Способ синтеза люминофора на основе ортованадата иттрия



Способ синтеза люминофора на основе ортованадата иттрия
Способ синтеза люминофора на основе ортованадата иттрия
Способ синтеза люминофора на основе ортованадата иттрия

 


Владельцы патента RU 2548089:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") (RU)

Изобретение может быть использовано для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов. Оксид ванадия (V) растворяют в 10% растворе NaOH. К полученному раствору приливают в стехиометрическом количестве раствор прекурсора - Y(NO3)3·6H2O, а затем вводят второй прекурсор - Eu(NO3)3·6H2O, в концентрации от 1 до 8 ат.% и воздействуют микроволновым излучением мощностью 700 Вт в течение 10 мин. После этого охлаждают до комнатной температуры, отделяют осадок, сушат его и отжигают при температуре 800°C в течение 2 часов. Люминофор на основе ортованадата иттрия имеет интенсивность люминисценции до 34000 отн.ед. 3 ил., 2 пр.

 

Изобретение относится к области синтеза люминесцентных материалов на основе соединений ванадия, а именно ортованадата иттрия, и может быть применено для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов.

Иттрия ортованадат (YVO4) является важным оксидным материалом типа A(III)B(V)O4, который находит широкое применение в материаловедении и технологии - благодаря своим выдающимся оптическим свойствам. YVO4 перспективен для систем оптоволоконной связи и является идеальным материалом для производства оптических поляризационных компонентов, таких как волоконно-оптические изоляторы, лучевые смесители и циркуляторы. YVO4, легированный Nd, является одним из наиболее эффективных кристаллов для лазеров с диодной накачкой. Отличная термическая стабильность ортованадата иттрия, прочность и другие физико-механические свойства YVO4 делают его универсальным материалом для изготовления оптических устройств, которые могут эксплуатироваться в различных, в том числе и жестких, условиях.

Известен твердофазный способ синтеза люминофора YVO4, легированного европием, заключающийся в механическом смешивании прекурсоров с последующим длительным отжигом. Для увеличения скорости твердофазного взаимодействия большое значение имеет величина и обновление поверхности контакта реагирующих оксидов.

Согласно [Uniform and well-dispersed Y2O3:Eu/YVO4:Eu composite microspheres with high photoluminescence prepared by chemical corrosion approach / Zhiliang Xiua, Yongzhong Wua, Xiaopeng Haoa, Xianlei Li, Lei Zhanga // Colloids and Surfaces A: Physicochemical and Engineering Aspects. - 2012. - Vol.401, №5. - P.68-73] YVO4:Eu был получен твердофазным синтезом при 1100°C в течение 6 часов из взятых в стехиометрических соотношениях Y2O3, Eu2O3 и V2O5.

Ортованадат иттрия получают следующим образом [Ванадиевые кристаллофосфоры. Синтез и свойства / А.А. Фотиев [и др.]. - М.: Наука, 1976. - 205 с]: смешивают стехиометрические количества оксидов иттрия и ванадия согласно реакции Y2O3+V2O5=2 YVO4, выдерживают при температуре 800-900°C 1-2 часа, затем поднимают температуру до 1000-1200°C и нагревают 2-5 часов. Для обновления поверхности контакта реагирующих оксидов смесь при нагревании периодически перетирают. Составление идеальной стехиометрии затруднено из-за недостаточной чистоты реагентов, небольшой избыток V2O5 приводит к окрашиванию смеси. Для легирования YVO4 европием к исходной смеси добавляют необходимое количество Eu2O3. Интенсивность люминесценции таких образцов YVO4:Eu составляет 105-109 отн.ед.

Известен также гидротермальный способ синтеза соединений типа MVO4 в автоклаве, позволяющий получать YVO4 при более низких температурах (ниже 400°C), чем при твердофазном синтезе, однако при высоких давлениях порядка 400-800 кГ/см2. После выдержки в автоклаве требуется отжиг образцов при высокой температуре для получения более совершенной структуры.

Согласно Ray S., Banerjee A., Pramanik P. Shape Controlled Synthesis, Characterization and Photoluminescence Properties of YVO 4:Dy 3+/Eu 3+ Phosphors // Mater. Sei. Engin.: B. 2009. V.156. P.10-17. для получения YVO4:Eu 2 ммоль Y(NO3)3 и 2 ммоль NH4VO3 растворяли в 40 мл дистиллированной воды вместе с 0,04 ммоль Eu(NO3)3, pH полученного раствора доводили до ~9 добавлением по каплям NH3·H2O. Полученную смесь помещали в автоклав из нержавеющей стали и выдерживали при 150°C в течение 4 ч, после чего ее охлаждали до комнатной температуры. Затем полученный осадок отфильтровывали, дважды промывали дистиллированной водой и этанолом, сушили при 70°C на воздухе, отжигали при 500°C в течение 3 ч, охлаждали до комнатной температуры и отжигали еще раз при 800°C в течение 2 ч. Интенсивность люминесценции полученных порошков YVO4:Eu составляет порядка 40 отн.ед. (фиг.1).

Известен гидрохимический способ синтеза YVO4 [Ванадиевые кристаллофосфоры. Синтез и свойства / А.А. Фотиев [и др.]. - М.: Наука, 1976. - 205 с.], требующий точного контроля pH раствора и при этом часто сопровождающийся совместным осаждением побочных составов ванадатов (например, метаванадатов). Кристаллогидраты ортованадата иттрия состава YVO4·2 H2O, полученные приливанием в раствор нитрата иттрия метаванадата аммония при pH 5,4, подвергают дегидратации нагреванием до 300-400°C. Помимо YVO4·2H2O могут образовываться метаванадаты состава (YVO3)3·4H2O.

Известен метод Печини как метод синтеза гомогенных высокодисперсных оксидных материалов, в том числе и YVO4, с использованием комплексообразования и промежуточным получением полимерного геля. Согласно [Золь-гель синтез и люминесцентные свойства наночастиц YVO4:Eu / Долинская Ю.А., Колесников И.Е., Курочкин А.В., Маньшина А.А., Михайлов М.Д., Семенча А.В. // Физика и химия стекла. - 2013. - Т.39, №3. - С.455-459] синтез наночастиц YVO4, легированных европием, производили следующим методом: навески оксидов иттрия и европия растворяли в избытке разбавленной азотной кислоты, а оксид ванадия - в насыщенном водном растворе лимонной кислоты, растворы сливали, а затем добавляли этиленгликоль. Образование полимера происходит в результате реакции этерификации между цитратным комплексом металла и этиленгликолем: n[Ме(C6H8O7)3](NO3)32Н4(ОН)2→[Me-C6H7O6-O-СН2-СН2-O-C6H7O6-Ме]n. В результате реакции образовывался вязкий прозрачный гель, который помещали в фарфоровые тигли и прокаливали при температуре 700-1000°C. Из полученных порошков готовили коллоидные растворы путем ультразвукового диспергирования в присутствии лимонной кислоты как стабилизатора. Интенсивность люминесценции составила около 4 отн.ед.

Согласно [Morphology control and luminescence properties of YVO4:Eu phosphors prepared by spray pyrolysis / Y.H. Zhou, J. Lin // Optical Materials. - 2005. - Vol.27, №2. - P.1426-1432] стехиометрические количества Y2O3, Eu2O3 и NH4VO3 растворяли в разбавленной азотной кислоте при перемешивании, добавляли определенное количество моногидрата лимонной кислоты и полиэтиленгликоля, перемешивали в течение 2 часов. Для получения частиц прекурсора пиролиз раствора осуществляли на аппарате BuCHI Min Spray Dryer B-191, затем частицы прокаливали при температуре 300-1200°C в течение 4 ч на воздухе. Интенсивность люминесценции порошков Y1-xEuxVO4 с разной концентрацией ионов европия не превышала 7500 отн.ед.

Недостатками метода Печини являются использование токсичного этиленгликоля и большой массы органических реагентов в расчете на единицу массы получаемого материала, частичное или полное восстановление ионов некоторых металлов в ходе пиролиза полимерного геля.

Поэтому актуальной задачей является разработка новых способов синтеза люминофоров на основе ортованадата иттрия, позволяющих не только обеспечить химическую гомогенность, но и снизить энергозатраты и значительно увеличить скорость получения конечного многокомпонентного продукта.

Известна методика микроволнового синтеза нелегированного ортованадата иттрия [Синтез ортованадата иттрия под действием микроволнового излучения / Е.В. Томина, Н.А. Бурцева // Менделеев-2013: VII Всерос конф., Санкт-Петербург, 2-5 апр. 2013 г.], принятая за прототип, согласно которой оксид ванадия V2O5 (чда ТУ 6-09-4093-88) растворяли в стехиометрическом количестве 10% раствора NaOH (чда ГОСТ 432877) с образованием ванадата натрия NaVO3. Затем приливали раствор, содержащий стехиометрическое количество Y(NO3)3·6H2O (чда CAS 13494-98-9) согласно уравнению реакции NaVO3+Y(NO3)3+H2O=YVO4+NaNO3+2HNO3, и воздействовали микроволновым излучением мощностью 700 Вт в течение 10 мин. После охлаждения до комнатной температуры осадок YVO4 отделяли от раствора центрифугированием и фильтрованием, промывали, сушили и отжигали при температуре 800°C в течение 1 часа в печи МТП-2М-50-500 (точность регулировки температуры ±1°C).

Предлагаемый способ синтеза YVO4 осаждением из раствора прекурсоров под воздействием микроволнового излучения характеризуется простотой реализации, экономичностью, высокой скоростью синтеза, однако собственная люминесценция ортованадата иттрия (максимум ~450 нм) сравнительно невелика и ее максимальная интенсивность наблюдается при температурах ниже 100 К. Активация ортованадата иттрия ионами европия позволяет значительно улучшить люминесцентные свойства кристаллофосфора.

Задача, на решение которой направлено данное изобретение, заключается в разработке технически просто реализуемого способа синтеза химически однородного люминофора с высокой интенсивностью люминесценции при малых энергозатратах и высокой скорости процесса.

Технический результат заключается в формировании люминофора на основе ортованадата иттрия с интенсивностью люминисценции до 34000 отн.ед.

Технический результат достигается тем, что в способе синтеза люминофора на основе ортованадата иттрия, включающем растворение оксида ванадия (V) в 10% растворе NaOH, приливание в стехиометрическом количестве раствора прекурсора, в качестве которого используется кристаллогидрат нитрата иттрия Y(NO3)3·6H2O, воздействие микроволновым излучением мощностью 700 Вт в течение 10 мин, охлаждение до комнатной температуры, отделение осадка, его сушку и отжиг при температуре 800°C, согласно изобретению, перед воздействием на раствор микроволновым излучением к нему добавляли второй прекурсор, в качестве которого использовали кристаллогидрат нитрата европия Eu(NO3)3·6H2O, в концентрации от 1 до 8 ат.%, а отжиг проводили в течение 2 часов.

На фиг.1 приведен спектр люминесценции YVO4, легированного Eu с концентрацией 4 ат.%.

На фиг.2 приведена микрофотография порошка YVO4, легированного Eu с концентрацией 4 ат.%.

На фиг.3 приведен спектр люминесценции YVO4, легированного Eu с концентрацией 8 ат.%.

Микроволновое излучение стимулирует разложение солевых прекурсоров, дегидратацию и синтез YVO4:Eu за счет однородности и высокой скорости микроволнового нагрева и ускорения процессов «зародышеобразования» под влиянием «нетермических» эффектов. Для эффективного поглощения микроволнового излучения необходимо наличие в веществе либо диполей, способных переориентироваться и вращаться под микроволновым воздействием, либо свободных носителей зарядов, способных перемещаться при наложении микроволнового поля. Молекулы воды, находящиеся в кристаллической решетке кристаллогидратов, обладают значительным дипольным моментом. Согласно изобретению в качестве прекурсоров используются кристаллогидраты нитратов иттрия и европия, которые являются активными компонентами по отношению к микроволновому излучению. Разложение используемых кристаллогидратов в микроволновом поле идет до оксидов, поскольку образование оксидного продукта начинается до удаления всей содержащейся в системе воды.

В качестве прекурсоров используются кристаллогидраты нитратов d- и f-элементов, активные по отношению к микроволновому излучению, обеспечивающему высокую скорость процесса синтеза порошка YVO4:Eu с размерами частиц нанометрового диапазона и высокой интесивностью люминесценции.

Оксид ванадия V2O5 (чда ТУ 6-09-4093-88) растворяют в стехиометрическом либо избыточном количестве 10% раствора NaOH (чда ГОСТ 432877) с образованием ванадата натрия NaVO3. Затем приливают раствор, содержащий стехиометрическое количество Y(NO3)3·6H2O (чда CAS 13494-98-9) согласно уравнению реакции NaVO3+Y(NO3)3+H2O=YVO4+NaNO3+2HNO3. Для легирования европием в различных концентрациях от 1 ат.% до 8 ат.% к раствору добавляют необходимое количество нитрата европия Eu(NO3)3·6H2O (хч ТУ 6-09-4676-83) и воздействуют микроволновым излучением мощностью 700 Вт в течение 10 мин. После охлаждения до комнатной температуры осадок YVO4:Eu отделяют от раствора центрифугированием и фильтрованием, промывают сушат и отжигают при температуре 800°C в течение 2 часов в печи МТП-2М-50-500 (точность регулировки температуры ±1°C).

Пример 1

Спектр люминесценции YVO4:Eu 4 ат.%, полученный с использованием автоматического спектрально-люминесцентного комплекса с фотоэлектронным умножителем ФЭУ-Я928Р (“Hamamatsu”), приведен на фиг.1. Возбуждение люминесценции исследуемых образцов осуществляли диодным модулем HPL-H77GV1BT-V1 (λmax=380 нм, Pmax=5 мВт). Спектр имеет 3 интенсивные полосы: в области 590 нм, 615-618 нм и дублет при 700 нм. Помимо трех основных полос в области 650 нм наблюдаются слабые линии, соответствующие магнитному дипольному переходу 5D07-F3. Поскольку в данном примере V2O5 растворяли в стехиометрическом количестве NaOH, люминофор YVO4:Eu 4 ат.%, согласно данным рентгенофазового анализа (дифрактометр Thermo-scientific ARL X'tra, излучение Cu Kα1 с λ=1,540562 Å) содержит примесь оксида ванадия (V), который снижает интенсивность люминесценции YVO4-Eu3+. Интенсивность люминесценции образцов YVO4:Eu 4 ат.%, синтезированных под действием микроволнового излучения, достигает значения более 350 отн.ед.

Благодаря равномерному подводу тепла к нагреваемому раствору образуются порошки с наноразмерными частицами сферической формы. Последующий отжиг приводит к заметной агломерации частиц. Методом просвечивающей электронной микроскопии (электронный микроскоп Carl Zeiss Libra-120) установлено, что средний размер агломератов YVO4:Eu 4 ат.% составляет порядка 100 нм, а отдельные частицы имеют средний размер 30-50 нм (фиг.2).

Пример 2

Для синтеза люминофора состава YVO4:Eu 8 ат.% создавали пересыщение NaOH для полного расходования V2O5 в реакции образования NaVO3. Интенсивность люминесценции ортованадата иттрия, легированного европием в концентрации 8 ат.% и, согласно данным рентгенофазового анализа (дифрактометр Thermo-scientific ARL X'tra), не содержащего примесных оксидов ванадия, возрастает в 100 раз (фиг.3) по сравнению с YVO4:Eu 4 ат.%.

Таким образом, концентрация активатора (ионов Eu3+) в матрице YVO4, равная 8 ат.%., является оптимальной. Интенсивность люминесценции образцов YVO4:Eu 8 ат.%, синтезированных под действием микроволнового излучения, достигает значения более 34000 отн.ед., что в 5 раз превышает известные из литературных источников значения.

Способ синтеза люминофора на основе ортованадата иттрия, включающий растворение оксида ванадия (V) в 10% растворе NaOH, приливание в стехиометрическом количестве раствора прекурсора, в качестве которого используется кристаллогидрат нитрата иттрия Y(NO3)3·6H2O, воздействие микроволновым излучением мощностью 700 Вт в течение 10 мин, охлаждение до комнатной температуры, отделение осадка, его сушку и отжиг при температуре 800°C, отличающийся тем, что перед воздействием на раствор микроволновым излучением к нему добавляли второй прекурсор, в качестве которого использовали кристаллогидрат нитрата европия Eu(NO3)3·6H2O, в концентрации от 1 до 8 ат.%, а отжиг проводили в течение 2 часов.



 

Похожие патенты:

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем с белым свечением, близким к спектру солнечного света. Люминофор на основе двойного ванадата цезия цинка CsZnVO4 дополнительно содержит оксиды церия и самария и имеет состав, мас.%: CsZnVO4 99,94-99,98; Sm2O3 0,03-0,01; СеO2 0,03-0,01.

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем, включая органические светоизлучающие OLED системы с белым спектром свечения, а также люминофоров, используемых для изготовления индикаторов фотонного и корпускулярного излучения и рентгеновских люминесцентных экранов.
Изобретение относится к способу получения наночастиц с диаметром менее 30 нм, содержащих ванадат металла(III). .

Изобретение относится к шихте для получения люминофора желтого цвета свечения на основе ванадата лантаноида, содержащего рубидий, используемого Для изготовления люминесцентных ламп.

Изобретение относится к люминесцентным составам красного цвета свечения, используемым для визуализации рентгеновского, электронного излучения и света ультрафиолетового диапазона.

Изобретение относится к технике люминофоров, а именно к люминесцентному материалу на основе оксидов редкоземельного элемента, иттрия и ванадия, используемому в электронной промышленности.
Изобретение относится к материалам квантовой электроники и может быть использовано в качестве активных сред низкопороговых твердотельных лазеров инфракрасного диапазона с оптической накачкой, в устройствах для отображения знаковой, графической и телевизионной информации, а также в качестве сцинтилляторов.

Изобретения относятся к химической промышленности и светотехнике и могут быть использованы в светодиодах для эмиссии окрашенного или белого света. Люминесцентное вещество с силикатными люминофорами, легированными Eu2+, содержит твердые растворы смешанных фаз оксиортосиликатов щелочноземельных и редкоземельных металлов, представленными, например, формулой (1-х)MII 3SiO5·x SE2SiO5:Eu, где 0<х≤0,2; МII представляет собой ионы двухвалентного металла, содержащие по меньшей мере один ион, выбранный из группы, состоящей из стронция и бария, и SE - редкоземельные металлы из группы, включающей Y, La, Gd.
Изобретение относится к «светящимся» картону или бумаге и может быть использовано для декоративно-прикладных работ, в художественном и детском творчестве, в полиграфии и рекламе при изготовлении фотографий, рисунков, визиток.

Изобретение относится к светотехнике и может быть использовано в синеизлучающих светодиодах твердотельных источников белого света. Люминесцирующий материал на основе алюмината иттрия, включающего оксид церия, соответствует общей формуле (Y1-xCex)3±αAl5O12+1,5α, где х - атомная доля церия, равная 0,01-0,20; 0<α≤0,5 или 0>α≥1,5.

Изобретение может быть использовано в дозиметрии слабого ионизирующего излучения, для контроля работы атомных энергетических установок, ускорителей заряженных частиц, рентгеновской аппаратуры.

Изобретение относится к новым люминесцентным материалам для устройств красного свечения, особенно к области новых люминесцентных материалов для СИД и их использованию в устройствах красного свечения.

Изобретение относится к области светотехники и, в частности, к люминесцирующим материалам, светящимся в желто-оранжевой области спектра и используемым в твердотельных источниках белого света.

Изобретение относится к области получения сложных оксидных материалов, в частности к получению алюминатных люминофоров различного химического состава, активированных ионами редкоземельных металлов (РЗМ), и может быть использовано при производстве материалов для источников и преобразователей света.

Изобретение относится к химической промышленности и может быть использовано в светодиодах белого свечения. Люминофор имеет общую стехиометрическую формулу ( Y 0,65 ± x   G d 0,30 ± x   L u 0,01   T b 0,01   C e 0,03 ) 3   ( A l 19   y B 0,1 ) 2   ( A l O 3,96 C l 0,02 P 0,02 ) 3 0.05 ≤ x ≤ 0.15,   0.02 ≤ y ≤ 0.04 с квантовым выходом Q>0,9, кубическую структуру граната с пространственной группой Ia3d со спектральными параметрами: λв = 460+_3 нм; λиз = 570+_3 нм, где λиз - длина волны возбуждения люминофора; λиз - длина волны излучения люминофора. Люминофор позволяет создавать светоизлучающие диоды с силой света порядка 400 кд для угла раскрытия Δ больше или равного 16°, световой выход 100÷115 люмен/Вт для режима возбуждения 3,5 В и 120 мА. Цвет свечения близок к тепло-белому, что позволяет использовать полученный люминофор в эффективных светодиодных светильниках для наружного и внутреннего освещения. 4 з.п. ф-лы, 4 ил., 1 пр., 1 табл.

Изобретение относится к светотехнике, в частности к полимерным люминесцентным композициям, применяемым для изготовления устройств общего и местного освещения. Полимерная композиция, возбуждаемая синим светодиодом, содержит прозрачный поликарбонат с показателем текучести расплава 6-40 г/10 мин, фотолюминофор - иттрия-гадолиния алюмогаллиевый гранат, активированный церием, формулы (YGd)3(AlGa)5O12:Ce, воск полиэтиленовый в виде порошка с размером частиц 18-30 мкм, термостабилизатор - Ultranox 626 и Tinuvin 360. Предложенная композиция обеспечивает снижение интенсивности синего света и повышение освещенности. 6 ил., 2 табл., 14 пр.
(57) Изобретение относится к составам оптических стекол и может быть использовано в лазерных системах в качестве активных сред ап-конверсионных лазеров с диодной накачкой, преобразующих инфракрасное лазерное излучение в видимую область, а именно в зеленую область спектра. Люминесцирующее стекло включает следующие компоненты, мол.%: SiO2 44,0-48,5; GeO2 1,5-5,5; PbO 35,0-39,5; PbF2 10,5-14,0 и Er2O3 0,5-1,0. Для получения люминесцирующего стекла требуется температура синтеза 900±50оС, что упрощает процесс. Полученное стекло имеет высокую яркость и способно люминесцировать без термической обработки. 2 табл.
Наверх