Способ диагностики технического состояния электропривода по оценке динамики его параметров

Изобретение относится к области диагностики технического состояния электрических приводов, например электроприводов прокатных станов в металлургическом производстве, на основе анализа параметров тока, напряжения, скорости и управляющего задания с применением рекуррентной искусственной нейронной сети. Технический результат: повышение точности и достоверности диагностирования аварийных состояний электропривода на работающем оборудовании в ранней и ненаблюдаемой стадии их возникновения, что предупреждает внезапную аварийную остановку электропривода и позволяет существенно снизить расходы на ремонт. Сущность изобретения: с определенным интервалом времени производится замер тока, напряжения, скорости и управляющего задания электропривода, преобразование параметров в цифровую форму и передача в персональный компьютер для обработки. Программно реализованная и обученная на конкретном электроприводе перед его эксплуатацией рекуррентная нейронная сеть воспроизводит динамику параметров электропривода, после чего производится сравнение результата динамики нейросетевой модели с реальной динамикой электропривода. В неисправном электроприводе возникает отклонение динамики его параметров от модели и рассчитывается функция рассогласования динамики. По характеру функции рассогласования динамики производится оценка технического состояния и прогноз ресурса электропривода. 2 ил.

 

Изобретение относится к области диагностики технического состояния электропривода по оценке динамики его параметров и может применяться для диагностики без вывода из работы электроприводов различного типа, эксплуатирующихся в сложных условиях, где затруднен или невозможен постоянный доступ персонала, а также приводов ответственных механизмов, где требуется выявлять аварийные ситуации на ранних стадиях, не повлекших серьезных разрушений.

Известен способ диагностики технического состояния электродвигателя по его электрическим параметрам, описанный в RU 2425391 C1, G01R 31/34, СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОДВИГАТЕЛЯ ПО ЕГО ЭЛЕКТРИЧЕСКИМ ПАРАМЕТРАМ, при котором в трех фазах электродвигателя производят измерение питающего напряжения и фазного тока, а по их сигналам мгновенных значений вычисляют мгновенные значения потребляемых мощностей. Оценку технического состояния двигателя осуществляют по спектрограммам потерь, сравнивая их со спектрограммами потерь, полученных на заведомо исправном двигателе.

Недостатком этого способа является то, что он позволяет оценивать состояние только самого электродвигателя, без учета искажений, которые могут быть внесены в работу электродвигателя приводным механизмом и питающим преобразователем, что ограничивает виды диагностируемых неисправностей.

Известен способ определения технического состояния электродвигателя переменного тока и устройство для его осуществления, описанный в RU 2389121 C1, H02K 15/00, G01R 31/34, СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ, который заключается в получении с датчика в силовой цепи электродвигателя сигнала, его выпрямления и интегрировании в течение установленного времени и измерении. После этого интегрированный сигнал сравнивается с сигналами, полученными аналогично и соответствующими электродвигателю без наработки и с предельной наработкой. По разнице сигналов определяется текущее техническое состояние электродвигателя переменного тока и производится автоматический прогноз остаточного ресурса.

Недостатком этого способа является то, что он рассчитан на применение только к электродвигателю переменного тока, также не учитывается влияние искажений от приводного механизма и питающего преобразователя на работу электродвигателя. Кроме того, оценка производится только по одному параметру, который не может описать всей динамики объекта, и виды диагностируемых неисправностей ограничены.

Известен способ диагностики механизмов и систем с электрическим приводом (RU 2431152 C2, G01R 31/34, СПОСОБ ДИАГНОСТИКИ МЕХАНИЗМОВ И СИСТЕМ С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ), взятый за прототип, при котором в течение заданного интервала времени производится запись значений фазных токов и напряжений электродвигателя, после чего производится их разложение на гармонические составляющие с измерением амплитуды и фазы гармонических составляющих, поступающих из сети. После чего производится идентификация технического состояния и прогнозирование ресурса безаварийной работы диагностируемого объекта с помощью искусственной нейронной сети.

Недостатком этого способа является то, что не используется информация о скорости и управляющем задании, что не позволяет произвести полноценную идентификацию объекта без предварительных ресурсоемких расчетов гармонических составляющих. Приходится предварительно рассчитывать гармонические составляющие, а нейронная сеть по их составу классифицирует неисправность.

Технической задачей данного изобретения является создание более эффективного и универсального способа диагностики электроприводов, позволяющего производить оценку технического состояния электропривода в работе на ранней стадии развития дефектов, предупреждая внезапные остановы и снижая затраты на ремонт.

Технический результат состоит в повышении точности и надежности диагностирования с уменьшением вычислительных затрат на оценку состояния электропривода, за счет применения рекуррентной нейронной сети в качестве основного инструмента анализа состояния электропривода.

Технический результат достигается тем, что перед эксплуатацией конкретного электропривода, предварительно производится построение его динамической нейросетевой модели, использование которой в дальнейшем позволяет произвести анализ состояния электропривода в работе и удаленно.

Сущность изобретения заключается в том, что с определенным интервалом времени производится замер тока, напряжения, скорости и управляющего задания электропривода, преобразование параметров в цифровую форму и передача в персональный компьютер для обработки. Программно реализованная и обученная на конкретном электроприводе перед его эксплуатацией рекуррентная нейронная сеть воспроизводит динамику параметров электропривода, после чего производится сравнение результата динамики нейросетевой модели с реальной динамикой электропривода. В неисправном электроприводе возникает отклонение динамики El(t) его параметров от модели M(t) и рассчитывается функция рассогласования динамики во времени Err(t).

По характеру динамики Err(t) производится оценка технического состояния и прогноз ресурса электропривода.

При рассмотрении электропривода как динамического объекта, описываемого вектором входных данных, вектором внутреннего состояния и вектором выходных данных можно получить его модель, применив для идентификации рекуррентную искусственную нейронную. Нейронная сеть, имея достаточное количество обучающих примеров, может быть обучена для воспроизведения динамики объекта согласно теореме об универсальной аппроксимации. Ключевым условием является наличие обратных связей, что позволяет запоминать последовательности сигналов.

Структура нейросетевой модели представлена на Фиг.1.

Обобщенная модель имеет следующее форму:

где y ¯ ( n ) - выходной вектор, u ¯ ( n ) - входной вектор, n - дискретный момент времени, q - порядок системы.

В настоящее время не существует точного способа определения необходимого числа нейронов, достаточного для оптимальной идентификации объекта по критериям точности отображения и экономии вычислительных ресурсов. Экспериментальным путем было установлено оптимальное применение двухслойной сети с 12 нейронами во внутреннем слое для идентификации электропривода.

Для сбора информации и осуществления диагностики применяется технический комплекс (Фиг.2) включающий: датчик скорости (ДС), датчик тока (ДТ), датчик напряжения (ДН), измерительно-вычислительный комплекс (ИВК) и персональный компьютер (ПК).

На первом этапе производится идентификация электропривода. Для получения полной информации электропривод запускается во всех режимах работы, в которых в последующем будет эксплуатироваться. При этом производится запись в память ИВК в работе параметров тока с ДТ, напряжения с ДН, скорости с ДС и управляющего задания электропривода, которое формируется самим ИВК.

После съема данных ИВК приводит их к цифровому виду и производит фильтрацию сигналов скорости W, тока I и напряжения U для устранения шумов методом сглаживания по нескольким точкам.

где k - число точек, которые участвуют в сглаживании сигналов.

После подготовки данных ИВК передает их в ПК для построения модели. Специальное программное обеспечение осуществляет построение нейросетевой модели (Фиг.1) для идентификации и обучает модель на полученном от ИВК множестве данных. Часть данных резервируется для проверки обученной модели на адекватность отображения динамики.

После завершения стадии обучения модели система диагностики может производить вычисления в фоновом режиме, оценивая степень совпадения вектора динамики параметров модели с динамикой параметров электропривода. При этом постоянно вычисляется значение расхождения динамики Err(t), формируя функцию во времени за период t, также ведется расчет интегральной оценки расхождения динамики IErr и скорости изменения расхождения d E r r d t :

Так как нейросетевая модель имеет некоторую погрешность, то на стадии начальной идентификации вводятся допуски функции ΔErr(t) и ее интегральной оценки ΔIErr, которые принимается за нормальное состояние.

После вычисления Err(t), IErr и d E r r d t по их совокупности за определенный промежуток времени t производится анализ состояния электропривода путем сопоставления с эталонными, заранее полученными моделями для разного типа дефектов электропривода и приводного механизма. При этом вычисляется массив коэффициентов принадлежности к каждому типу дефекта P:

Таким образом, предлагаемая система работает в двух режимах: режиме обучения модели и режиме диагностики. В режиме обучения требуется некоторое время, пока производится съем данных и подготовка формирования обученной нейронной сети, это может занимать порядка 10 минут из-за того что обучение сети ресурсоемко в плане процессорного времени. После обучения система работает в режиме диагностики и расчет текущего состояния динамики и ее оценка занимает мало ресурсов процессора, поэтому способ может быть реализован как на ПК, так целиком и на базе измерительно-вычислительного комплекса ИВК, независимого от ПК или на базе программного обеспечения промышленных контроллеров общего назначения.

Способ диагностики технического состояния электропривода по оценке динамики его параметров, включающий замер и запись микропроцессорным устройством в течение заданного промежутка времени с заданной периодичностью токов и напряжений электродвигателя, преобразование аналоговых величин тока и напряжения в цифровую форму, передачу цифровых данных тока и напряжения в персональный компьютер для дальнейшей обработки специализированным программным обеспечением, применяющий искусственную нейронную сеть для идентификации технического состояния и прогнозирования ресурса безаварийной работы электропривода, отличающийся тем, что одновременно ведется замер и запись микропроцессорным устройством в течение заданного промежутка времени с заданной периодичностью скорости двигателя и управляющего задания, преобразование аналоговых величин скорости и управляющего задания в цифровую форму, передачу цифровых данных скорости и управляющего задания в персональный компьютер для дальнейшей обработки специализированным программным обеспечением, при этом применяется рекуррентная нейронная сеть для идентификации электропривода непосредственно по полученным параметрам, без предварительного анализа параметров другими методами, после идентификации нейронная сеть представляет собой динамическую нейросетевую модель электропривода, при этом нейросетевая модель повторяет динамику электропривода в нормальном режиме работы электропривода, при изменении технического состояния электропривода возникает рассогласование динамики нейросетевой модели и электропривода, рассчитывается функция рассогласования динамики, при этом по величине, скорости и ускорении нарастания функции рассогласования динамики, на основании эмпирических данных для разного характера неисправностей, выдается заключение о техническом состоянии электропривода, характере неисправности и прогноз его ресурса.



 

Похожие патенты:

Изобретение относится к способу адаптации обнаружения короткого замыкания на землю к изменению состояния электрической машины. Сущность: электрическая машина находится в первом состоянии машины, первое опорное значение определяется для измеряемых значений электрической величины.

Изобретение относится к области электротехники и может быть использовано для автоматизированной идентификации параметров электропривода с асинхронными электродвигателями.

Изобретение относится к области электротехники и может быть использовано в электроприводах для анализа и контроля метрологических характеристик измерительных трактов систем, построенных на базе асинхронного двигателя с преобразователем частоты.

Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов.

Изобретение относится к области электротехники и может быть использовано при разработке электроприводов для систем автоматического управления летательными аппаратами.

Изобретение относится к диагностике обмоток электрических машин. Сущность: способ обнаружения короткого замыкания на землю во вращающейся электрической машине содержит подачу тестового сигнала на заданной частоте на обмотку, измерение электрического параметра сигнала отклика в обмотке, являющегося результатом поданного тестового сигнала, и обнаружение короткого замыкания на землю на основании измеренного значения электрического параметра.

Изобретение относится к области диагностики межвитковых замыканий и снижения сопротивления обмотки статора асинхронного электродвигателя относительно корпуса в сетях с глухозаземленной нейтралью.

Изобретение относится к диагностике технического состояния силового электрооборудования. Осуществляют запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения.

Изобретение относится к области электротехники и может быть использовано для испытания синхронных машин на электромашиностроительных заводах, ремонтных предприятиях и при эксплуатации.

Изобретение относится к области электротехники и может быть использовано в электрических машинах переменного тока. Техническим результатом является расширение функциональных возможностей и области применения, повышение чувствительности.

Изобретение относится к способу контроля функционирования вращающейся электрической машины, в частности асинхронной машины двойного питания с диапазоном мощности 20-500 МВА. Техническим результатом является обеспечение надежного контроля изоляции стяжных болтов непрерывно во время работы вращающейся электрической машины. Предложен способ контроля функционирования вращающейся электрической машины, которая содержит: ротор, вращающийся вокруг оси и концентрично окруженный статором; ротор и статор содержат многослойный элемент ротора и многослойный элемент статора соответственно, собранные из уложенных слоями листов и спрессованные в осевом направлении с образованием слоистого материала и сжатые с помощью электрически изолированных стяжных болтов, проходящих через многослойный элемент ротора и многослойный элемент статора в осевом направлении и изолированных относительно многослойных элементов, причем на каждый из стяжных болтов подают заданный потенциал относительно соответствующего многослойного элемента с помощью источника напряжения и измеряют и оценивают протекание тока через источник напряжения и/или через соответствующий стяжной болт. 2 н. и 19 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника. В системе и способе заблаговременного распознавания повреждения в подшипнике обеспечивается анализ причины, вызывающей повреждение тока подшипника. Для заблаговременного распознавания возникновения повреждений в подшипнике, вызванных протеканием тока подшипника, осуществляются следующие этапы: формирование оценки на основе по меньшей мере одного долговременного измерения по меньшей мере одного измеряемого параметра, характерного для возникновения токов подшипника во время работы подшипника в зависимости от амплитуды тока подшипника, и формирование отображения результатов измерений на основе оценки и оценивание отображения на основе распознавания образов. Предложено также устройство для осуществления способа. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано для испытаний и настройки коммутации коллекторных электрических машин (КЭМ). Технический результат - повышение точности диагностики состояния коммутации КЭМ. В способе диагностики состояния коммутации при вращении коллектора во время прохождения коллекторной пластины с заранее нанесенной меткой мимо датчика положения коллектора световой поток от неепреобразуют датчиком в синхроимпульс с длительностью, равной времени прохождения коллекторной пластины под сбегающим краем щетки, который задерживают устройством для регулируемой задержки импульса до момента подхода исследуемой, предварительно промаркированной коллекторной пластины под сбегающий край щетки. В момент подхода исследуемой коллекторной пластины под сбегающий край щетки синхроимпульс подают на фотоэлектрический преобразователь, которым при помощи ПЗС-матрицы преобразуют световое излучение от искрения в сигнал, эквивалентный изображению щеточно-коллекторного узла и процесса искрения за время прохождения исследуемой пластины под сбегающим краем щетки. Полученные сигналы суммируют, фильтруют до получения результирующего сигнала, эквивалентного изображению искрения, интегрируют и визуализируют. Получают значения интенсивности искрения и отношения длины искрящего края щетки к полной длине края щетки, по которым устанавливают в баллах степень искрения на исследуемой коллекторной пластине так, как указано в материалах заявки. 1 ил.,1 табл.

Изобретение относится к способам определения технического состояния объекта, преимущественно электроприводного оборудования, и может быть использовано для контроля электроприводной арматуры, насосов, вентиляционного оборудования атомных электростанций, приводов СУЗ для ВВЭР-440. Технический результат: возможность комплексного учета всех составляющих спектра. Сущность: в процессе работы электродвигателя измеряют сигнал потребляемого тока и формируют мощностной амплитудный спектр тока. Различие между измеряемым и эталонным спектрами определяют по формуле , где и - амплитуды соответственно измеряемого и эталонного спектров; i, n - номера дискретных составляющих в анализируемых участках спектра. Полученное значение сравнивают с исходными величинами и определяют состояние оборудования как «работоспособное исправное», или «работоспособное неисправное», или «частично работоспособное». В качестве эталонного спектра тока используют спектры, полученные в результате моделирования «работоспособного исправного», «работоспособного неисправного», «частично работоспособного» состояния электроприводного оборудования. На основании минимального различия между измеряемым и эталонным спектрами определяется состояние оборудования как «работоспособное исправное», или «работоспособное неисправное», или «частично работоспособное». 1 з.п. ф-лы, 2 ил.

Изобретение относится к области испытаний источников питания, таких как генераторы переменного тока под нагрузкой. Технический результат: выполнение испытания под нагрузкой посредством простого регулирования. Сущность: машина включает в себя шесть блоков сопротивлений, шесть охлаждающих вентиляторов, изоляторы между блоками сопротивлений и охлаждающими вентиляторами и соединительные кабели. Каждый из блоков сопротивлений включает в себя несколько ступеней групп сопротивлений, расположенных в направлении Z. Каждая из групп образована из нескольких стержневых сопротивлений, параллельных направлению X, соединенных последовательно и расположенных с заданными интервалами в направлении Y. Шесть охлаждающих вентиляторов обращены к блокам сопротивлений в направлении Z. Соединительные кабели являются кабелями, которые используются для последовательного разъемного соединения соседних групп сопротивлений в направлении Y двух соседних блоков сопротивлений в направлении Y с интервалом между ними не менее второго расстояния. Каждый из изоляторов имеет размер, соответствующий номинальному напряжению целевого источника питания при испытании источника питания под нагрузкой, которое выполняется с использованием группы блоков сопротивлений. При этом группа блоков сопротивлений имеет последовательно соединенные сопротивления двух соседних блоков сопротивлений в направлении Y с интервалом между ними не менее второго расстояния. 2 н. и 7 з.п. ф-лы, 11 ил.

Изобретение относится к области электротехники и может быть использовано для настройки вентильных электродвигателей. Техническим результатом является обеспечение угловой стабильности момента двигателя. В способе настройки вентильный электродвигатель, представляющий собой моментный двигатель постоянного тока, устанавливают в настроечный стенд, обеспечивающий заторможенный режим и поворот ротора двигателя, подают управляющее напряжение на входную обмотку датчика положения, при этом согласно изобретению разворачивают ротор двигателя на угол, при котором сигнал с синусной выходной обмотки датчика положения равен нулю, подают сигнал смещения на дополнительный вход усилителя синусного канала, при котором остаточный сигнал на выходе усилителя равен нулю, измеряют пусковой момент косинусного канала двигателя и по отношению момента к управляющему напряжению на входной обмотке датчика положения определяют коэффициент передачи косинусного канала. Аналогичным образом определяют коэффициент передачи синусного канала. Затем устанавливают сопротивления регулировочных резисторов усилителей косинусного и синусного каналов так, чтобы отношение сопротивлений регулировочных резисторов косинусного и синусного каналов было равно обратному отношению коэффициентов передачи этих каналов. 3 ил.

Изобретение относится к области эксплуатации асинхронных электродвигателей и может быть использовано для определения величины скольжения электродвигателя. В способе определения скольжения ротора асинхронного электродвигателя, включающем оценку величины скольжения ротора, цифровую регистрацию мгновенной величины амплитуды потребляемого тока во времени на одной из фаз кабеля питания асинхронного электродвигателя, с помощью быстрого преобразования Фурье получают амплитудный спектр зарегистрированного сигнала, определяют максимум амплитудного спектра и соответствующую ему частоту, которая близка по значению к частоте сети, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точное значение частоты сети, по полученному значению частоты сети и числу пар полюсов электродвигателя вычисляют границы одного диапазона частот для двигателей с одной парой полюсов, либо двух диапазонов для двигателей с числом пар полюсов большим одного на амплитудном спектре, на каждом из полученных диапазонов определяют максимум амплитудных спектров и соответствующие им частоты, которые близки по значению к частотам гармоник от эксцентриситета ротора первого порядка, с помощью метода автокоррекции времени записи сигнала путем его последовательного уменьшения определяют точные значения частот гармоник от эксцентриситета ротора первого порядка, по которым получают для двигателей с одной парой полюсов одно значение скольжения, которое является для данных двигателей конечным результатом, а для двигателей с двумя и более парами полюсов - два значения скольжения ротора, вычисляют скольжение ротора такового асинхронного электродвигателя по среднему арифметическому данных значений. Технический результат заключается в повышении точности определения величины скольжения. 2 ил.

Изобретение относится к электротехнике и предназначено для использования при испытаниях электрических машин постоянного и переменного тока. Стенд содержит трансформатор, подключенный первичной обмоткой к питающей сети, а вторичной обмоткой - к входу управляемого выпрямителя, дроссель, один из выводов которого подключен к первой выходной шине управляемого выпрямителя, и задающий генератор. Дополнительно содержит маховик, управляемый реверсивный преобразователь энергии и суперконденсатор, подключенный одним выводом к второму выводу дросселя, а другим выводом - к второй выходной шине управляемого выпрямителя. Управляемый реверсивный преобразователь энергии подключен силовым входом к выводам суперконденсатора, управляющим входом соединен с выходом задающего генератора, а выходом подключен к обмоткам испытуемой электрической машины, на валу которой установлен маховик. Технический результат заключается в повышении энергетической эффективности испытания электрических машин в динамическом режиме. 4 ил.

Изобретение относится к измерительной технике и предназначено для измерения угловой скорости вращения магнитного поля. Устройство состоит из ферромагнитного ротора и магнитопроводящего статора, причем ротор выполнен в форме цилиндра с осью вращения, в средней части которого осесимметрично и бесконтактно размещена обмотка подмагничивания ротора, связанная с регулируемым источником постоянного тока, измеряемого амперметром; магнитопроводящий статор выполнен в форме двух цилиндров, оси которых совпадают с осью вращения ротора. На каждом из статоров выполнена обмотка, причем часть каждого витка обмотки расположена в зазоре между ротором и статором. Указанные части витков расположены на некотором расстоянии от статора внутри магнитного зазора. Ротор приводится во вращательное движение синхронным двигателем переменного тока с регулируемой частотой вращения, измеряемой частотомером, а возникающая в статорной обмотке э.д.с. индукции измеряется регистрирующим вольтметром. Технический результат - возможность определения скорости вращения магнитного поля. 2 ил.

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора асинхронного электродвигателя при напряжении питания асинхронного электродвигателя ниже номинального значения, при котором ротор электродвигателя остается неподвижным. Измеренные мгновенные величины токов и напряжений преобразуют из естественной координатной системы в прямоугольную стационарную систему координат. Последовательно выполняют три временные задержки преобразованных токов и напряжений асинхронного электродвигателя. Полученные значения запоминают и используют для определения активного сопротивления обмотки статора, постоянной времени ротора, эквивалентных постоянной времени и активного сопротивления асинхронного электродвигателя. Технический результат заключается в возможности определять параметры асинхронного электродвигателя в реальном времени. 1 з.п. ф-лы, 1 ил., 1 табл.
Наверх