Способ изготовления электродов литий-ионного аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного и литий-полимерного аккумулятора. Техническим результатом изобретения является повышение удельной разрядной емкости, уменьшение экологического риска и снижение взрывобезопасности. Согласно изобретению для изготовления активной массы электродов в качестве связующего используют гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или сополимера стирола и акрилата. Смешение компонентов проводят одновременно с ультразвуковым диспергированием. При следующих соотношениях компонентов смеси, % (масс. сух. в-ва): активный материал 76-96; ацетиленовый технический углерод 0,1-12, гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или стирол-акрилата 4-12, а сушку электродов ведут до остаточной влажности 0,001%. В качестве электропроводной добавки и связующего используют гель-полимерные или твердо-полимерные электролиты переменного состава. В качестве пластификатора гель-полимерного электролита используют: пропиленкарбонат, диметилкарабонат, диэтилкарбонат и их смеси с этиленкарбонатом, в качестве ионогенной соли лития: LiPF6, LiClO4, LiBF4, LiAsF6, в качестве материала отрицательного электрода: природные или синтетические графиты, в качестве материала отрицательного электрода: LiFePO4, LiCoO2, LiNiO2. 2 табл., 5 пр.

 

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного аккумулятора (ЛИА).

Литий ионный аккумулятор по своим удельным электрохимическим характеристикам превосходит все известные типы аккумуляторов. При этом они обладают рядом недостатков, таких как повышенная необратимая емкость в первом цикле заряда и высокая стоимость.

Известен способ изготовления электродов с использованием фторопластов PVDF и PTFE при получении литий-ионного аккумулятора, когда в качестве материала связующего компонента используют поливинилиден фторид PVDF и политетрафторэтилен PTFE, а в качестве растворителя связующего используют в основном N-метилпирролидон [1].

Недостатком способа изготовления электродов с использованием фторопластов PVDF и PTFE является необходимость использования в качестве растворителя N-метилпирролидона. Данный растворитель относится к 1 классу опасности, что создает угрозу экологии и здоровью людей. При этом температура кипения данного растворителя составляет 248°С, что требует повышенной температуры и времени сушки, повышая тем самым себестоимость изготовления электродов и аккумулятора в целом. При этом фторопласт относится к диэлектрикам, тем самым снижает электропроводность электродов, что приводит к снижению мощностных и емкостных характеристик литий-ионного аккумулятора.

Известен способ изготовления электродов для ЛИА с использованием в качестве связующего водного раствора полиакрилата [2, 3], водных растворов бутадиен стирольного латекса (латекс SBR), латекса каучука нитрилового бутадиена (латекс NBR) и латекса каучука бутадиена метакрилата (латекс MBR) [4]. Применение данных материалов позволило повысить плотность активной массы электродов, производительность, плотность энергии, циклируемость.

Известен способ изготовления электродов электрического аккумулятора, описанный в патенте РФ [5], сущность которого заключается в смешении 100 мас.ч. активного материала с 2,4-24 мас.ч. водной дисперсии сополимера бутадиена и метилметакрилата и 10-40 мас.ч. воды, с последующим нанесением полученной смеси на токоотвод и сушкой.

К недостаткам известных способов можно отнести наличие излишних операций по введению в активную массу электродов дополнительного количества воды, сушке активной массы перед нанесением на коллектор тока, необходимость приготовления водной дисперсии сополимера бутадиена и метилметакрилата. Низкая степень осушки электродов, остаточная влажность 1,0-2,5%, не удовлетворяет требованиям, предъявляемым к активным массам электродов ЛИА.

Наиболее близким к заявляемому является способ изготовления электродов [6], который заключается в следующем: электроды изготавливаются путем смешивания активного материала со связующим в виде водной дисперсии полиакрилата или стирол-акрилата, нанесения смеси на токоотвод и сушки, при этом сушка ведется до остаточной влажности 0,003%. Соотношение компонентов активной массы электрода составляет, % (масс. сух. в-ва):

безводная ионогенная неорганическая соль лития 15-30
безводный органический растворитель 30-40
сополимер винилацетат/акрилат 30-55

Недостатком известного способа также является наличие излишних операций по введению в активную массу электродов дополнительного количества воды, сушке активной массы перед нанесением на коллектор тока, необходимость приготовления водной дисперсии полимеров.

Изобретение решает задачу повышения использования новых материалов для производства электродов литий-ионного аккумулятора, разработки нового способа приготовления электродов, который по сравнению с другими способами обеспечивает повышение мощностных и емкостных характеристик литий-ионного аккумулятора, упрощение технологического процесса, снижение себестоимости производства.

Техническим результатом, полученным при осуществлении изобретения, является повышение мощностных и емкостных характеристик литий-ионного аккумулятора, упрощение технологического процесса, уменьшение экологического риска, взрывобезопасности.

Указанный технический результат достигается тем, что в известном способе изготовления электрода литий-ионного аккумулятора, включающем смешивание активного материала и электропроводной добавки со связующим, а в качестве связующего используют гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или сополимера стирола и акрилата, при следующих соотношениях компонентов, % (масс. сух. в-ва).

Активный материал 76-96
Ацетиленовый технический углерод 0,1-12
Гель-полимерный электролит на
основе бутадиен-нитрильного каучука
и его сополимеров, или полиакрилата, или
сополимера стирола и акрилата 4-12,

а сушку электродов ведут при температуре 60-80°С в течение 24 часов до остаточной влажности 0,001%.

Предложенный способ обеспечивает расширение технологических возможностей в части использования различных методов нанесения активной массы на токоотвод и обеспечивает получение повышенной гибкости электрода (без разрушения основы) за счет использования в качестве связующего и электропроводной добавки - пластичного гель-полимерного электролита с соответствующим соотношением компонентов и сушки электродов до определенной остаточной влажности.

За счет использования в качестве полимерной основы гель-полимерного электролита серийно выпускаемых водных дисперсий полиакрилата (R280, А1100, А2001) и стирол-акрилата (А10), а также растворов бутадиен-нитрильного каучука (БНКС-28АМН, СКН-40) в метилэтилкетоне, в качестве пластификатора - органического растворителя (пропиленкарбонат, этиленкарбонат, диметилкарбонат, диметооксиэтан и др.) или их смеси идет снижение себестоимости электролита.

Согласно изобретению для изготовления активной массы электродов в качестве связующего компонента используется гель-полимерный электролит (раствор ионогенной соли лития в пропиленкарбонате (этиленкарбонате, диметилкарбонате, диметооксиэтане и др.) с добавлением акрилатного латекса либо бутадиен-нитрильного каучука.

Способ осуществляется следующим образом.

Для изготовления активной массы электродов берется 100 мас.ч. активного материала 0-5 мас.ч. ацетиленового технического углерода, перемешивается (n 500-800 об/мин), добавляется 4-20 мас.ч. гель-полимерного электролита. В качестве полимерной основы гель-полимерного электролита используют промышленно выпускаемые водные дисперсии полиакрилата (R280, А1100, А2001) и стирол-акрилата (А 10), а также раствор бутадиен-нитрильного каучука (БНКС-28АМН, СКН-40) в метилэтилкетоне. В качестве пластификатора используют пропиленкарбонат (этиленкарбонат, диметилкарбонат, диметооксиэтан и др.). Гель-полимерный электролит берут из расчета 4-10% (масс.), основного активного материала - 90-96% по сухому веществу. После введения гель-полимерного электролита масса перемешивается (n 500-800 об/мин) и обрабатывается на ультразвуковом диспергаторе УЗДН-А в режиме синхронизация 6 и интенсивность 6. Полученную массу наносят на токоотвод, производят сушку при температуре 80°С в течение 0,5 ч, прокатку и прессование. Затем сушат при температуре 60-80°С и давлении 0,02 МПа до остаточной влажности 0,001%.

Полученные электроды обладают высокой прочностью и гибкостью, активная масса электродов не разрушается при многократном изгибе на 180 градусов. Полидисперсность используемых латексов приводит к образованию пространственно-скелетной гидрофильной структуры, обладающей высокой прочностью и проводимостью. Испытания показали, что электроды ЛИА, полученные данным способом, не разрушаются при многократном циклировании в гальваностатическом режиме с плотностью тока до 20С, увеличивается обратимая емкость на 5-10%, снижается на 20-30% необратимая емкость.

Пример 1. Берут 90 г порошка графита для спектрального анализа добавляют 40 см3 20-% раствора гель-полимерного электролита на основе бутадиен-нитрильного каучука в метилэтилкетоне, что обеспечивает 10%-ное содержание обезвоженного гель-полимерного электролита в активной массе. Производят перемешивание в течение 10 мин. Полученную смесь обрабатывают на ультразвуковом диспергаторе УЗДН-А в режиме синхронизация 6 и интенсивность 6 в течение 10 мин. Полученную массу наносят на медную фольгу толщиной 0,05, производят сушку при температуре 80°С в течение 0,5 ч, прокатку на вальцах и прессование. Толщина наносимого слоя составляет 50-200 мкм, что контролируется толщиномером. Полученную электродную ленту разрезают на электроды нужного типоразмера, приваривают токоотвод. Затем сушат при температуре 80°С и давлении 0,02 МПа в течение 6 ч до остаточной влажности 0,001% и используют для сборки аккумуляторов.

Пример 2. В условиях примера 1 вводят 20 см3 20-% раствора гель-полимерного электролита в метилэтилкетоне, что обеспечивает 5%-ное содержание обезвоженного гель-полимерного электролита в активной массе.

Пример 3. В условиях примера 1 вводят 45 см3 20-% раствора гель-полимерного электролита на основе полиакрилата (латекс А1100) в метилэтилкетоне, что обеспечивает 10%-ное содержание обезвоженного гель-полимерного электролита в активной массе.

Пример 4. В условиях примера 1 вводят 22,5 см3 20-% раствора гель-полимерного электролита на основе полиакрилата (латекс А1100) в метилэтилкетоне, что обеспечивает 5%-ное содержание обезвоженного гель-полимернго электролита в активной массе.

Пример 5. В условиях примеров 1-4 вместо графита для спектрального анализа использовали кобальтат лития.

Были также изготовлены активные массы для положительных и отрицательных электродов для литий-ионных аккумуляторов (примеры 6-73).

Для положительных электродов применялась масса, состоящая из кобальтата лития и железо-фосфата лития, для отрицательного - графит для спектрального анализа, природный графит Курейского месторождения, синтетические графиты CZ-50 и SLC-200 (применяется в серийном производстве) и предлагаемые латексы, процентное содержание которых варьировалось от 5 до 10% по сухому веществу.

В таблице 1 приведены показатели литиевых аккумуляторов типоразмера R6 (316, АА) рулонной конструкции в зависимости от состава электродов. Противоэлектрод - литиевый. I=С/7. Т=298 К. 20 цикл.

В таблице 2 приведены показатели литий-ионных аккумуляторов типоразмера R6 (316, АА) рулонной конструкции в зависимости от состава электродов. I=С/7. Т=298 К. 20 цикл. Связующее - гель-полимерный электролит, электропроводная добавка - ацетиленовый технический углерод (АТУ)

Предлагаемый способ позволяет изготавливать электроды для литий-ионного аккумулятора с воспроизводимыми высокими удельными электрохимическими характеристиками, применим также для изготовления электродов для других первичных и вторичных ХИТ.

Способ изготовления электродов литий-ионного аккумулятора, включающий смешивание активного материала со связующим, нанесение смеси на токовод и сушку, отличающийся тем, что в качестве связующего используют гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или сополимера стирола и акрилата, при следующих соотношениях компонентов, % (масс. сух. в-ва)

активный материал 76-96
ацетиленовый технический углерод 0,1-12
гель-полимерный электролит на
основе бутадиен-нитрильного каучука
и его сополимеров, или полиакрилата, или
сополимера стирола и акрилата 4-12,

а сушку электродов ведут до остаточной влажности 0,001%.



 

Похожие патенты:

Изобретение относится к свинцово-кислотной аккумуляторной батарее с клапанным регулированием, в которой зарядка выполняется периодически за очень короткое время, а стартерный разряд на нагрузку выполняется в состоянии частичного заряда.

Изобретение относится к свинцово-кислотной аккумуляторной батарее заливного типа, содержащей контейнер, заключающий в себе: пакет пластин, полученный укладкой отрицательной пластины с набитым в отрицательный токосъемник отрицательным активным материалом, положительной пластины с набитым в положительный токосъемник положительным активным материалом и проложенного между ними сепаратора; и электролит.

Заявленное изобретение относится к области электротехники, а именно к биполярному электроду биполярной аккумуляторной батареи и к способу ее изготовления. Биполярный электрод состоит из первого слоя активного материала, который представляет собой, например, слой активного материала положительного электрода, сформированный из первого активного материала на одной стороне токоотвода, и второго слоя активного материала, который представляет собой слой активного материала отрицательного электрода, сформированный из второго активного материала с меньшей прочностью на сжатие, чем у первого активного материала, на другой стороне токоотвода.
Изобретение относится к составам паст для отрицательных электродов стационарных свинцово-кислотных аккумуляторов и технологии их изготовления. .
Изобретение относится к электротехнической промышленности и может быть использовано при производстве положительных электродов свинцовых аккумуляторов. .
Изобретение относится к области применения нано-технологий в электротехнической промышленности и может быть использовано при производстве щелочных аккумуляторов с металлогидридным электродом в качестве анода.
Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного аккумулятора (ЛИА). .

Изобретение относится к биполярным электродам для свинцовой аккумуляторной батареи. .

Изобретение относится к области аналитической химии, а именно к аналитическому контролю количества расширителя ФС в пасте для отрицательного электрода свинцово-кислотных аккумуляторных батарей.
Изобретение относится к электротехнической промышленности и может быть использовано при производстве положительных электродов свинцового аккумулятора (батареи), используемого в транспортных средствах.

Изобретение относится к области электротехники и может быть использовано для производства электрохимических источников тока, таких как аккумуляторы и суперконденсаторы.
Изобретение относится к области применения нано-технологий в электротехнической промышленности и может быть использовано при производстве щелочных аккумуляторов с металлогидридным электродом в качестве анода.

Изобретение относится к области электротехники и может быть использовано для производства электродов электрохимических источников тока, таких как электрохимические суперконденсаторы и аккумуляторы.
Изобретение относится к электротехнической промышленности и может быть использовано для производства электродов электрических аккумуляторов. .

Изобретение относится к области электротехники и может быть использовано при изготовлении никель-цинковых аккумуляторов. .
Изобретение относится к воздушным электродам для щелочных источников тока. .
Изобретение относится к электротехнической промышленности и может быть использовано при производстве химических источников тока. .
Изобретение относится к электротехнике, в частности к производству щелочных аккумуляторов с безламельными электродами. .
Изобретение относится к области электротехники и может быть использовано в промышленности при производстве щелочных аккумуляторов с оксидно-никелевыми электродами.
Изобретение относится к области электротехники и может быть использовано в промышленности при производстве щелочных аккумуляторов с кадмиевыми электродами. .

Заявленное изобретение относится к области электротехники, а именно к способу изготовления никель-цинковых аккумуляторов с металлокерамическим окисно-никелевым электродом.

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного и литий-полимерного аккумулятора. Техническим результатом изобретения является повышение удельной разрядной емкости, уменьшение экологического риска и снижение взрывобезопасности. Согласно изобретению для изготовления активной массы электродов в качестве связующего используют гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или сополимера стирола и акрилата. Смешение компонентов проводят одновременно с ультразвуковым диспергированием. При следующих соотношениях компонентов смеси, : активный материал 76-96; ацетиленовый технический углерод 0,1-12, гель-полимерный электролит на основе бутадиен-нитрильного каучука и его сополимеров, или полиакрилата, или стирол-акрилата 4-12, а сушку электродов ведут до остаточной влажности 0,001. В качестве электропроводной добавки и связующего используют гель-полимерные или твердо-полимерные электролиты переменного состава. В качестве пластификатора гель-полимерного электролита используют: пропиленкарбонат, диметилкарабонат, диэтилкарбонат и их смеси с этиленкарбонатом, в качестве ионогенной соли лития: LiPF6, LiClO4, LiBF4, LiAsF6, в качестве материала отрицательного электрода: природные или синтетические графиты, в качестве материала отрицательного электрода: LiFePO4, LiCoO2, LiNiO2. 2 табл., 5 пр.

Наверх