний резонатора и управления этими колебаниями. Каждый внешний электрод образует электрическую емкость с проводящей поверхностью резонатора, величина которой обратно пропорциональна величине зазора. Изменение этой емкости при колебаниях используют как информационный сигнал ВТГ, а приложение напряжений к внешним электродам позволяет управлять колебаниями резонатора. Неравномерный по окружному углу кольцевой зазор приводит к различию этих емкостей и к погрешностям ВТГ [E.J. Loper, D.D. Lynch, K.M. Stevenson Projected performance of smaller hemispherical resonator gyros // Position Location and Navigation Symposium, Las Vegas, NV, 4-7 November 1986, USA. S86-160]. Поэтому при сборке ВТГ необходимо устанавливать резонатор симметрично внешним электродам, обеспечивая равномерный кольцевой зазор между внешними электродами и проводящей поверхностью резонатора.

Наиболее близким к предложенному способу (прототип) является способ установки кольцевого зазора между поверхностью резонатора и внешними электродами при сборке ВТГ [В.А. Матвеев, Б.С. Лунин, М.А. Басараб. Навигационные системы на волновых твердотельных гироскопах. М.: Физматлит. - 2008. - 240 с.]. Этот способ включает измерение емкостей, образованных каждым внешним электродом и проводящей поверхностью резонатора, и установку резонатора относительно внешних электродов в положение, при котором все эти емкости одинаковы. Способ измерения вышеуказанных емкостей может заключаться в формировании переменного напряжения между внешними электродами и проводящей поверхностью резонатора и измерении величины тока, протекающего через каждый внешний электрод. Для этого могут использоваться известные приборы, например LCR-измеритель Е7-12 [Измерители L, С, R цифровые Е7-12, Е7-12/1. Техническое описание и инструкция по эксплуатации. 2.724.011 ТО]. Равномерность установленного кольцевого зазора при этом определяется точностью измерения тока, протекающего через внешний электрод. Недостатком данного способа является большое влияние различных паразитных емкостей на точность измерения тока, протекающего через каждый внешний электрод. Паразитные емкости имеются между соседними внешними электродами, внешними электродами и общим проводом; существует также входная емкость измерительного прибора. Паразитные емкости образуют дополнительную проводимость по переменному току и снижают точность измерения тока, протекающего через выбранный внешний электрод. Суммарная величина паразитных емкостей может достигать ~1 пФ, тогда как величина емкости, образованной одним внешним электродом и проводящей поверхностью резонатора, может составлять 0.5-1 пФ. Так как суммарная величина паразитных емкостей может быть неодинаковой для различных внешних электродов, то возникает случайная погрешность в измерении тока, протекающего через каждый внешний электрод, что приводит при сборке ВТГ к установлению неравномерного кольцевого зазора. По оценке авторов азимутальная погрешность величины вышеуказанного кольцевого зазора может достигать 70%.

Раскрытие изобретения

Задачей изобретения является повышение равномерности кольцевого зазора между проводящей поверхностью цилиндрического или полусферического резонатора ВТГ и внешними электродами при сборке.

Поставленная задача решается за счет повышения точности измерения переменного тока, протекающего через внешний электрод, что достигается уменьшением влияния паразитных емкостей на результат измерения. Для этого способ установки кольцевого зазора между поверхностью цилиндрического или полусферического резонатора волнового твердотельного гироскопа и внешними электродами включает формирование переменного напряжения между внешними электродами и проводящей поверхностью резонатора, поочередное измерение тока, протекающего через каждый внешний электрод, и установку резонатора в положение, при котором эти токи одинаковы. При измерении тока выбранный внешний электрод подключают к инвертирующему входу операционного усилителя, при этом инвертирующий вход операционного усилителя соединяют с его выходом через резистор, величину которого выбирают исходя из необходимой величины выходного напряжения и величины тока инвертирующего входа операционного усилителя, а неинвертирующий вход операционного усилителя и другие внешние электроды соединяют с общим проводом.

Преимуществом заявленного способа является высокая точность измерения тока, протекающего через внешний электрод за счет уменьшения влияния паразитных емкостей, что позволяет увеличить равномерность вышеуказанного кольцевого зазора.

Перечень фигур

На фиг.1 показана схема подключения резонатора и внешних электродов при поочередном измерении тока, протекающего через внешний электрод.

Осуществление изобретения

Резонатор ВТГ закрепляют в регулировочном приспособлении, позволяющем перемещать резонатор относительно внешних электродов, и подключают согласно фиг.1. Проводящую поверхность резонатора 1 соединяют с выходом генератора переменного напряжения 2. Общую точку генератора 2 соединяют с общим проводом. Выбранный внешний электрод, например 3-1, подключают к инвертирующему входу операционного усилителя 4, инвертирующий вход которого соединен с его выходом через резистор 5, величину которого выбирают исходя из необходимой величины выходного напряжения и величины тока инвертирующего входа операционного усилителя, а неинвертирующий вход операционного усилителя и другие внешние электроды соединяют с общим проводом.

Ток I, протекающий через внешний электрод, равен:

где f - частота переменного напряжения;

U - величина переменного напряжения;

C - емкость между внешним электродом и проводящей поверхностью резонатора.

Напряжение на выходе операционного усилителя 4 прямо пропорционально току I и составляет:

где R - величина резистора 5.

Напряжение Uвых на выходе операционного усилителя 4 измеряют вольтметром 6. Величину тока I определяют по формуле:

Между внешними электродами, а также между внешними электродами и общим проводом существуют паразитные емкости, однако токи через них не протекают, так как разность потенциалов на них равна нулю, поскольку потенциал инвертирующего входа операционного усилителя 4 практически равен нулю (так называемая «кажущаяся земля»), а все другие внешние электроды соединены с общим проводом.

По приведенной схеме поочередно измеряют величину тока, протекающего через электроды 3-1…3-8. Путем перемещения резонатора 1 относительно внешних электродов 3-1…3-8 добиваются равенства токов, протекающих через каждый внешний электрод. Это положение резонатора соответствует равномерному кольцевому зазору между поверхностью цилиндрического или полусферического резонатора и внешними электродами.

Благодаря предложенной процедуре измерения тока, протекающего через каждый внешний электрод, паразитные емкости между внешними электродами, а также между внешними электродами и общим проводом не влияют на измерение тока, протекающего через внешний электрод. Как следует из формул (1)-(3), точность измерения тока определяется точностью измерения выходного напряжения и нестабильностью напряжения генератора переменного тока. На практике относительная погрешность этих величин не превышает 1…2%, что и позволяет существенно повысить равномерность вышеупомянутого кольцевого зазора при сборке ВТГ.

Определим точность предложенного способа расчетным путем. Пусть f=105 Гц, U=10 В, С=10-12 Ф. Тогда, согласно (1), ток, протекающий через внешний электрод, равен 6.28 мкА. Этот ток является входным током инвертирующего входа операционного усилителя 4. При использовании операционного усилителя типа AD823 с минимальным входным током 0.5 нА [www.datasheetcatalog.com/datasheets_pdf/A/D/8/2/AD823.shtml] вносимая операционным усилителем погрешность составляет ~0.1%. Величину резистора 5 выбирают, исходя из необходимой величины выходного напряжения и величины тока инвертирующего входа операционного усилителя. При необходимости получить величину выходного напряжения операционного усилителя Uвых=0.628 В при величине входного тока инвертирующего входа операционного усилителя I=6.28 мкА величина резистора 5 составляет R=105 Ом (3). При измерении выходного напряжения операционного усилителя 4 напряжения вольтметром В7-21А на пределе измерения переменного тока 1 В погрешность составляет 1% [В7-21А. Вольтметр универсальный. Формуляр атд 2.710.003 ФО]. Нестабильность выходного напряжения генератора, например, для модели Г5-75 при выходном напряжении U=10 В не превышает 0.1% [Г5-75. Генератор импульсов точной амплитуды. Формуляр 3.269.092 ФО].

Таким образом, суммарная относительная погрешность измерения тока I составляет 1.2%, что позволяет довести до такого же уровня равномерность кольцевого зазора между внешними электродами и проводящей поверхностью резонатора при сборке ВТГ.

Способ установки кольцевого зазора между поверхностью цилиндрического или полусферического резонатора волнового твердотельного гироскопа и внешними электродами, включающий формирование переменного напряжения между внешними электродами и проводящей поверхностью резонатора, поочередное измерение величины тока, протекающего через каждый внешний электрод, и установку резонатора в положение, при котором эти токи равны между собой, отличающийся тем, что при измерении тока выбранный внешний электрод подключают к инвертирующему входу операционного усилителя, при этом инвертирующий вход операционного усилителя соединяют с его выходом через резистор, величину которого выбирают исходя из необходимой величины выходного напряжения и величины тока инвертирующего входа операционного усилителя, а неинвертирующий вход операционного усилителя и другие внешние электроды соединяют с общим проводом.



 

Похожие патенты:

Изобретение относится к гироскопии и может быть использовано в системах средней точности инерциального управления объектами бескарданного типа. Твердотельный волновой гироскоп содержит цилиндрический резонатор, смонтированный в корпусе, и расположенные на нижней пластине восемь пьезоэлементов, закрепленных с помощью клея.

Предлагаемый способ может быть использован при изготовлении и подготовке к работе волновых твердотельных гироскопов (ВТГ). Определение параметров ВТГ заключается в том, что измеряют амплитуды колебаний резонатора на частотах вблизи резонанса в стационарных режимах, по измеренным значениям амплитуд колебаний и частот формируют вектор и матрицу с линейными относительно амплитуд элементами.

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения основания в электрический сигнал. Микроакустомеханический гироскоп содержит основание, структуру инерционных масс, размещенных в шахматном порядке, пьезоэлектрические преобразователи и измерительные ВШП суммарного поля ПАВ от регулярной структуры инерционных масс.

Изобретение относится к измерительной технике и представляет собой твердотельный волновой гироскоп. Гироскоп имеет вакуумируемый корпус в виде полусферической оболочки с равномерной толщиной, на внешней стороне которого размещены три установочно-закрепительных элемента, разнесенных относительно друг друга на 120°, а на внутренней - три конусных сегментных элемента, смещенных на 60° относительно установочно-закрепительных элементов, для установки комбинированной информационно-возбудительной платы с использованием кольцевой разрезной пружины.

Изобретение относится к гироскопическому датчику (2), содержащему: чувствительный элемент (4), выполненный с возможностью вибрирования; электрододержатель (8), способный поддерживать электроды (20) возбуждения/обнаружения для возбуждения чувствительного элемента (4) и обнаружения вибрации чувствительного элемента (4); и элементы (10, 16) для установки электрододержателя (8); характеризующийся тем, что поддерживающие элементы (10, 16) содержат основание (10), выполненное из материала, имеющего плотность менее чем 5 кг/дм3, и квадратный корень отношения модуля Юнга, деленного на указанную выше плотность больше чем 9 ГПа1/2дм3/2/кг-1/2.

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам (ММГ) вибрационного типа, в которых для повышения точности используется термокомпенсация.

Изобретение относится к вибрационным гироскопам. Гироскопическая система производит измерения при помощи вибрационного гироскопа, который вибрирует в первом положении вибрации и передает сигнал измерений.

Изобретение относится к вибрационным датчикам гироскопического типа. Резонатор (3)датчика содержит корпус из материала на основе кремния с по меньшей мере одной резонансной частью (Z), имеющей по меньшей мере один участок, покрытый электропроводящим слоем, и по меньшей мере один участок, не покрытый проводящим слоем.

Изобретение может быть использовано при производстве навигационных приборов. Способ балансировки металлического зубчатого резонатора волнового твердотельного гироскопа заключается в том, что измеряют параметры неуравновешенной массы, рассчитывают массу, подлежащую удалению с каждого балансировочного зубца, и удаляют неуравновешенную массу с поверхности балансировочных зубцов путем электрохимического растворения, при этом каждый зубец погружают в отдельную ванну с электролитом и через поверхность каждого зубца пропускают заранее рассчитанный электрический заряд, величину которого регулируют временем пропускания постоянного тока.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Предложен способ сейсмических исследований, а также устройство и система для его осуществления.

Изобретение относится к области приборостроения и может быть использовано, например, в системах ориентации и навигации летательных аппаратов. Технический результат - повышение надежности. Для этого гироскоп (1) содержит основание (2), резонатор (3), имеющий корпус (4), по существу, цилиндрической формы, заканчивающийся со стороны, противоположной основанию (2), дистальным торцом (5), в котором выполнено по меньшей мере одно сквозное отверстие (13), множество пьезоэлектрических элементов (10), контактирующих с резонатором (3), модули (18) управления/обработки установленные, по меньшей мере частично, в основании (2), и по меньшей мере один соединительный проводник (15), проходящий через указанное отверстие (13) в корпусе (4) резонатора (3) и электрически соединяющий указанные модули (18) и пьезоэлектрические элементы (10) для управления вибрацией резонатора (3) и измерения вибрационных сигналов. 2 н. и 8 з.п. ф-лы, 9 ил.

Кориолисов гироскоп (1) включает в себя систему масс, в которой могут возбуждаться колебания параллельно первой оси, при этом может регистрироваться отклонение системы масс вследствие кориолисовой силы вдоль второй оси, которая проходит перпендикулярно первой оси, и по меньшей мере один первый корректировочный модуль (30) и по меньшей мере один второй корректировочный модуль (40), которые соответственно содержат множество неподвижных корректировочных электродов (31, 32, 41, 42) и подвижных корректировочных электродов (24, 25, 26, 27), при этом неподвижные корректировочные электроды (31, 32, 41, 42) проходят в направлении первой оси и жестко соединены с подложкой посредством соответствующих анкерных структур (33, 43), а подвижные корректировочные электроды (24, 25, 26, 27) образуют часть системы масс. Способ уменьшения квадратурного искажения такого кориолисова гироскопа (1) включает в себя подачу на корректировочные модули (30, 40) по меньшей мере в течение промежутка времени постоянных корректирующих напряжений. Технический результат заключается в снижении искажений сигнала в кориолисовом гироскопе или системе кориолисовых гироскопов за счет уменьшения вклада неправильной ориентации элементов в квадратурные искажения. 4 н. и 12 з.п. ф-лы, 4 ил.

Настоящее изобретение раскрывает устройство и способ изготовления гиродатчика (2), содержащего: чувствительный элемент (4), предназначенный для вибрирования; держатель (8) электродов, на котором могут быть размещены электроды (20) для возбуждения чувствительного элемента (4) и электроды (20) для обнаружения вибрации чувствительного элемента (4); и опорные стержни (16), предназначенные для поддержки держателя (8) электродов; отличающегося тем, что опорные стержни (16) имеют по меньшей мере один выступающий конец (17). Техническим результатом является улучшение механических и эксплуатационных характеристик гиродатчика, а также усовершенствование технологии изготовления и повышение выхода годной продукции. 3 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике. Чувствительный элемент микросистемного гироскопа содержит корпусную кремниевую пластину, симметрично расположенные внутри друг друга и разделенные равномерными зазорами внешнюю и внутреннюю подвижные рамки, при этом внешняя рамка соединена с корпусной кремниевой пластиной и с внутренней рамкой посредством упругих торсионов, продольные оси каждой пары торсионов взаимно перпендикулярны, между корпусной кремниевой пластиной и подвижными рамками образован посредством сквозного анизотропного травления зазор, на одну сторону корпусной кремниевой пластины жестко присоединена изоляционная обкладка с нанесенными на нее неподвижными проводящими электродами электростатического силового преобразователя, задающего принудительные колебания внутренней рамки, при этом на обе стороны корпусной кремниевой пластины присоединены изоляционные обкладки, на которые нанесены электроды электростатического силового преобразователя, задающего принудительные колебания внутренней рамки, электроды емкостного преобразователя перемещений и электроды силового электростатического преобразователя обратной связи, внешняя подвижная рамка является подвижным проводящим электродом электростатического силового преобразователя обратной связи, компенсирующего момент от действия кориолисовой силы, и подвижным проводящим электродом емкостного преобразователя перемещений. Технический результат - повышение точности измерений. 2 ил.

Изобретение относится к балансировке металлических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки металлического беззубцового цилиндрического резонатора волнового твердотельного гироскопа включает в себя измерение параметров первых четырех форм массового дефекта резонатора, погружение резонатора в ванну с электролитом и пропускание через его поверхность рассчитанного электрического заряда, регулируемого временем пропускания постоянного тока, величину которого выбирают в зависимости от состава электролита и металла резонатора, при этом цилиндрический резонатор погружают в электролит наклонно, устанавливают величину центрального угла цилиндрического клина погруженной части, равную α, и совмещают угол ориентации обрабатываемой поверхности цилиндрического клина с ориентацией удаляемой формы массового дефекта. Технический результат - уменьшение времени и трудоемкости процесса балансировки беззубцовых металлических цилиндрических резонаторов по первым 4-м формам массового дефекта. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области точного приборостроения и может быть использовано при создании таких средств измерения угловой скорости движения основания, как вибрационные гироскопы. Микромеханический вибрационный гироскоп содержит основание, инерционный диск, имеющий одинаковую толщину и закрепленный на основании с помощью внутреннего упругого подвеса, систему электростатического возбуждения колебаний диска, состоящую из гребенчатых двигателей возбуждения и датчиков углового положения, систему управления выходными колебаниями, состоящую из электродов емкостного съема и электродов управления, расположенных на основании под инерционным диском и закрепленных на площадке, связанной с основанием с помощью упругого подвеса, что способствует синфазным перемещениям электродов и инерционного диска при действии постоянного ускорения или вибрации. Этим обеспечивается постоянство зазора в системе управления выходными колебаниями и неизменность масштабного коэффициента прибора. Техническим результатом является снижение чувствительности гироскопа к постоянным поступательным ускорениям и вибрации, что обеспечивает уменьшение помехи и повышение эксплуатационных характеристик гироскопа. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области навигационной техники, а именно к конструкции микромеханических вибрационных гироскопов. Вибрационный гироскоп содержит дисковый ротор в упругом подвесе в виде пружины, связывающей ротор с неподвижной опорой, и статоры с электродами привода крутильных колебаний ротора и емкостных датчиков для определения его угловых смещений относительно двух взаимно перпендикулярных осей, ортогональных к оси крутильных колебаний ротора. Ротор, пружина и неподвижная опора выполнены из одной пластины диэлектрического материала с электропроводящим покрытием, при этом пружина соединяет внешнюю часть ротора с неподвижной опорой и выполнена в виде четырехзаходной спирали с ограниченным разворотом витков на угол, примерно равный α=π(1±0,2). В центральной части ротора, свободной от электропроводящего покрытия, выполнено отверстие с 2n (n=2, 3, 4…) зубцами для взаимодействия соответственно с 2n электродами привода крутильных колебаний. Технический результат - повышение точности и упрощение изготовления вибрационного гироскопа. 1 з.п. ф-лы, 7 ил.

Изобретение относится к балансировке кварцевых полусферических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки кварцевого полусферического резонатора волнового твердотельного гироскопа по предварительно определенным величинам параметров первых четырех форм массового дефекта резонатора заключается в том, что кварцевый полусферический резонатор радиуса R устанавливают в положение, при котором ось его симметрии горизонтальна, а единый нуль окружного угла находится в нижнем положении, поворачивают резонатор вокруг оси симметрии на угол Δφ относительно единого нуля окружного угла и в этом положении частично погружают резонатор в травильный раствор, устанавливая удвоенный зенитный угол сферического сегмента обрабатываемой поверхности 2α, а затем проводят химическое травление в течение времени t. Технический результат - уменьшение времени и трудоемкости процесса балансировки кварцевых полусферических резонаторов по первым 4-м формам массового дефекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к микросистемным гироскопам камертонного типа. Предложенный камертонный микрогироскоп содержит корпусную монокремниевую пластину и две чувствительные массы, каждая из которых подвешена с помощью упругих растяжек на консолях, которые, в свою очередь, жестко закреплены на центральной балке. На неподвижных обкладках микрогироскопа выполнены проводящие электроды. Поверхности указанных проводящих электродов, а также поверхности чувствительных масс выполнены пористыми. Причем поры заполнены проводящим материалом, значение плотности которого превышает значение плотности пористого материала. Техническим результатом изобретения является повышение чувствительности микромеханического гироскопа. 4 ил.

Изобретение относится к измерениям угловой скорости, а именно к микроэлектромеханической системе (МЭМС) для датчика угловой скорости. МЭМС помещена между первой и второй композитными пластинами типа кремний-изолятор, состоящими из множества структурированных кремниевых элементов, электрически изолированных друг от друга изоляционным материалом. МЭМС содержит монокристаллическую кремниевую подложку, структурированную для формирования детекторной системы и рамки, причем детекторная система полностью отделена от окружающей ее рамки, расположенной между сопряженными с ней поверхностями первой и второй композитных пластин, так что детекторная система герметизирована в полости, сформированной первой и второй композитными пластинами и рамкой. При этом детекторная система содержит две сейсмические массы, каждая из которых имеет переднюю и заднюю поверхности; две приводные перемычки, каждая из которых имеет первый конец, соединенный с сейсмической массой, и второй конец, соединенный с первой и второй композитными пластинами посредством фиксированных пьедесталов, выполненных на кремниевой подложке, и работающую на изгиб пружину, непосредственно соединяющую между собой две сейсмические массы и выполненную с возможностью синхронизации их первичного движения. Каждая сейсмическая масса имеет первую вращательную степень свободы относительно оси, по существу, перпендикулярной плоскости кремниевой подложки, а сейсмические массы и приводные перемычки сформированы с возможностью иметь вторую вращательную степень свободы относительно оси, по существу, совпадающей с продольной осью приводных перемычек. Детекторная система содержит также средство для генерирования и детектирования первичного движения, состоящего в первичных осцилляциях двух сейсмических масс, в противофазе, в соответствии с первой вращательной степенью свободы, и средство для детектирования вторичного движения, состоящего во вторичных осцилляциях двух сейсмических масс, в противофазе, в соответствии со второй вращательной степенью свободы. При этом средство для генерирования и детектирования первичного движения и средство для детектирования вторичного движения сформированы на передней и на задней поверхностях каждой из первой и второй сейсмических масс, а детекторная система выполнена с возможностью возникновения в ней, при придании системе угловой скорости вокруг третьей оси, по существу, лежащей в плоскости кремниевой подложки и перпендикулярной продольной оси перемычек, силы Кориолиса, вызывающей вторичные осцилляции сейсмических масс. Изобретение обеспечивает повышение точности и стабильности измерений. 15 з.п. ф-лы, 11 ил.
Наверх