Обнаружитель радиоимпульсов



Обнаружитель радиоимпульсов
Обнаружитель радиоимпульсов
Обнаружитель радиоимпульсов

 


Владельцы патента RU 2547095:

Симонов Андрей Владимирович (RU)

Изобретение относится к методам и средствам обработки сигналов в радиотехнических системах и может быть использовано при решении задач обнаружения радиоимпульсов в условиях воздействия непрерывной узкополосной помехи с неизвестной несущей частотой. Достигаемый технический результат - повышение эффективности обнаружения. Указанный результат достигается за счет того, что признаками присутствия радиоимпульса на входе обнаружителя принимаются не только положительные, но и отрицательные выбросы в выходном сигнале обнаружителя, при этом для регистрации отрицательных выбросов используется дополнительная пороговая схема. обеспечивающая улучшение характеристик обнаружения. 3 ил.

 

Изобретение относится к методам и средствам обработки сигналов в радиотехнических системах и может быть использовано при решении задач обнаружения полезных радиоимпульсов в условиях воздействия помех.

Уточним постановку задачи. Одной из традиционных задач радиолокации является обнаружение пачки радиоимпульсов на фоне помех различного происхождения, в частности при воздействии непрерывной узкополосной помехи с неизвестной несущей частотой. Оптимальные алгоритмы решения такой задачи предполагают подавление помехи с последующим когерентным накоплением пачки радиоимпульсов, причем обе эти операции осуществляются на высокой частоте [1, 2]. Однако сложность технической реализации оптимальных алгоритмов часто вынуждает перейти к более простым методам обработки:

- во-первых, процесс подавления помехи переносится с высокой частоты на видеочастоту, т.е. после амплитудного детектирования входного сигнала;

- во-вторых, процесс последетекторного накопления импульсов пачки и последующего сравнения результатов накопления с пороговым напряжением заменяется двухэтапной процедурой принятия решения. На первом этапе осуществляется процедура принятия решения об обнаружении каждого отдельного импульса пачки путем сравнением видеосигнала с пороговым напряжением, а на втором этапе принимается окончательное решение об обнаружении пачки видеоимпульсов путем подсчета числа обнаруженных на первом этапе импульсов и сравнения этого числа с пороговым числом [2, стр.81-83]. В настоящем изобретении ставится задача повышения эффективности алгоритмов обнаружения отдельно взятого радиоимпульса после процедуры амплитудного детектирования входного сигнала в условиях воздействия непрерывной узкополосной помехи с неизвестной несущей частотой.

Известны схемы обнаружителей радиоимпульсов с последетекторной обработкой входного сигнала. Обзор таких обнаружителей приведен в [3, стр.22-35].

Недостаток аналогов состоит в их низкой эффективности при воздействии непрерывной узкополосной помехи с неизвестной несущей частотой.

В качестве прототипа выберем обнаружитель, представленный на странице 27, рис.2.5, того же источника [3, стр.22-35].

Недостаток прототипа состоит в его низкой эффективности при воздействии непрерывной узкополосной помехи с неизвестной несущей частотой.

Цель изобретения состоит в повышении эффективности обнаружения.

Для достижения поставленной цели в обнаружитель радиоимпульсов, содержащий последовательно соединенные амплитудный детектор и блок оценивания помехи, первый и второй выходы которого подключены соответственно к положительному и отрицательному входам схемы вычитания, и основную пороговую схему с положительным пороговым напряжением, подключенную к выходу схемы вычитания, введена дополнительная пороговая схема с отрицательным пороговым напряжением, вход которой подключен к выходу схемы вычитания.

На фиг.1 изображена схема предложенного обнаружителя, элементы 1-5 которой несут следующее техническое содержание: 1 - амплитудный детектор, характеризующийся постоянной времени τD своего выходного низкочастотного фильтра; 2 - блок оценивания помехи (БОП), который характеризуется собственным временем усреднения помехи Т; 3 - схема вычитания, 4 - основная пороговая схема; 5 - дополнительная пороговая схема. На фиг.2 изображен первый из возможных вариантов реализации БОП, повторяющий часть схемы [3, стр.27, рис.2.5.] и содержащий многоотводную линию задержки 6, сумматор 7 и делитель напряжения 8, причем один из выходов линии задержки является носителем продетектированного радиоимпульса. На фиг.2 время усреднения помехи Т определяется величиной задержки в линии 6. На фиг.3 изображен второй из возможных вариантов исполнения БОН, содержащий инерционное звено 9 в виде RC-цепочки с делителем напряжения, осуществляющей низкочастотную фильтрацию поступающего сигнала. На фиг.3 время усреднения помехи Т определяется постоянной времени инерционного звена 9.

Заметим, что элементы 1-4 фиг.1 образуют схему прототипа, которая отличается от схемы [3, стр.27, рис.2.5.]. Видоизмененное, но по существу эквивалентное представление схемы прототипа позволяет точнее передать математическую сущность реализуемых операций с максимальным использованием принятой в теории обнаружения терминологии и облегчает доказательство положительного эффекта. О целесообразности введения схемы БОП было сказано выше. Относительно пороговой схемы в [3, стр.27, рис.2.5.] заметим, что она неявно выполняет две функции: операцию вычитания и собственно операцию принятия решения об обнаружении. Поэтому в схеме прототипа (элементы 1-4 фиг.1) эти функции разделены между схемой вычитания 3 и основной пороговой схемой 4. В теории оптимальных алгоритмов совокупность БОП 2 и схемы вычитания 3 совместно образуют устройство компенсации помехи [1, стр.78 (рис.2.226), стр.211 (рис.5.9)].

Ввиду того, что в обнаружителе фиг.1 радиотехническая часть обработки заканчивается на выходе схемы вычитания 3, ее выходной сигнал в дальнейшем целесообразно называть выходным сигналом обнаружителя.

Перейдем к рассмотрению функционирования предложенного обнаружителя фиг.1. Поступающий на вход амплитудного детектора 1 входной сигнал

состоит из двух слагаемых:

- S(t) - радиоимпульс длительностью τS с известной несущей частотой f0. Спектр его лежит в диапазоне частот {fmin, fmax}, fmin+fmax=2f0, fmax-fmin≈1/τS<<f0;

- N(t) - помеха, включающая внутренние шумы ξ(t) и собственно мешающее колебание H(t) в виде непрерывного узкополосного процесса с медленно изменяющейся амплитудой и неизвестной несущей частотой fH, лежащей в спектральном диапазоне полезного сигнала {fmin, fmax}.

Низкочастотный сигнал с выхода детектора 1 поступает на вход БОП 2. Постоянная времени τD выходного фильтра детектора 1 выбирается в (5-10) раз меньшей длительности τS радиоимпульса, а время усреднения помехи Т в БОП 2 выбирается равным нескольким (≥5-10) значениям τS, но не превышающим периода повторения радиоимпульсов.

Сигнал с первого выхода БОП 2, обозначаемый через A1(t), поступает на положительный вход схемы вычитания 3, а сигнал со второго выхода БОП 2, обозначаемый через A2(t) и равный усредненной на интервале длительностью Т амплитуде помехи N(t), поступает на отрицательный вход схемы вычитания 3. Разностный сигнал A1(t)-А2(1) с выхода схемы вычитания 3, являющийся выходным сигналом обнаружителя, поступает на две пороговые схемы 4 и 5, отличающиеся полярностью используемых в них пороговых напряжений. В схеме 4 пороговое напряжение имеет положительное значение, а в схеме 5 - отрицательное. Сами пороговые напряжения в 4 и 5 выбираются из условия достижения максимальной вероятности правильного обнаружения при заданной вероятности ложной тревоги. Окончательное решение об обнаружении полезного радиоимпульса выносится в том случае, если такое решение будет принято хотя бы в одной из пороговых схем 4 или 5.

Перейдем к доказательству достигаемого положительного эффекта, предполагая выполненным условие:

а также учитывая, что делители напряжений в схемах БОП обеспечивают равенство среднестатистических значений сигнала A2(t) и амплитуды помехи N(t).

Рассмотрим случай отсутствия мешающего колебания H(t), когда N(t)=ξ(t). В этой ситуации прототип обеспечивает достаточно высокие характеристики обнаружения, т.к. ввиду условия (2) сигнал A1(t) практически совпадает с амплитудой входного сигнала Y(t)=S(t)+ξ(t) и с высокой вероятностью превышает сигнал А2(t), равный усредненному за время Т значению амплитуды внутренних шумов ξ(t). Положительные выбросы разностного сигнала A1(t)-A2(t) фиксируются пороговой схемой 4.

Рассмотрим случай, когда помеха N(t) содержит мешающее колебание H(t). Ввиду того, что несущая частота fH мешающего колебания H(t) лежит в спектральном диапазоне полезного сигнала {fmin, fmax}, т.е. (fH-f0)≤1/τS, разность фаз мешающего колебания H(t) и радиоимпульса S(t) на всем протяжении последнего остается неизменной. Если при этом она составляет величину ≈ π, а амплитуда радиоимпульса S(t) не превышает двойной амплитуды мешающего колебания H(t), то разностный сигнал A1(t)-A2(t) будет иметь отрицательный выброс, который фиксируется дополнительной пороговой схемой 5.

Таким образом, отрицательные выбросы в выходном сигнале обнаружителя являются таким же признаком присутствия радиоимпульса на входе обнаружителя, как и положительные выбросы, и поэтому регистрация выбросов обеих полярностей повышает вероятность обнаружения радиоимпульса.

Источники информации

1. Сосулин Ю.Г. Теоретические основы радиолокации и радионавигации: - М.: Радио и связь, 1992 г.

2. Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981 г.

3. Оводенко А.А. Робастные локационные устройства. - Л.: Изд-во Ленингр. ун-та, 1981 г.

Обнаружитель радиоимпульсов, содержащий последовательно соединенные амплитудный детектор и блок оценивания помехи, первый и второй выходы которого подключены соответственно к положительному и отрицательному входам схемы вычитания, и основную пороговую схему с положительным пороговым напряжением, подключенную к выходу схемы вычитания, отличающийся тем, что в него введена дополнительная пороговая схема с отрицательным пороговым напряжением, вход которой подключен к выходу схемы вычитания.



 

Похожие патенты:

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике, в системах обработки первичной радиолокационной информации, для обнаружения высокоманевренной цели в импульсно-доплеровских радиолокационных станциях.

Изобретение относится к области радиотехники и может быть использовано при решении задач пассивной радиолокации. Техническим результатом является улучшение обнаружения хаотической последовательности импульсов.

Изобретение относится к методам радиолокационного обнаружения воздушных объектов (ВО), в том числе беспилотных летательных аппаратов (БЛА). Достигаемый технический результат - просмотр всего диапазона частот (перебор всех значений длин волн, соизмеримых с размерами ВО и элементами их конструкции) и повышение точности обнаружения.

Изобретение может быть использовано для поиска радиоуправляемых взрывных устройств (РВУ). Заявленное изобретение состоит из передатчика зондирующего сигнала, приемников, настроенных на удвоенную и утроенную частоту зондирующего сигнала, блока управления, блока обработки, пульта управления и индикации, блока антенн, широкополосного приемника, анализатора спектра и индикатора анализатора спектра, определенным образом соединенных между собой.

Изобретение относится к наведению летательных аппаратов на воздушные цели (ВЦ). Достигаемый технический результат - повышение ситуационной осведомленности летчика о конечных результатах наведения и упрощение соответствующих вычислений.

Изобретение относится к радиолокации и может использоваться для ускоренного поиска и слежения за объектами. .

Изобретение относится к области радиолокации и может быть использовано в пассивном поляризационном (поляриметрическом) радиолокаторе для обнаружения и селекции радиолокационных сигналов.

Изобретение относится к техническим средствам охраны и может быть использовано для поиска радиоуправляемых взрывных устройств. .
Изобретение относится к области радиолокаций. Технический результат заключается в уменьшении погрешности измерения фазы обратного вторичного излучения цели. Устройство для измерения элементов матрицы рассеяния цели содержит: генератор (1) монохроматических электрических колебаний высокой частоты (ВЧ), поляризатор (2), волноводный разделитель поляризации (3) поля вторичного излучения цели, приемно-передающую антенну (4) полей ВЧ, источник (5) опорного сигнала, фильтр (6) сигнала рабочей гармоники несущей частоты, делитель (7) частоты сигнала рабочей гармоники, три смесителя (8.1, 8.2, 8.3), три фильтра ПЧ (9.1, 9.2, 9.3), три усилителя сигнала ПЧ (10.1, 10.2, 10.3), два фильтра несущей частоты (11.1, 11.2), два регистратора фазы (12.1, 12.2), два регистратора амплитуды (13.1, 13.2), гетеродин (14), радиолокационную цель (15), опоры (16) системы мягкой подвески цели, несущий трос (17) системы подвески цели, стропы (18) крепления цели, стропы-оттяжки (19) вращения цели, поворотное устройство цели, диод (21), источник (5) опорного сигнала. 2 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокационным пеленгаторам запреградных объектов. Достигаемый технический результат - повышение точности пеленгации локализованного слабоконтрасного объекта на фоне распределенной в пространстве помехи и обеспечение запреградного действия по локализованному объекту. Указанный результат достигается за счет того, что радиолокационный пеленгатор локализованных объектов содержит излучатель, передающую антенну, две приемные антенны, два приемных модуля, коррелятор для оценки взаимно корреляционной функции, исполнительное устройство, при этом вторая приемная антенна выполнена подвижной относительно первой и расположена на расстоянии от нее где d - расстояние между приемными антеннами, λ0=0,18 м - средняя длина волны, при этом излучатель выполнен в виде генератора сверхкороткого импульсного излучения. 5 ил.

Радиоизмерительная установка для измерения эффективной поверхности рассеяния объектов содержит: генератор ВЧ, приемник, приемо-передающую антенну, которая выполнена в виде плоской фазированной антенной решетки (ФАР) с N каналами, генератор опорной частоты, три смесителя, фильтр высокой частоты, генератор импульсов, импульсный модулятор, усилитель мощности, циркулятор, систему из √N+1 разветвителей, каждый разветвитель имеет √n выходов, N ответвителей, N аттенюаторов, N фазовращателей, N излучателей, блок настройки ФАР, который имеет N входов вторых выходов ответвителей, N первых выходов сигналов управления аттенюаторами и N вторых выходов сигналов управления фазовращателями. Выход генератора опорной частоты соединен с гетеродинными входами смесителей и входом гетеродинного сигнала блока настройки, сигнальный вход первого смесителя соединен с выходом генератора ВЧ, а выход первого смесителя соединен с входом фильтра ВЧ. Выход генератора ВЧ соединен с гетеродинными входами второго и третьего смесителей, выход фильтра ВЧ соединен с сигнальным входом усилителя мощности, а его выход соединен с входом циркулятора, выход-вход которого соединен с входом первого разветвителя системы разветвителей, выходы первого разветвителя соединены с входами других разветвителей, выходы которых образуют N каналов фазированной антенной решетки. Выход циркулятора соединен с сигнальным входом второго смесителя, выход которого соединен с входом приемника. В каждом канале последовательно включены: ответвитель, аттенюатор, фазовращатель и излучатель. Вторые выходы ответвителей соединены с сигнальными входами третьих смесителей, выходы которых соединены с входами блока настройки, первые N выходов которого соединены с входами управляющих сигналов аттенюаторами, а вторые N выходов соединены с входами управляющих сигналов фазовращателей. Техническим результатом изобретения является увеличение площади однородного по амплитуде и фазе фронта ЭМП до площади апертуры ФАР, возможность измерения ЭПР объектов больших размеров с большей точностью по сравнению с прототипом изобретения и сокращение в два раза продольных размеров радиоизмерительной установки. 3 ил.
Наверх