Способ сравнительных испытаний по надежности партий интегральных схем



 


Владельцы патента RU 2546998:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" (RU)

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых интегральных схем (ИС). Сущность: из партий ИС методом случайной выборки отбирают одинаковое количество изделий (не менее 10 от каждой партии) и измеряют значение информативного параметра. Затем на каждую ИС всех выборок подают пять ЭСР одной и пять ЭСР другой полярности потенциалом, максимально допустимым по ТУ. Воздействию ЭСР должны подвергаться следующие выводы ИС: питание - общая точка, вход - питание, выход - питание, вход - выход. Затем измеряют значение информативного параметра. Далее все ИС хранят в нормальных условиях в течение 72 часов. Измеряют значение информативного параметра. Проводят термический отжиг всех ИС при температуре Т=100°С. Измеряют значение информативного параметра. Далее находят значения величин Δ1, Δ2, Δ3 для каждой ИС. По значениям Δ1, Δ2, Δ3 судят о сравнительной надежности партий ИС. 2 табл.

 

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых интегральных схем (ИС), и может быть использовано для сравнительной оценки надежности партий ИС как в процессе производства, так и при входном контроле на предприятии-изготовителе радиоэлектронной аппаратуры.

Известен способ сравнительной оценки надежности партий полупроводниковых изделий (ППИ) [1], в соответствии с которым на ППИ осуществляется механическое воздействие и воздействие ЭСР при значениях, максимально допустимых по ТУ, а сравнение партий ППИ по надежности осуществляют, сравнивая минимальные, средние и максимальные значения информативного параметра до и после испытаний.

За основу взят способ сравнительной оценки надежности партий ИС [2], в соответствии с которым на произвольных выборках ИС из партий проводят измерение значений динамических параметров до и после воздействия различных по полярности напряжения пяти электростатических разрядов (ЭСР), предельно допустимых по техническим условиям (ТУ), и температурного отжига при допустимой максимальной температуре кристалла, а ЭСР подают на каждую из пар выводов ИС: вход - общая точка, выход - общая точка, питание - общая точка, вход-выход, количество циклов воздействия ЭСР и температурного отжига составляет не менее трех, по количеству отказавших ИС делают вывод о сравнительной надежности партий ИС.

Недостаток способа - трудоемкость испытаний. Изобретение направлено на устранение данного недостатка.

Предложенный способ сравнительных испытаний на надежность партий ИС основывается на измерении информативного параметра Х в исходном состоянии, после воздействия на ИС пяти импульсов ЭСР обеих полярностей потенциалом, предельно допустимым по ТУ, после хранения в течение 72 часов при нормальных условиях (атмосферном давлении, температуре Т=22±5°С), после термического отжига при температуре Тотж=100°С в течение 2 часов и сравнении трех величин: Δ1начЭСР, Δ2=XЭСР-Xxp, Δ3хротж, где Хнач - значение информативного параметра в начале измерений (в исходном состоянии), ХЭСР - значение информативного параметра после воздействия ЭСР, Ххр - значение информативного параметра после хранения в течение 72 часов, Хотж - значение информативного параметра после термического отжига при температуре Т=100°С.

Способ осуществляется следующим образом: от партий ИС (количество партий неограниченно, ИС должны быть однотипными) методом случайной выборки отбирают одинаковое количество изделий (не менее 10 от каждой партии) и измеряют значение информативного параметра. Затем на каждую ИС всех выборок подают пять ЭСР одной и пять ЭСР другой полярности потенциалом, максимально допустимым по ТУ. Воздействию ЭСР должны подвергаться следующие выводы ИС: питание - общая точка, вход - питание, выход - питание, вход-выход. Затем измеряют значение информативного параметра. Далее все ИС хранят в нормальных условиях в течение 72 часов. Измеряют значение информативного параметра. Проводят термический отжиг всех ИС при температуре Т=100°С. Измеряют значение информативного параметра. Далее для каждой ИС находят значения величин Δ1, Δ2, Δ3. По значениям Δ1, Δ2, Δ3 судят о сравнительной надежности партий ИС.

Способ был опробован на выборках из двух партий ИС типа К155ЛЕ1 (четыре логических элемента 2ИЛИ-НЕ, выполненные по ТТЛ технологии с окисной изоляцией карманов). Из каждой партии ИС методом случайной выборки было отобрано по 10 ИС. В качестве информативного параметра было выбрано среднеквадратичное значение напряжения низкочастотного шума (НЧШ) U Ш 2 ¯ . На каждой ИС было измерено значение шумового напряжения U Ш Н А Ч 2 ¯ по выводам питание - общая точка (выводы 14-7). Измерение НЧШ проводилось при токе 7,5 мА, с полосой частот 200 Гц, при центральной частоте 1000 Гц. Затем ИС подвергались воздействию ЭСР потенциалом 200 В. Воздействие проводилось следующим образом. ЭСР подавался на следующие выводы ИС: питание - общая точка (выводы 14-7), вход - питание (выводы 2-14), выход - питание (выводы 1-14), вход-выход (выводы 1-2). Сначала подавалось пять ЭСР одной полярности, затем пять ЭСР другой полярности. После этого замеряли среднеквадратичное значение напряжения НЧШ после ЭСР U Ш Э С Р 2 ¯ . Далее ИС хранились в нормальных условиях в течение 72 часов. Замеряли среднеквадратичное значение напряжения НЧШ после хранения U Ш Х Р 2 ¯ . Провели термический отжиг всех ИС при температуре Т=100°С. Замеряли среднеквадратичное значение напряжения НЧШ после ЭСР U Ш О Т Ж 2 ¯ . Далее Для каждой ИС нашли значения величин Δ 1 = U Ш Н А Ч 2 ¯ U Ш Э С Р 2 ¯ , Δ 2 = U Ш Э С Р 2 ¯ U Ш Х Р 2 ¯ , Δ 3 = U Ш Х Р 2 ¯ U Ш О Т Ж 2 ¯ . Результаты измерения величин среднеквадратичного значения напряжения НЧШ, а также значения величин Δ1, Δ2, Δ3 представлены в таблице 1 (для выборки из партии 1) и в таблице 2 (для выборки из партии 2).

Таблица 1
Результаты испытания выборки из партии 1
U Ш Н А Ч 2 ¯ , мкВ2 U Ш Э С Р 2 ¯ , мкВ2 U Ш Х Р 2 ¯ , мкВ2 U Ш О Т Ж 2 ¯ , мкВ2
№ ИС Δ1 Δ2 Δ3
1 14,48 14,61 14,46 14,48 -0,13 0,15 -0,02
2 14,19 14,30 14,29 14,26 -0,11 0,01 0,03
3 14,81 14,9 14,88 14,86 -0,09 0,02 0,02
4 14,68 14,76 14,79 14,79 -0,08 -0,03 0
5 14,4 14,65 14,41 14,34 -0,25 0,24 0,07
6 14,68 14,76 14,7 14,72 -0,08 0,06 -0,02
7 14,27 14,34 14,34 14,39 -0,07 0 -0,05
8 14,43 14,69 14,38 14,47 -0,26 0,31 -0,09
9 14,52 14,60 14,58 14,56 -0,08 0,02 0,02
10 14,48 14,64 14,64 14,66 -0,16 0 -0,02
Таблица 2
Результаты испытаний выборки из партии 2
U Ш Н А Ч 2 ¯ , мкВ2 U Ш Э С Р 2 ¯ , мкВ2 U Ш Х Р 2 ¯ , мкВ2 U Ш О Т Ж 2 ¯ , мкВ2
№ ИС Δ1 Δ2 Δ3
1 14,23 14,48 14,32 14,33 -0,25 0,16 -0,01
2 14,28 15,07 14,99 14,45 -0,79 0,08 -0,54
3 14,15 14,29 14,30 14,26 -0,14 -0,01 0,04
4 14,11 14,48 14,48 14,22 -0,37 0 0,26
5 14,18 14,31 14,22 14,24 -0,13 0,09 -0,02
6 14,22 14,37 14,30 14,29 -0,15 0,07 0,01
7 14,4 14,65 14,66 14,59 -0,25 -0,01 0,07
8 14,29 14,32 14,30 14,29 -0,03 0,02 0,01
9 14,46 14,59 14,46 14,40 -0,13 0,13 0,06
10 14,21 14,35 14,34 14,36 -0,14 0,01 -0,02

Из таблиц видно, что для каждой ИС величины Δ1, Δ2, Δ3 могут иметь как отрицательные, так и положительные значения, причем Δ1 всегда отрицательна. Величины Δ2, Δ3 могут быть как положительны, так и отрицательны. В первой выборке общее число отрицательных значений величин Δ2 и Δ3 девять (ноль считаем за отрицательное значение). Во второй выборке общее число отрицательных значений величин Δ2 и Δ3 семь. Таким образом, общее число отрицательных значений величин Δ1, Δ2, Δ3 в первой выборке больше, чем во второй. На основании этого делаем вывод, что вторая партия более надежна, чем первая.

Источники информации

1. Патент РФ №2381514, G01R 31/26, опубл. 10.02.2010.

2. Патент РФ №2386975, G01R 31/26, опубл. 20.04.2010.

Способ сравнительных испытаний на надежность партий интегральных схем, в соответствии с которым на произвольных одинаковых выборках из партий, составляющих не менее 10 интегральных схем, проводят измерение среднеквадратичного значения напряжения низкочастотного шума до и после воздействия пятью электростатическими разрядами (ЭСР) обеих полярностей потенциалом, предельно допустимым по ТУ, на выводы «питание - общая точка», «вход - питание», «выход - питание», после хранения в нормальных условиях в течение 72 часов и после температурного отжига в течение 2 часов при температуре 100°С, отличающийся тем, что после измерений для каждой ИС находят значения величин Δ1начЭСР, Δ2ЭСРхр, Δ3хротж, где Хнач - среднеквадратичное значение напряжения низкочастотного шума до воздействия ЭСР, ХЭСР - среднеквадратичное значение напряжения низкочастотного шума после воздействия ЭСР, Ххр - среднеквадратичное значение напряжения низкочастотного шума после хранения в течение 72 часов, Хотж - среднеквадратичное значение напряжения низкочастотного шума после термического отжига при температуре Т=100°С, по соотношению общего количества отрицательных значений Δ1, Δ2, Δ3 для выборок судят о сравнительной надежности партий ИС.



 

Похожие патенты:
Изобретение относится к полупроводниковой технике, а именно к способам отбраковки мощных светодиодов на основе InGaN/GaN, излучающих в видимом диапазоне длин волн. Способ отбраковки мощных светодиодов на основе InGaN/GaN включает проведение измерений при комнатной температуре в любой последовательности падений напряжения в прямом и обратном направлениях и плотностей тока на светодиодах, отбраковку по определенным критериям, последующее проведение старения светодиодов при определенных условиях, повторное проведение упомянутых измерений при первоначальных условиях, кроме одного, с окончательной отбраковкой ненадежных светодиодов.

Изобретение относится к полупроводниковой электронике, а именно к методам измерения эксплуатационных параметров полупроводниковых источников света, и может быть использовано в их производстве, как для отбраковки потенциально ненадежных источников света, так и для контроля соблюдения режимов выполнения сборочных операций.

Изобретение относится к микроэлектронике, а именно к способам обеспечения качества и надежности полупроводниковых изделий ППИ (транзисторов и интегральных схем), и может быть использовано для сравнительной оценки надежности партий ППИ как на этапе производства, так и на входном контроле на предприятии - изготовителе радиоаппаратуры.

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества.

Изобретение относится к электротехнике, а именно к способам обеспечения качества и надежности интегральных схем (ИС) как логических, так и аналоговых. Сущность изобретения заключается в том, что на представительной выборке проводят измерение критического напряжения питания (КНП) до и после электротермотренировки (ЭТТ) продолжительностью до 100 ч и после термического отжига продолжительностью 4-10 ч при температуре, максимально допустимой для данного типа ИС, затем находят коэффициент М и по его значению разделяют ИС по надежности. M = Е К Р Э Т Т − Е К Р Н А Ч Е К Р Э Т Т − Е К Р о т ж , где Е К Р Н А Ч ,   Е К Р Э Т Т ,     Е К Р о т ж - значения КНП до ЭТТ, после ЭТТ и после отжига соответственно.

Изобретение относится к контролю качества и надежности интегральных схем (ИС), как логических, так и аналоговых, и может быть использовано как в процессе производства, так и при входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к измерительной технике. Сущность: способ измерения шума узлов фотоприемного устройства (ФПУ) включает измерение напряжения шума U ш1 с выключенным напряжением питания ФПУ, измерение напряжения шума U ш2 с включенным напряжением питания ФПУ и заданным временем накопления ФПУ, расчет напряжения шума ФПУ U ш по формуле: U ш = U ш 2 2 − U ш 1 2 .

Изобретение относится к измерению тепловых параметров компонентов силовой электроники. Сущность: прибор нагревают путем пропускания через него тока произвольной формы в открытом состоянии.

Способ разделения полупроводниковых изделий по надежности заключается в том, что на партии полупроводниковых изделий измеряют интенсивность шума на двух частотах 200 Гц и 1000 Гц.

Изобретение относится к микроэлектронике, а именно к способам обеспечения надежности полупроводниковых изделий (ППИ) (транзисторов и интегральных схем), и может быть использовано для обеспечения повышенной надежности партий изделий как на этапе производства, так и на входном контроле на предприятиях-изготовителях радиоэлектронной аппаратуры.

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева p-n-перехода диода протекающим током в процессе измерения. Используется известный способ измерения последовательного сопротивления базы диода, в котором через диод пропускают прямой ток различной величины и измеряют падение напряжения на диоде при этих значениях прямого тока. Искомую величину последовательного сопротивления базы диода определяют по известным формулам. Для достижения технического результата прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I1, kI1, 2kI1 и измеряют пиковое значение падений напряжения U1, U2, U3 на диоде при пропускании этих импульсов тока. Последовательное сопротивление базы определяется по формуле где ΔU32=U3-U2; ΔU21=U2-U1; ν=ln 2/b; b=ln k. 3 ил.

Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и длительностью, изменяющейся по гармоническому закону, измерении в паузах температурочувствительного параметра - напряжения на объекте при пропускании через него измерительного тока и определении изменения температуры объекта, вызванной модуляцией греющей мощности. Далее с помощью Фурье-преобразования вычисляют амплитуду первой гармоники температуры объекта, после чего определяют тепловое сопротивление как отношение амплитуд первых гармоник температуры и греющей мощности. При этом при определении амплитуды первой гармоники греющей мощности учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока. Технический результат: повышение точности. 2 ил.

Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества. Способ заключается в том, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды, постоянным периодом следования и изменяющейся по гармоническому закону длительностью. Импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале транзистора, измеряют и запоминают для каждого греющего импульса напряжение на диоде и вычисляют временную зависимость средней за период следования греющей мощности. В паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра - прямого напряжения на диоде при малом постоянном измерительном токе и вычисляют временную зависимость температуры кристалла в процессе нагрева транзистора, после чего с помощью Фурье-преобразования вычисляют амплитуду основной гармоники температуры кристалла и амплитуду основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса транзистора на частоте модуляции греющей мощности. Затем процесс измерения повторяют на других частотах модуляции, получают частотную зависимость модуля теплового импеданса транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус мощного МДП-транзистора. 4 ил.

Изобретение относится к области инновационных технологий и может быть использовано для определения параметров кристаллов силленитов, определяющих эффективность перспективных технических систем, и их экспресс-характеризации методами диэлектрической спектроскопии. При соответствующей стартовой подготовке образцов и выборе частоты регистрации, основанном на информации о частотных спектрах, могут быть определены ключевые параметры примесных центров в кристаллах силленитов. Изобретение обеспечивает возможность оценки параметров, характеризующих оптоэлектронные свойства силленитов, по результатам измерений частотных зависимостей проводимости, комплексной диэлектрической проницаемости и тангенса угла диэлектрических потерь при разных температурах. 4 ил.

Изобретение относится к области радиоэлектронной техники и микроэлектроники. Использование: для термотренировки тонких пленок, нанесенных на диэлектрическую основу. Сущность изобретения заключается в том, что способ включает очистку поверхности плат методом протирки спиртом или ацетоном для обезжиривания поверхности, помещают изделия в камеру конвекционной печи так, чтобы у атмосферы был доступ к проводниковому слою платы, производят термотренировку изделий в атмосфере воздуха при температуре процесса 100-170°С в течение 85-340 ч, по окончании термотренировки проверяют платы на адгезию липкой лентой с клеевым слоем, производят очистку поверхности плат методом протирки спиртом или ацетоном от остатков клеевого слоя на платах, проводят внешний осмотр изделий с помощью микроскопа на предмет отслоения проводникового слоя. Технический результат: обеспечение возможности выявления потенциально ненадежных металлизированных тонкопленочных структур и скрытых дефектов микрополосковых плат по параметру межслоевой адгезии проводников методом термотренировки. 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области нанотехнологий, а именно к способам измерения параметров наноструктур, и может быть использовано при определении электрофизических параметров конденсаторной структуры мемристора, характеризующих процесс формовки. Способ определения электрофизических параметров конденсаторной структуры мемристора, характеризующих процесс формовки, включает измерение вольт-амперных и импедансных характеристик. Новым является то, что выбирают мемристоры в виде конденсаторов металл - диэлектрик - полупроводник с соизмеримыми емкостями диэлектрика и области пространственного заряда полупроводника, и с отсутствием фиксации (пиннинга) уровня Ферми на этой границе раздела; для этих структур дополнительно измеряют спектральную характеристику конденсаторной фотоЭДС; из измеренных характеристик определяют электрофизические параметры структур, которые характеризуют происходящие при формовке изменения как в диэлектрике, так и на границе раздела диэлектрик/полупроводник и в полупроводнике: захват носителей заряда поверхностными состояниями на границе раздела диэлектрик/полупроводник, перемещение ионов, электрохимические реакции, дефектообразование. Изобретение обеспечивает расширение диагностических возможностей измерения характеристик и повышение степени прогнозирования электрофизических параметров мемристоров в виде МДП-конденсаторов для оптимизации технологии их изготовления при их разработке, кроме того, изобретение расширяет арсенал методов измерительной технологии в актуальной области изготовления мемристоров, являющихся основой нового поколения устройств энергонезависимой памяти. 1 з.п. ф-лы, , 4 ил.
Наверх