Стенд для испытаний фюзеляжа летательного аппарата на выносливость



Стенд для испытаний фюзеляжа летательного аппарата на выносливость
Стенд для испытаний фюзеляжа летательного аппарата на выносливость

 


Владельцы патента RU 2548054:

Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") (RU)

Изделие относится к области испытательной техники, в частности к устройствам для прочностных испытаний фюзеляжей летательных аппаратов. Стенд содержит систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем входным большерасходным регулирующим клапаном, байпасного трубопровода, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и первый датчик давления. Дополнительно в конструкцию стенда введены регулятор давления "после себя" на первом байпасном трубопроводе, второй байпасный трубопровод, параллельный входному регулирующему клапану с расположенными на нем ручным и соленоидным клапанами, блок коррекции степени открытия входного регулирующего клапана, таймер, командоаппарат, блоки сравнения уровней давления и ключевой элемент для управления работой регулирующего клапана и всей системой управления избыточным давлением в фюзеляжах испытуемых летательных аппаратов. Техническим результатом изобретения является повышение точности отработки программ нагружения фюзеляжей внутренним избыточным давлением при испытаниях на выносливость, а также расширение области применения стенда. 2 ил.

 

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний летательных аппаратов.

Известно устройство циклического нагружения сжатым воздухом гермофюзеляжа летательного аппарата при испытаниях на выносливость, патент РФ, МПК G01M 5/00, №788927 «Устройство для усталостных испытаний фюзеляжа летательного аппарата».

В указанном устройстве для выполнения программы нагружения фюзеляжа внутренним избыточным давлением предусматривается использование двух штуцеров, одного для наддува, другого для сброса воздуха из фюзеляжа. Применение одного штуцера для наддува, работающего по принципу «открыт-закрыт», ограничивает область реализуемых программ только программами пилообразной формы и снижает точность их отработки.

Наиболее близким к предлагаемому устройству является устройство, описанное в патенте РФ МПК G01M 5/00 №2416075 «Установка для нагружения сжатым воздухом гермофюзеляжа летательного аппарата при испытании на выносливость». В этой установке при испытаниях гермофюзеляжей на выносливость по трапециевидным программам нагружения на восходящем и горизонтальном участках программы давление сжатого воздуха перед регулирующими большерасходными и малорасходным клапанами, подающими воздух в фюзеляж, стабилизируют, а программу нагружения обеспечивают блоком программного управления, управляющим всеми клапанами устройства, как подающими сжатый воздух в гермофюзеляж, так и сбрасывающим воздух из него в атмосферу. На восходящем участке программы работает большерасходный клапан, на горизонтальном участке - малорасходный.

Для реализации перечисленных функций установка включает в себя систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем регулятором давления «после себя», входным большерасходным регулирующим клапаном, байпасного трубопровода с малорасходным трехходовым регулирующим клапаном, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и датчик давления.

Недостатком данного устройства нагружения является последовательное включение в линиях подачи воздуха в фюзеляж регулятора давления «после себя» и управляемых клапанов, обеспечивающих подачу воздуха в фюзеляж при автоматической реализации программ нагружения. Последовательное включение двух контуров управления расходом воздуха, подаваемого в фюзеляж, приводит к их взаимовлиянию, что влечет за собой ухудшение точности реализации программ испытаний вплоть до возникновения колебательного режима. Использование малорасходного трехходового регулирующего клапана для стабилизации давления на горизонтальном участке программы сокращает диапазон испытываемых фюзеляжей по величине их объема и утечек, т.к. величина утечки не может превысить пропускную способность малорасходного клапана. Кроме того, такое решение требует ненужных дополнительных аппаратных затрат, т.к. при стабилизации давления перед клапанами, подающими сжатый воздух в фюзеляж, нет необходимости в их непрерывном управлении, поскольку при измерении давления перед клапанами, например, в источнике сжатого воздуха или на его выходе и знании расходных характеристик регулирующего клапана можно определить степень его открытия, необходимую для соблюдения заданного темпа наддува фюзеляжа. Точное поддержание давления на горизонтальном участке программы можно обеспечить регулятором давления "после себя", заменив им малорасходный трехходовой регулирующий клапан, т.к. сброс воздуха через этот клапан при конструктивной негерметичности фюзеляжа не нужен. Расширение диапазона компенсации утечек воздуха при испытании фюзеляжей с разной степенью герметичности можно обеспечить использованием второй байпасной линии с расположенным на нем клапаном с ручным приводом, настраиваемым на нужную степень открытия при наладке стенда. Предложенные изменения конструкции стенда улучшают точность реализации программ испытаний, а также повышают универсальность использования стенда для испытания различных объектов, существенно отличающихся как по объему, так и по степени герметичности.

Техническим результатом предлагаемого изобретения является повышение точности отработки трапециевидных программ нагружения фюзеляжей внутренним избыточным давлением при испытаниях на выносливость, сокращение технических средств, необходимых для создания стенда, а также расширение области его применения.

Данный технический результат достигается тем, что в стенде для испытаний фюзеляжа летательного аппарата на выносливость, содержащем систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем входным большерасходным регулирующим клапаном, байпасного трубопровода, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и первый датчик давления, дополнительно используется регулятор давления ″после себя″, который расположен на первом байпасном трубопроводе параллельно основному трубопроводу подачи сжатого воздуха, кроме того, в устройство дополнительно введены второй байпасный трубопровод, параллельный основному трубопроводу подачи сжатого воздуха, первый и второй соленоидные клапаны, клапан с ручным приводом, второй датчик давления, расположенный в источнике сжатого воздуха, блок уставки степени открытия входного большерасходного регулирующего клапана, блок коррекции, ключевой элемент, триггер, командоаппарат, таймер, блоки задания максимального и минимального уровней давления в фюзеляже, блоки сравнения максимального и минимального уровня давления, при этом первый соленоидный клапан расположен на первом байпасном трубопроводе перед регулятором давления ″после себя″, а второй соленоидный клапан и клапан с ручным приводом последовательно расположены на втором байпасном трубопроводе, входы управления соленоидными клапанами соединены с соответствующими выходами командоаппарата, выход регулятора ″после себя″ соединен с фюзеляжем, управляющий вход входного большерасходного регулирующего клапана соединен с выходом ключевого элемента, вход ключевого элемента подключен к выходу блока коррекции, один из входов которого подключен к выходу блока уставки степени открытия входного большерасходного регулирующего клапана, другой вход блока коррекции связан с выходом второго датчика давления, управляющий вход ключевого элемента соединен с выходом триггера, установочный вход которого подключен к выходу ″пуск″ командоаппарата, вход сброса триггера связан с выходом блока сравнения максимального уровня давления, один из входов которого соединен с выходом первого датчика давления, а другой - с выходом блока заданий максимального уровня давления, кроме того, выход блока сравнения максимального уровня давления соединен с входом командоаппарата и входом включения таймера, выход первого датчика давления, кроме блока сравнения максимального уровня давления, соединен с одним из входов блока сравнения минимального уровня давления, другой вход которого связан с выходом блока задания минимального уровня давления, а выход - с входом сброса таймера, выход таймера соединен с соответствующим входом командоаппарата, а соответствующий выход командоаппарата подключен к входу управления клапана сброса.

На фиг. 1 приведена схема предлагаемого стенда, на фиг. 2 - программа испытаний.

Устройство содержит источник сжатого воздуха 1, основной трубопровод 2, подающий сжатый воздух от источника питания через входной большерасходный регулирующий клапан 3 в фюзеляж 4, трубопровод 5 сброса воздуха из фюзеляжа, на котором расположены клапан сброса 6, средства защиты 7 и устройство шумоглушения 8. В состав системы автоматического управления установки входят: регулятор давления ″после себя″ 9, датчик 10 давления воздуха в фюзеляже, командоаппарат 11, датчик давления 12 в источнике сжатого воздуха перед входным регулирующим клапаном 3, блоки задания максимального и минимального уровней давления 13, 14, блоки сравнения максимального и минимального уровней давления 15, 16, блок уставки 17 степени открытия входного регулирующего клапана, блок коррекции 18, триггер 19, ключевой элемент 20, таймер 21, первый байпасный трубопровод 22 с последовательно расположенными на нем первым соленоидным клапаном 23 и регулятором давления ″после себя ″ 9, второй байпасный трубопровод 24 с последовательно расположенными на нем вторым соленоидным клапаном 25 и клапаном с ручным приводом 26.

При этом входы управления соленоидными клапанами 25, 23 соединены с соответствующими им выходами ″а″ и ″б″ командоаппарата 11. Выход регулятора давления ″после себя″ 9 соединен с фюзеляжем 4. Управляющий вход входного большерасходного регулирующего клапана 3 соединен с выходом ключевого элемента 20. Вход ключевого элемента подключен к выходу блока коррекции 18, один из входов которого подключен к выходу блока 17 уставки степени открытия входного большерасходного регулирующего клапана, другой вход блока коррекции 18 связан с выходом второго датчика давления 12, управляющий вход ключевого элемента 20 соединен с выходом триггера 19, установочный вход которого подключен к выходу ″пуск″ (″в″) командоаппарата 11, вход сброса триггера 19 связан с выходом блока 15 сравнения максимального уровня давления, один из входов которого соединен с выходом первого датчика давления 10, а другой - с выходом блока 13 заданий максимального уровня давления. Кроме того, выход блока 15 сравнения максимального уровня давления соединен с первым (вх. 1) входом командоаппарата 11 и входом включения таймера 21. Выход первого датчика 10 давления, кроме блока 15 сравнения максимального уровня давления, соединен с одним из входов блока 16 сравнения минимального уровня давления, другой вход которого связан с выходом блока 14 задания минимального уровня давления, а выход - с входом сброса таймера 21. Выход таймера соединен со вторым (вх. 2) входом командоаппарата 11, а выход ″г″ командоаппарата 11 подключен к входу управления клапана сброса 6.

Работает устройство следующим образом.

Предварительно перед началом зачетных испытаний производится наладка и настройка его функциональных элементов. Регулятор ″после себя″ 9 настраивается на давление Рпот. (см. фиг. 2). Блоки задания высокого и низкого давления 13, 14 настраиваются соответственно на давление Рву.=(0,95÷0,98) Рпот. и Рну.=0,01 ати. Блок 17 уставки степени открытия входного регулирующего клапана настраивается на величину сигнала, определяющего нужный программный темп наддува фюзеляжа при штатной величине давления в источнике сжатого воздуха 1.

Клапан 26 с ручным приводом, если это необходимо, приоткрыт на нужную величину из условий частичной компенсации утечек воздуха из фюзеляжа на горизонтальном участке программы.

Исходное состояние стенда перед началом испытаний: клапаны 3, 23, 25 закрыты, клапан 6 открыт. Ключевой элемент 20 разомкнут.

При нажатии кнопки ″вкл″ командоаппарат 11 на выходах ″г″ и ″в″ вырабатывает сигналы, один из которых закрывает клапан 6 сброса воздуха, а другой поступает на вход ″установка″ триггера 19, на выходе триггера 19 появляется сигнал, который закрывает ключевой элемент 20.

В результате этого сигнал о степени открытия блока 17 через блок коррекции 18 и ключевой элемент 20 поступает на управляющий вход входного регулирующего клапана 3. В клапане 3 перемещается затворный элемент до такого изменения проходного сечения клапана, при котором будет достигнут нужный темп наддува фюзеляжа.

При достижении в фюзеляже давления Рву по сигналу датчика давления 10 и сигналу с блока 13 задания максимального уровня давления срабатывает блок 15. Сигнал с этого блока поступает на вход сброса триггера 19, первый вход ″вх 1″ командоаппарата 11 и вход запуска таймера 21.

В результате произошедших переключений триггер 19 сбрасывается, ключевой элемент 20 размыкается, входной регулирующий клапан 3 закрывается. Командоаппарат 11 в зависимости от предварительной настройки вырабатывает сигналы, либо на выходе ″а″, либо на выходах ″а″ и ″б″. В первом случае открывается соленоидный клапан 23 и регулятор ″после себя″ 9 начинает поддерживать в фюзеляже давление Рпот. Во втором случае, когда на компенсацию утечек не хватает производительности регулятора ″после себя″, то в параллель этому регулятору открытием второго соленоидного клапана 25 дополнительный расход воздуха подают в фюзеляж через клапан 26, предварительно, как указывалось выше, открытый на заданную величину, обеспечивающую компенсацию части утечки воздуха из фюзеляжа 4.

Включенный сигналом с выхода блока 15 таймер 21 отсчитывает время длительности горизонтального участка программы (см. фиг. 2). По истечении заданной длительности горизонтального участка программы, таймер выдает сигнал Тк в командоаппарат 11, который по этому сигналу снимает сигналы с выходов ″а″, ″б″, ″г″, в результате чего соленоидные клапаны 23, 25 закрываются, а клапан сброса 6 открывается, тем самым начинается сброс давления из фюзеляжа. При достижении в фюзеляже давление Рну по сигналам от датчика давления 10 и блока 14 задания минимального уровня давления срабатывает блок сравнения 16, который переводит таймер 21 в исходное состояние. Цикл испытаний окончен, и стенд готов к началу нового цикла.

Стенд для испытаний фюзеляжа летательного аппарата на выносливость, содержащий систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с расположенным на нем входным большерасходным регулирующим клапаном, байпасного трубопровода, трубопровода сброса воздуха из фюзеляжа с расположенным на нем клапаном сброса, средствами защиты фюзеляжа от перегрузки избыточным давлением сжатого воздуха и устройством шумоглушения, а также средств автоматического программного управления, включающих в свой состав регулятор давления в фюзеляже и первый датчик давления, отличающийся тем, что дополнительно используется регулятор давления ″после себя″, который расположен на первом байпасном трубопроводе параллельно основному трубопроводу подачи сжатого воздуха, кроме того, в устройство дополнительно введены второй байпасный трубопровод, параллельный основному трубопроводу подачи сжатого воздуха, первый и второй соленоидные клапаны, клапан с ручным приводом, второй датчик давления в источнике сжатого воздуха, блок уставки степени открытия входного большерасходного регулирующего клапана, блок коррекции, ключевой элемент, триггер, командоаппарат, таймер, блок задания максимального и минимального уровней давления в фюзеляже, блоки сравнения максимального и минимального уровня давления, при этом первый соленоидный клапан расположен на первом байпасном трубопроводе перед регулятором давления ″после себя″, а второй соленоидный клапан и клапан с ручным приводом последовательно расположены на втором байпасном трубопроводе, входы управления соленоидными клапанами соединены с соответствующими выходами командоаппарата, выход регулятора давления ″после себя″ соединен с фюзеляжем, управляющий вход входного большерасходного регулирующего клапана соединен с выходом ключевого элемента, вход ключевого элемента подключен к выходу блока коррекции, один из входов которого подключен к выходу блока уставки степени открытия входного большерасходного регулирующего клапана, другой вход блока коррекции связан с выходом второго датчика давления, управляющий вход ключевого элемента соединен с выходом триггера, установочный вход которого подключен к выходу ″пуск″ командоаппарата, вход сброса триггера связан с выходом блока сравнения максимального уровня давления, один из входов которого соединен с выходом первого датчика давления, а другой - с выходом блока заданий максимального уровня давления, кроме того, выход блока сравнения максимального уровня давления соединен с первым входом командоаппарата и входом включения таймера, выход первого датчика давления, кроме блока сравнения максимального уровня давления, соединен с одним из входов блока сравнения минимального уровня давления, другой вход которого связан с выходом блока задания минимального уровня давления, а выход - с входом сброса таймера, выход таймера соединен с соответствующим входом командоаппарата, а соответствующий выход командоаппарата подключен к входу управления клапана сброса.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к системам контроля состояния летательных аппаратов в процессе эксплуатации. Система контроля технического состояния конструкций летательного аппарата содержит датчики технического состояния лопастей винта вертолета или консолей крыла самолета и блок-регистратор, размещенный на их борту.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний летательных аппаратов. Установка содержит трубопроводы подачи и сброса воздуха с расположенными на них клапанами, а также средства автоматического программного управления этими клапанами.

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих трехниточные шпалы и шпалы с разной шириной колеи.

Изобретение относится к области испытательной техники, в частности к установкам для ресурсных испытаний фюзеляжа циклическими нагрузками внутренним избыточным давлением сжатого воздуха.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжа летательных аппаратов на выносливость циклическим нагружением внутренним давлением сжатого воздуха.

Изобретение относится к области испытательной техники, в частности к установкам для прочностных испытаний фюзеляжей летательных аппаратов на выносливость циклическим приложением внутреннего избыточного давления, создаваемого сжатым воздухом.

Изобретение относится к технике испытаний протяженных объектов с переменной по длине жесткостью. Сущность: объект консольно закрепляют на силовой колонне и с помощью механического кривизномера измеряют кривизну отдельных его участков, средние сечения которых располагаются в заданных расчетных сечениях, при изгибе объекта под действием заданной нагрузки, приложенной к свободному его концу.

Изобретение относится к моделированию и может быть использовано для создания модели поведения конструкций и изделий авиационной техники в условиях неопределенности входных параметров.

Изобретение относится к прочностным испытаниям конструкций летательных аппаратов (ЛА). Стенд содержит устройство нагружения объекта испытаний распределенными нагрузками в виде наружных ограничительных обечаек с продольными и поперечными ребрами, образующими ячейки, в которых размещены надувные эластичные мешки, соединенные с датчиками давления и с системой подачи переменного давления газа, по краям ячеек установлены эластичные кромки.

Изобретение относится к области прочностных испытаний конструкций летательных аппаратов (ЛА) с тепловым и силовым нагружением. Cтенд теплопрочностных испытаний содержит радиационные нагреватели, дополнительные нагреватели в районе наиболее теплонапряженных и теплоемких мест объекта испытаний (ОИ), снабженные индивидуальными источниками регулируемого напряжения, и систему силового нагружения.

Область использования: стендовые испытания на прочность конструкций летательных аппаратов (ЛА), например обтекателей на внешнее давление при неравномерном нагреве. Сущность: нагреватель для стенда испытаний на прочность при неравномерном нагреве содержит гибкие поверхностные нагревательные элементы (НЭ) переменного сечения из токопроводящего материала и теплоизолирующую оболочку. Поверхностные нагревательные элементы натягиваются вдоль объекта испытаний (ОИ) устройствами натяжения. Между поверхностными НЭ и ОИ имеется зазор. Зазор обеспечивается установкой на поверхности НЭ точечных упоров. В зазоре установлен коллектор подачи газа для обеспечения охлаждения ОИ в определенные моменты времени. НЭ имеют участки разной ширины с выполненными на них вырезами. Величина зазора и площадь поперечного сечения НЭ подбираются для каждого участка ОИ в зависимости от условий теплообмена и определяются расчетно-опытным путем. НЭ соединены параллельно и объединены в группы, соответствующие верхней, нижней и боковым наружным поверхностям ОИ. Каждая группа подсоединена к своему источнику электропитания. Таким образом достигается большее приближение условий испытаний ЛА к натурным за счет возможности воспроизведения по времени и температуре неоднократных нагревов и охлаждений различных участков поверхности ОИ за одно испытание. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний авиационных конструкций. Гидросистема включает электрогидравлический усилитель, блокирующие клапана с злектроуправлением, распределительные клапана с электроуправлением, сливные клапана, обратные клапана, ограничитель нагрузки, силовозбудитель и систему автоматического управления. Распределительный клапан выполнен в виде двухлинейного двухпозиционного распределительного клапана, открытие-закрытие которого выполняется по заданной программе. При этом распределительный клапан осуществляет слив жидкости из линии нагнетания, где установлены сливные клапана, в линию слива. Обратные клапана служат для снижения остаточного давления в полостях силовозбудителя во время слива жидкости, при этом в линии нагнетания двухлинейного двухпозиционного распределительного клапана дополнительно установлен обратный клапан. Управление распределительными клапанами осуществляется от системы автоматического управления. Технический результат заключается в повышении надежности защиты объекта испытаний и упрощении эксплуатации испытательного стенда. 1 ил.

Изобретение относится к испытательной технике, в частности к стендам для прочностных испытаний летательных аппаратов. Способ заключается в том, что для воспроизведения заданной программы знакопеременную нагрузку сжатия-растяжения прикладывают к одной из поверхностей испытываемой конструкции, например для консоли крыла - снизу. При этом до начала испытаний устанавливают по каналу сжатия заданные нагрузку и перемещение с помощью дополнительного рычага и передвижной опоры. В предложенном техническом решении также раскрыто устройство для испытания летательных аппаратов на прочность для осуществления приведенного выше способа. В нем силовозбудители через рычажную систему присоединены к испытываемой конструкции с одной стороны, при этом рычажная система снабжена дополнительным рычагом с передвижной опорой, позволяющей изменять плечи рычага. Технический результат заключается в упрощении процесса и уменьшении времени испытаний. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области строительства, а именно к способам испытания легких стальных опор на различные нагрузки. При реализации способа производят установку испытываемой конструкции в горизонтальное положение и закрепление на анкерной конструкции, установку блоков на испытываемой опоре и анкерной конструкции и соединение блоков тросом, одним концом закрепленным на анкерной конструкции, а другим - соединенным с силовым элементом. Анкерная конструкция выполнена в виде L-образной рамы, к концу короткой консоли прикрепляют испытываемую опору, а другую консоль ориентируют параллельно испытываемой опоре. Блоки, установленные на опоре, размещают так, что перпендикуляр, опущенный от них, делит отрезок между соседними блоками на анкерной конструкции на неравные части, а именно: часть отрезка, находящаяся ближе к узлу опирания опоры, больше оставшегося. Технический результат заключается в упрощении процесса испытаний, повышении точности моделирования испытательной нагрузки. 2 ил.

Изобретение относится к испытательной технике, в частности к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. Техническим результатом изобретения является многократное снижение конструктивных размеров предохранительных устройств, повышение точности их срабатывания и гибкости перестройки задаваемой величины давления срабатывания. Гидрозатвор, входящий в состав предохранительных устройств, отделяют от основного канала сброса газа из полого изделия в атмосферу и используют его только в качестве задатчика уровня срабатывания предохранительного устройства, создавая им необходимое силовое прижатие запорного органа к седлу предохранительного клапана. 1 ил.

Изобретение относится к системе и способу измерения усталости для механических деталей летательного аппарата, например самолета, а также к способу технического обслуживания летательного аппарата. Система измерения общего усталостного повреждения детали (7, 8, P, P', 9a, 6') летательного аппарата, подвергающейся механическим напряжениям, содержащая множество датчиков (Ci) напряжений, установленных на детали (7, 8, P, P', 9a, 6'), при этом каждый датчик выполнен с возможностью обнаружения заранее определенного порога (S(Ci)) механического напряжения и с возможностью выдачи сигнала (Si) данных, отражающего превышение этого порога (S(Ci)); система содержит средства (11) регистрации этих данных, и датчики (Ci) выполнены с возможностью обнаружения отличных друг от друга и дискретных порогов (S(Ci)), что позволяет на основании данных, зарегистрированных системой, вычислять оценку усталости детали (7, 8, P, P', 9a, 6'), связанной с рассматриваемым механическим напряжением. Технический результат: оптимизация технических осмотров деталей. 3 н. и 7 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций. Устройство содержит корпус с размещенным в нем приводом и жестко закрепленную на нем металлическую раму с основанием, захватами для испытуемого образца и тензодатчиками. Один из захватов жестко закреплен на раме, а второй установлен на основании посредством двух пневмоцилиндров с возможностью обеспечения приложения вертикальной нагрузки и крутящего момента на испытуемый образец. Тензодатчики размещены на подвижном захвате и испытуемом образце. Технический результат: обеспечение испытания пространственных коробчатых конструкций, изготовленных с использованием сварки, клеесварки, клепки или клееклепки, позволяющие проводить оценку прочностных характеристик конструкции в различных зонах. 2 ил.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для взрывозащиты зданий, сооружений, а также технологического оборудования. Стенд содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое легкосбрасываемым разрушающимся элементом, которая представляет собой металлический сосуд, а площадь отверстия может меняться путем ввинчивания сменных колец. При этом сбрасываемый элемент перекрывает отверстие в кольце, над которым закрепляется защитный экран, а второе отверстие перекрывается клапаном, который прижимается к отверстию с помощью электромагнита и открывается пружиной при размыкании контактов, причем усилие прижатия клапана и сжатия пружины устанавливается таким образом, чтобы суммарное усилие было равно допускаемому давлению, умноженному на площадь отверстия клапана. Тяговое усилие электромагнита может меняться путем изменения тока через реостат посредством подвижного контакта реостата, а для измерения усилия электромагнита и сжатия пружины предусмотрено параллельное устройство электромагнитного клапана, величина тока электромагнита в котором регулируется от того же реостата путем переключения контактов. Для образования паровоздушной взрывоопасной смеси в камере имеется пробка-испаритель, в которую с помощью бюретки вносится требуемое количество легковоспламеняющейся жидкости. При этом пробка ввинчивается так, что пары жидкости через окна в стенках пробки-испарителя попадают во взрывную камеру и, смешиваясь с воздухом, образуют взрывоопасную смесь, которая поджигается электрической искрой от индукционной катушки. В одной из торцевых стенок взрывной камеры имеется отверстие под штуцер, в котором закреплена трубка от воздуходувки, перекрываемой краном, а в другой, оппозитно расположенной, торцевой стенке взрывной камеры имеется отверстие под штуцер для трубки, перекрываемой краном, которое служит для поддержания в камере атмосферного давления во время испарения жидкости, при этом площадь отверстия может меняться путем ввинчивания сменных колец, а сбрасываемый элемент перекрывает отверстие в кольце, над которым закрепляется защитный экран. При этом легкосбрасываемый элемент содержит металлический бронированный каркас с металлической бронированной обшивкой и наполнителем, причем в торцах каркаса расположены четыре неподвижных патрубка-опоры, а в покрытии взрывоопасного объекта жестко заделаны четыре опорных стержня, которые телескопически вставлены в неподвижные патрубки-опоры панели, при этом наполнитель выполнен в виде дисперсной системы воздух-свинец, причем свинец выполнен по форме в виде крошки, а опорные стержни выполнены упругими. К опорным стержням легкосбрасываемого элемента, телескопически вставленным в неподвижные патрубки-опоры, заделанные в панели, к которым приварены листы-упоры для фиксации предельного положения панели, прикреплена демпфирующая пластина, к которой оппозитно панели и в направлении ударной волны присоединено буферное устройство, выполненное в виде конуса, вершина которого находится на оси проема. Технический результат заключается в повышении эффективности защиты зданий, сооружений, а также технологического оборудования от взрывов. 4 ил.
Наверх