Способ получения дисперсной частицы



Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы
Способ получения дисперсной частицы

 


Владельцы патента RU 2548225:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владивостокский государственный университет экономики и сервиса" (ВГУЭС) (RU)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Дальневосточный федеральный университет" (ДВФУ) (RU)

Предложенное изобретение относится к технике получения дисперсных частиц на основе различных материалов, которые могут быть использованы для изготовления различных функциональных изделий и приборов. Способ получения дисперсной частицы из оболочки и ядра предполагает формирование в граничащих друг с другом монослоях оболочки и ядра необъемной плотности и конфигураций химических связей атомов. При этом необъемную плотность и конфигурацию химических связей атомов формируют благодаря развороту и упругому изменению длин межатомных связей при атомной сборке оболочки слой за слоем при неравновесных условиях. Данное изобретение позволяет получать дисперсные частицы с теми индивидуальными свойствами, которые позволяют их использовать в соответствующих приборах. 20 ил.

 

Настоящее изобретение относится к способам получения дисперсных частиц на основе полупроводников, диэлектриков и металлов и может быть использовано при производстве ряда функциональных материалов либо для производства метастабильных фаз-прекурсоров этих материалов. Оно имеет значение как для улучшения технологии производства материалов, а также изделий и приборов на их основе, так и для улучшения их свойств. В результате его использования эти материалы, изделия и приборы будут обладать более высокими потребительскими свойствами, что, в конечном итоге, приведет к повышению конкурентоспособности промышленной продукции, в частности, конструкционных материалов, продукции машиностроения и электроники.

Заявленный способ относится к способам получения дисперсной частицы, состоящей из ядра и оболочки. Свойства таких дисперсных частиц отличаются от свойств составляющих их объемных фаз и изолированных частиц этих фаз или их слоев, поскольку оболочки этих дисперсных частиц получают путем их атомной сборки на ядре. Средой их синтеза является, например, атомарный пучок в сверхвысоком вакууме или газовая среда. Поэтому дисперсные частицы характеризуются массовостью технологии за счет большого количества частиц и общей площади их поверхности и экономией исходных веществ за счет малой толщины наносимых оболочек, а также чистотой, экологичностью и удобством контроля технологии. Они найдут практическое применение в технологии производства функциональных материалов (проводящих, магнитных, отражающих, поглощающих, механически- и химически-стойких и др.). Примеры конкретных областей применения: порошковая металлургия, магнито- и оптоэлектроника устройства телекоммуникаций, авиакосмическая промышленность, медицинские инструменты и материалы, бытовая техника и т.д.

Известны подобные способы получения дисперсной частицы в виде ядра, играющего роль подложки, и оболочки, играющей роль пленки, из объемных фаз путем осаждения пленки-оболочки на подложку-ядро. Они используются в качестве первого этапа при получении различных композитных частиц или структур, состоящих из пленки и подложки, на котором получают пленки (толщиной не менее трех монослоев) объемных фаз (см. Heteroepitaxy of multiconstituent material by means of a template layer, J.M. Gibson, J.M. Poate and R.T. Tung, U.S. Patent 4,477,308, October 16, 1984; Formation of he-terostructures by pulsed melting of precursor material, J.M. Gibson, J.M. Poate and R.T. Tung, U.S. Patent 4,555,301, November 26, 1985; Method of producing a silicide/Si heteroepitaxial structure, and articles produced by the method, J.C. Hensel, A.F.J. Levi and R.T. Tung, U.S. Patent 4,707,197, November 17, 1987; Process for device fabrication in which a thin layer of cobalt silicide is formed, R.T. Tung, U.S. Patent 5,728,625, Mar. 17, 1998).

Но эти способы получения дисперсных частиц и структурных элементов, из которых они состоят, не обеспечивают свойств дисперсных частиц, отличающихся от свойств самих объемных фаз веществ их элементов, и, в частности, эти способы не обеспечивают, в существенной степени, модифицированную взаимодействием между их структурными элементами структуру или скрытую теплоту перехода дисперсной частицы в стабильное состояние.

Прототипом заявленного изобретения является способ получения дисперсной частицы, включающий в себя подложку и сформированную на ней тонкую, толщиной не менее монослоя, пленку (см. US 5827802, МКИ C30B 23/02, 1998). В этой пленке первый монослой, а также последующие монослои, в двух измерениях, принимают структуру поверхностного слоя подложки. Кроме того, эта пленка имеет структуру одной из объемных фаз материала пленки и ее используют как «темплэйт», чтобы нарастить более толстую пленку объемной фазы материала пленки послойным наращиванием. Для этой цели подбирают подложку, которая имеет свою структуру или структуру своего поверхностного слоя, не отличающуюся от структуры монослоев объемной фазы материала пленки.

В прототипе такой дисперсные частицы получают методом эпитаксиального наращивания (монослой за монослоем) материала пленки на специальной подложке с параметрами решетки, подобранными под пленку.

Поскольку этот вид способа получения дисперсной частицы реализуется, когда параметры решеток объемной фазы пленки и подложки одинаковы, либо отличаются не более пятнадцати процентов, то это также не обеспечивает возможность получения в ней новых свойств, которые бы существенно отличались от свойств объемных фаз, перечисленных выше. А именно свойств, модифицированных подложкой и размерными эффектами пленки, в частности, напряженного метастабильного состояния пленки, которое характеризуется скрытой теплотой перехода в стабильное состояние.

Задача данного изобретения - обеспечение возможности получения дисперсной частицы, имеющей свойства, которых нет у вышеуказанных аналогов и прототипа, в частности, модифицированную подложкой или размерными эффектами атомную и электронную структуру или скрытую теплоту перехода в стабильное состояние.

Технический результат заключается в формировании в дисперсной частице неоднородного наноструктурированного (низко- или наноразмерного) состояния, принципиально отличающегося по структуре от состояния объемных фаз дисперсных частиц в аналогах и прототипе. Этим состоянием и его свойствами, в частности, модифицированными атомной и электронной структурой или скрытой теплотой перехода в стабильное состояние, можно управлять, изменяя толщину и/или условия формирования пленки-оболочки и выбирая материал оболочки из числа материалов, объемные фазы которых сильно отличаются от материала подложки-ядра по плотности и структуре, а также варьируя степень взаимодействия пленка-подложка, путем подбора соответствующей пары материала пленки и подложки и существенно изменяя структурное состояние поверхностного слоя подложки.

Способ включает формирование дисперсной частицы путем атомной сборки ее пленки-оболочки на подложке-ядре, при условиях, при которых пленка-оболочка дисперсной частицы приобретает упаковку атомов в виде низкоразмерной или необъемной структуры.

Эта упаковка возникает благодаря конкуренции взаимодействия между атомами в пленке или подложке и на границе раздела пленка-подложка и реализуется при степени взаимодействия пленка-подложка по величине не менее сильной, чем взаимодействие атомов пленки или подложки между собой.

В частности, участие валентных электронов подложки во взаимодействии валентных электронов в пленке задает специфическую структуру составляющих ее элементов в виде ячеек или кластеров пленки, отличающуюся от структуры объемных фаз материала пленки и их упругодеформированных слоев. Этой упаковке также способствует атомная плотность поверхностного слоя подложки, существенно отличающаяся от атомной плотности объемных фаз пленки. Кроме того, этому способствует малая толщина пленки, близкая к трем радиусам экранирования, когда в пленке еще нет ни одного атома с ближайшим окружением, соответствующим объемной фазе материала пленки. А кратность толщины пленки или размеров ее элементов четверти длины волны в ней валентных электронов позволяет стабилизировать сформировавшуюся неравновесную упаковку. Этому также способствует упорядочение элементов пленки в виде сверхструктуры, с периодом когерентным или частично-когерентным периодам подложки, хотя бы в одном из направлений.

Решение поставленной задачи достигается тем, что способ получения дисперсной частицы, включающий в себя формирование оболочки на ядре, отличается тем, что в граничащих друг с другом областях оболочки и ядра, в пределах толщины этих областей, по меньшей мере, равной трем монослоям, формируют иную конфигурацию и/или плотность химических связей атомов, чем в соответствующих по толщине и граничащих друг с другом областях объемных фаз материала оболочки и ядра.

Сравнение признаков заявленного решения с признаками аналогов и прототипа свидетельствует о его соответствии критерию "новизна".

Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач:

Признак «…в граничащих друг с другом областях оболочки и ядра, в пределах толщины этих областей, по меньшей мере, равной трем монослоям…» определяет области структурных элементов (пленки-оболочки и подложки-ядра), где формируют специфическую структуру и которые обеспечивают необходимое взаимовлияние между ними и являются причиной генерации их специфической структуры.

Признак «…формируют иную конфигурацию и/или плотность химических связей атомов, чем в соответствующих по толщине и граничащих друг с другом областях объемных фаз материала оболочки и ядра», обеспечивает достаточное условие для формирования низкоразмерного или необъемного неравновесного состояния структурных элементов (пленки-оболочки или граничащей с ней области подложки-ядра) со скрытой теплотой перехода в стабильное или объемное состояние.

В формуле изобретения подразумевается два альтернативных варианта получения дисперсной частицы, в которых: 1) сила химических связей между атомами пленки-оболочки и атомами подложки-ядра больше, чем сила химических связей атомов в самой пленке, при этом происходит наноструктурирование пленки, и 2) эта сила больше, чем сила химических связей атомов в подложке, при этом происходит наноструктурирование граничащей с пленкой области подложки. И хотя области объекта наноструктурирования разные, но результат для всего объекта - сходный.

Для наглядности остановимся на первом варианте. В нем наноструктурирование пленки(оболочки) за счет граничного взаимодействия в композитной дисперсной частице с подложкой приводит к тому, что граничные области, в пределах толщины, по меньшей мере, равной трем монослоям, состоят из неоднородных по структуре субэлементов.

На фиг.1 показана схема последовательных стадий (слева-направо и сверху вниз) выстраивания атомных слоев пленки при ее росте слой за слоем до формирования дефектной (дислокационной) структуры объемной фазы, при условии, что объемная фаза имеет большую атомную плотность, чем плотность поверхностного слоя от подложки, но эта разница еще не столь велика; на фиг.2 схематически (слева-направо и сверху вниз) изображены последовательные стадии выстраивания атомных слоев пленки при ее росте слой за слоем до формирования в ней объемной фазы, при условии, что пленка имеет большое отличие (более чем в 1,5 раза) от подложки по объемной атомной плотности; на фиг.3 изображены, для этого случая, схемы различных типов атомного строения пленки на подложке перед формированием в ней объемной фазы. Верхний и нижний ряды - рост пленки адсорбата и, соответственно, его смеси с подложкой. Слева-направо в каждом ряду - различные случаи адаптации плотности материала пленки к подложке за счет соответственно вакансий, агрегатов и одновременно агрегатов и вакансий с модификацией типа и углов межатомных связей; на фиг.4 и 5 изображены схемы, иллюстрирующие два типа перехода от низкоразмерной тонкопленочной фазы (пленки с низкоразмерной структурой) к пленке объемной фазы; на фиг.6 показана установка или реактор для синтеза заявляемого материала на основе сверхвысоковакуумной камеры, содержащая анализатор электронных спектров характеристических потерь энергии электронов (ХПЭЭ), который позволяет отслеживать плотность валентных электронов, участвующих в данной конфигурации химических связей, и распределение этих плотностей; на фиг.7 слева показаны схемы пленки низкоразмерной тонкопленочной фазы на подложке и под ней пленки объемной фазы на подложке, а справа - типичные форма (показана пунктиром) и состав регистрируемых пиков объемных плазменных потерь в спектрах ХПЭЭ пленок; на фиг.8-18 приведены примеры реализации заявляемого способа получения дисперсной частицы в процессе роста переходных металлов (Co, Fe, Cr) на монокристаллических подложках кремния с различной ориентацией плоскости среза, (111) и (001), по отношению к базовым направлениям монокристалла кремния: фиг.8, 9 и 10 и 11 - Co на Si (111); фиг.12 и 13 - Fe на Si(l 11); фиг.14 и 15 - Fe на Si (001); фиг.16 и 17 - Cr на 51 (111) и фиг.18 Fe на 81 (001).

Состояние химических связей пленок на подложках кремния в этих примерах иллюстрируются спектрами ХПЭЭ. В приведенных спектрах энергетическое положение пиков поверхностных и объемных плазменных потерь соответствует объемной концентрации валентных электронов (в пределах глубин зондирования для этих пиков) и отражает количество валентных электронов, участвующих в связи (количество валентных электронов, отнесенное к длине этих связей, либо к размеру/объему атомов, участвующих в связи). А распределение амплитуд этих пиков соответствует распределению плотности этих межатомных химических связей на поверхности или в объеме пленки/подложки. На фиг.8 и 9 показаны спектры ХПЭЭ пленки Co на Si (111) и, соответственно, производные спектры от них, полученные вычитанием вклада в спектры от подложки. На фиг. 10-17 с четными номерами показаны спектры ХПЭЭ пленок, в которых происходило перемешивание металла с подложкой кремния (температура подложки при осаждении - комнатная), а на фиг. 10-17 с нечетными номерами, - где металл не перемешивался с подложкой кремния или перемешивался незначительно. На фиг.18 показаны спектры ХПЭЭ пленки Fe на Si (001) после осаждения (слева) и отжига (справа) при температуре 250°C. На фиг.19 и фиг.20 показаны спектры ХПЭЭ с картинами дифракции медленных электронов (ДМЭ) и, соответственно, электронной микроскопии на просвет (ПЭМ) и микродифракции (ПМД, вверху - справа) для образцов с упорядоченными низкоразмерной тонкопленочной фазой (√3×√3-CrSiX) и объемной фазой (CrSi2), которые были получены отжигом осажденных пленок Cr на Si (111).

На фиг.1, 2, 3, 4 и 5 обозначены: 1 - подложка (ядро), 2 - атомы подложки, 3 - пленка (оболочка) двумерной фазы субмонослойной толщины, 4 - атомы пленки, 5 - пленка (оболочка) с толщиной в монослой, 6 - пленка (оболочка) с толщиной в два монослоя, 7 - пленка (оболочка) с толщиной в три и более монослоев, 8 - пленка объемной фазы, 9 - дислокация несоответствия, 10 - агрегаты объемной фазы, 11-16 - пленка неравновесной низкоразмерной тонкопленочной фазы, состоящая из атомов одного типа, 11-13, и смеси атомов двух типов 14-16, адаптированная на границе раздела по плотности к подложке, а на поверхности - к своей объемной фазе с помощью: 11, 14 - вакансий; 12, 15 - поворота связей и агрегирования в кластеры; 13, 16 - вакансий, поворота связей и агрегирования в кластеры.

На фиг.6 обозначены: 17 - сверхвысоковакуумная камера, 18 - электронный оже-спектрометр (например, фирмы RIBER) (ЭОС) и спектрометр потерь энергии электронов (СХПЭЭ), 19 - электронный дифрактометр медленных электронов (ДМЭ), 20 манипулятор образца с электрическими вводами, имеющий четыре степени свободы, 21 - внешний фланец источника, 22 - сверхвысоковакуумный насос, 23 - образец-подложка, 24 - источник, 25 - поток к подложке, 26 - электрические вводы (маленькие горизонтальные цилиндрики), соединенные с образцом-подложкой 23 или источником 24.

На фиг.7 обозначены: 27 - интерфейсный слой подложки, 28, 29, 30, 31, 32 и 33 - соответственно СХПЭЭ-пики объемных плазменных потерь от подложки 1, интерфейсного слоя подложки 27, низкоразмерной тонкопленочной фазы 7, пленки объемной фазы 8 и суммарные пики в спектрах ХПЭЭ низкоразмерной фазы 7 и объемной фазы 8 с учетом вклада подлдожки 1. Кроме того, на фиг.7 пунктиром и заштрихованным прямоугольником обозначены соответственно: 34 и 35 - энергетические положения пика объемных плазмоннных потерь соответственно для интерфейсного слоя 27 и объемной фазы 8.

На фиг.8-19 пунктиром 36 обозначено энергетическое положение пика поверхностных плазменных потерь подложки 1, когда на ней сформирована пленка низкоразмерной фазы 7. Кроме того, на фиг.8-19 обозначены спектры ХПЭЭ плазменных потерь, в которых превалируют спектры от: 37 - от подложки, 38 - от низкоразмерной тонкопленочной фазы на момент начала ее формирования (начиная с толщины в один монослой) и 39 - объемной фазы на момент начала ее формирования (при толщине три или более монослоев, когда начинается переход к объемной фазе). Широкие серые стрелки, направленные вниз, на фиг.8-18 указывают направление, соответствующее увеличению толщины пленок, с которых снимались спектры.

На фиг.20 обозначены рефлексы на картинах микродифракции от: 40 - подложки, 41 - низкоразмерной тонкопленочной фазы (силицида хрома со сверхструктурой √3×√3) и 42 - эпитаксиальной объемной фазы (дисилицида хрома) на подложке (монокристаллического кремния). Кроме того, на фиг.20 обозначены характерные участки пленки на картинах просвечивающей электронной микроскопии для: 43 - низкоразмерной тонкопленочной фазы и 44 -объемной фазы.

Рассмотрим процесс атомной самосборки или компоновки атомов пленки на подложке при последовательном осаждении на нее атомов (подробно - см., например, В.Г. Дубровский, Теоретические основы технологии полупроводниковых наноструктур. Учебное пособие, Санкт-Петербург, 2006, 347 с.). Согласно теории химической адсорбции вблизи поверхности кристалла подложки атом 4 отдает электрон подложке 1 и возникают притягивающие силы изображения. Либо атом 4 обменивается электроном с подложкой, и образуется валентная связь с окружающими его атомами 2 подложки 1, при которой возникают силы парного корреляционного взаимодействия (см., например, Р. Гомер, Некоторые вопросы теории хемосорбции. В кн.: Новое в исследовании поверхности твердого тела, под. ред. Т. Джайядевайя и Р. Ванселова, М., Мир, 1977, с.189). Эти силы приводят к притягиванию атома 4 к подложке 1, и образованию химической связи с атомами 2 положки 1. При этом происходит встраивание атомов 4 в потенциальный рельеф подложки 1. Встраивание происходит таким образом, чтобы обеспечить минимум свободной энергии системы пленка-подложка, при этом минимизируется свободная энергия взаимодействий атомы пленки 4 - атомы подложки 2 и атомов пленки 4 между собой. В результате происходит зарождение и рост монослоев 3,5-7 или многослойных агрегатов 8 на поверхности подложки.

При этом форма агрегатов 8 (см. фиг.2), например, куполообразной формы, теоретически определяется следующим уравнением через его контактный угол 9 - угол между касательной к полусферическому куполу на его краю и подложкой (см. Д. Роберте, Г.М. Паунд, Гетерогенное образование зародышей и рост пленок. В кн.: Новое в исследовании поверхности твердого тела. Под ред. Т. Джайядевайя и Р. Ванселова, М., Мир, 1977, с.71):

σmsxsmx·cosθ,

где σms, σxs и σmx - свободные энергии поверхностей раздела между материнской фазой (паром) m, подложкой s и кластером x.

Таким образом, самосборка атомов на поверхности может привести либо к росту монослоев 3,5-7, либо агрегатов 8, либо сначала монослоев 3,5-7, а затем агрегатов 8, поверх этих монослоев. Но при этом их структура зависит от когерентности границы раздела пленка (состоящая из агрегатов, монослоя или агрегатов поверх монослоя) - подложка. При когерентной границе раздела (несоответствие параметров решеток объемных фаз пленки и подложки не более 4-х %) теория, предложенная впервые Франком и Ван Дер Мерве (см. [15] в Дж. У. Мэтьюз, Монокристаллические пленки, полученные испарением в вакууме. В кн.: Физика тонких пленок. Современное состояние и технические применения. Т.4. /Под ред. Г. Хасса и Р.Э. Туна. - М., Мир, 1972, с. 169-170) предполагает, что на начальной стадии роста пленки 8 на монокристаллической подложке 1 образуется упорядоченный упругонапряженный монослой 5 или псевдоморфный слой 5-7, в котором расстояние между атомами задается минимумом свободной энергии поверхности раздела пленка 5-7 - подложка 1, а затем эта пленка монослой за монослоем растет эпитаксиально в виде доменов монокристаллического ненапряженного объемного слоя 8 с дефектами упаковки 9 между доменами (см. фиг.1).

Обычно аккомодация небольших несоответствий параметров решеток объемных фаз пленки 5-7 и подложки 1 происходит за счет их упругой (растяжения/сжатия без дефектов) и пластической (нарушения структуры за счет дефектов) деформации. При не очень больших несоответствиях пленки и подложки в них образуются дефекты в виде дислокации несоответствия (см. фиг.1). Теоретически было установлено, что в этом случае несоответствие параметров решетки объемных фаз пленки и подложки не должно превышать 14% (см. И.Х. Кан, Рост и структура монокристаллических пленок. В кн.: Технология тонких пленок. Под ред. Л. Майссела, Р. Глэнга, М.: «Советское радио», 1977, с.97). Несоответствие по параметру решетки в плоскости, равное 14%, дает несоответствие по объему элементарной ячейки или по объемной плотности в 50% или в 1,5 раза.

При очень больших несоответствиях, больше 14%, возникает неупругая или пластическая деформация (дефектность пленки) и образуется некогерентная граница раздела с относительно изотропной свободной энергией. При этом величина этой энергии сопоставима с энергий границы раздела пленки с пересыщенным паром (см. Д. Роберте, Г.М. Паунд, Гетерогенное образование зародышей и рост пленок. В кн.: Новое в исследовании поверхности твердого тела. Под ред. Т. Джайядевайя и Р. Ванселова, М., Мир, 1977, с.82), и теория, приведенная выше, предполагает рост островков-агрегатов 10 (см. фиг.2) с углом смачивания θ, близким к 90°, и при их слиянии - формирование сплошной мелкозернистой поликристаллической или даже аморфной пленки.

На практике при слабой связи с подложкой или при условиях, близких к равновесным, а также в силу способствующих этому причин (достаточно большие толщины пленки, загрязненная или окисленная поверхность подложки, повышенная температура подложки или потока при осаждении) такая мелкозернистая пленка обычно состоит из зерен объемной фазы. Эти мелкозернистые пленки объемных фаз находят применение в ряде отраслей производства.

Но при сильном химическом взаимодействии пленки 5-7 с атомарно-чистой поверхностью подложки, обычно при ее толщинах от одного до нескольких монослоев (соизмеримых с длиной экранирования и длиной волны валентных электронов) взаимодействие с подложкой 1 пленки 5-7, несоразмерной с подложкой 1 по параметру решетки (больше чем на 14%) или по плотности (больше чем в 1,5 раза), будет приводить к формированию необъемной субнано- или нанодисперсной пластически-деформированной пленки. Состояние этой необъемной пленки 5-7 будет зависеть от того, было ли это состояние получено из объемной фазы путем ее разрушения через пластическую деформацию или пленка была получена необъемной в процессе атомной сборки "слой - за слоем" (см. фиг.2). В последнем случае атомная плотность первого граничного слоя пленки 5 будет стремиться к атомной плотности подложки 1, а атомная плотность формирующегося последнего поверхностного слоя пленки 6-7 - к атомной плотности объемной (изолированной от подложки) фазы материала пленки. В результате в пленке будет устанавливаться неоднородная по плотности атомная структура, с деформированной структурой химических связей атомов пленки между собой и с атомами подложки. Эти связи будут иметь переменную по толщине плотность (а также в меньшей степени - силу и длину), причем в среднем промежуточную между плотностью объемной фазы материала подложки и объемной фазы материала пленки (см. фиг.2 и 3).

С точки зрения рассмотренной выше теории, эта структура будет подобна структуре зернистой пленки, но будет состоять из неравновесных низкоразмерных по структуре агрегатов. Эти агрегаты будут минимизировать энергию своих напряжений благодаря вакансиям, внедренным атомам, повороту связей атомов в пленке и упругому удлинению межатомных связей.

Однако формирование такой пленки не произойдет даже в случае, когда материал пленки несоразмерен по плотности подложке, если химическое взаимодействие атомов пленки между собой - значительно сильнее, чем с атомами подложки. Этот может иметь место при росте атомов металлов или ковалентного полупроводника на пассивной подложке, например, на кристаллах с ионной связью. Также этого не произойдет, когда химическое взаимодействие атомов пленки между собой значительно слабее, чем с атомами подложки, но при этом потенциальный рельеф энергии взаимодействия атомов пленки с подложкой вдоль поверхности подложки сглажен. Последний случай имеет место при более плотной упаковке атомов подложки по сравнению с упаковкой атомов пленки, что реализуется при большем радиусе атомов пленки по сравнению с радиусом атомов подложки или более ковалентном или ионном характере связей в пленке, чем в подложке. Например, для атомов щелочных металлов или атомов ковалентного полупроводника на переходном металле.

В случае же (см. фиг.2 и 3), когда атомная плотность пленки больше, чем плотность поверхностного слоя подложки, и когда химическое взаимодействие атомов пленки между собой такое же или слабее, чем с атомами подложки (обычно это пары более легкоплавкий адсорбат - более или в такой же степени тугоплавкая подложка, способные образовывать стабильные в массивном состоянии объемные фазы в виде химических соединений или сплавов), а величина рельефа взаимодействия пленки с подложкой велика благодаря сильной ковалентно-ионной химической связи атомов и подложки, потенциальный рельеф энергии взаимодействия адсорбируемых атомов с подложкой задает структуру пленки и ее плотность, значительно отличающуюся от объемной фазы пленки, изолированной от подложки, в недеформированном или упругодеформированном состоянии.

Поэтому при атомной сборке, при неравновесных условиях, до толщины, равной или несколько большей, чем толщина, эквивалентная длине экранирования валентных электронов, объемная фаза пленки не формируется, а формируется неравновесная низкоразмерная фаза. Ее структура отличается от структуры стабильных или метастабильных (в случае полиморфизма материала) объемных фаз и известных ранее упругодеформированных слоев объемных фаз, типа псевдоморфных слоев. Эта фаза за счет конкуренции сильного воздействия на нее подложки и межатомного взаимодействия в пленке и адаптации пленки к подложке имеет квазипериодичную неоднородную структуру и атомную плотность в продольном направлении, а также неоднородную структуру и плотность в поперечном направлении.

С увеличением ее толщины происходит отклонение ее структуры и плотности от структуры и плотности подложки и увеличение в ней энергии упругих напряжений. При этом частично упругие напряжения разряжаются за счет вакансий или внедренных атомов, а также измененных углов межатомных связей, что приводит к 100%-ному ультрадисперсному пластически-деформированному состоянию и к неоднородности плотности поперек и вдоль фазы с образованием локальных областей, подобных по структуре кластерам (см. N.I. Plusnin, Interface formation and control of growth process of subnanosize thickness films. The Ninth Russia-Japan Seminar on Semiconductor Surfaces (RJSSS-9), Vladivostok: IACP FEB RAS, 2010, p.216-223).

Кроме того, когда толщина пленки становится кратной длине волны или четверти длины волны валентных электронов, то сила взаимодействия электронов пленки с электронами подложки либо усиливается, либо ослабляется за счет увеличения или уменьшения плотности валентных электронов при сложении или вычитании их встречных волн, распространяющихся поперек пленки. Поэтому низкоразмерная фаза стабилизируется при некоторых толщинах, кратных длине волны или четверти длины волны валентных электронов.

Таким образом, заявленный способ получения дисперсной частицы не противоречит теории, с точки зрения взаимосвязи степени несоответствия решеток изолированных объемных фаз пленки и подложки и степени дефектности выращенной фазы на подложке. Но вместо упруго- и пластически-деформированной мелкозернистой пленки объемной фазы с упругодеформированными кластерами объемных фаз и межзеренными дефектами или дефектами типа дислокации несоотвествия в пленке формируется в основном неравновесное агрегатированное состояние с субнано- и наноразмерной неоднородностью плотности атомов и типа связей по толщине и поверхности пленки. Это состояние имеет квазиупорядоченную аморфную или кристаллическую структуру, частично-когерентную структуре подложки, которая не совпадает со структурой объемных или низкоразмерных, но изолированных от подложки фаз системы - подложка или их упругодеформированных слоев.

Поэтому полученные по заявленному способу новые дисперсные частицы имеют существенное отличие своей структуры, включая плотность и тип химических связей, от структуры объемных или низкоразмерных фаз или их упругодеформированных слоев. Они образуют новый класс композитных дисперсных частиц, которые принципиально отличаются от известных дисперсных частиц. Эти известные частицы, по существу, наноструктурированы дислокациями или межзеренными границами раздела, которые также состоят из дислокации. В то же время структура новой дисперсной частицы формируется не за счет измельчения частиц или упругой деформации слоев объемных фаз, а за счет формирования низкоразмерного неоднородного структурного состояния благодаря участию в составе пленки атомов внедрения и вакансий, а также благодаря развороту и изменению длин межатомных связей, формирующихся при атомной сборке пленки слой за слоем. Такой тип структур возникает при малых толщинах, где взаимодействие валентных электронов пленки с валентными электронами подложки еще не экранировано, кроме того, когда сказывается стабилизирующее влияние квантового размера элементов пленки на этот эффект. А также в условиях неравновесия, когда присутствуют кинетические ограничения для возникновения термодинамически-равновесных плотных агрегатов объемных фаз и их дальнего порядка.

Перейдем к более подробному описанию рисунков. Как показано на фиг.1, если плотность атомов 4 объемной фазы 8 не сильно отличается от плотности атомов 2 поверхностного слоя подложки 1, то слои 3, 5-7 в процессе роста монослой за монослоем повторяют структуру подложки 1 согласно теории Франка Ван дер Мерве, упомянутой выше. При этом при субмонослойных покрытиях образуется двумерный слой 3 в виде сверхструктуры из атомов 4, а при одном двух и трех монослоях - псевдоморфные пленки соответственно 5, 6 и 7 из атомов 4. И, наконец, при толщине более трех монослоев формируется эпитаксиальная монокристаллическая пленка объемной фазы 8 с дислокациями несоответствия 9.

Когда плотность атомов 4 объемной фазы 8 сильно отличается от плотности атомов 2 поверхностного слоя подложки 1 (более чем в 1,15 раза), то, как показано на фиг.2, слои 3, 5-7 в процессе роста монослой за монослоем уже не повторяют структуру подложки 1, так как атомы стремятся сгруппироваться с плотностью своей объемной фазы. При этом при субмонослойных покрытиях образуется двумерный слой 3 в виде сверхструктуры, например, из димеров атомов 4, при одном, двух и трех монослоях соответственно, пленка тонкопленочной фазы с низкоразмерной (отличающейся от структуры объемных фаз) структурой, 5, 6 и 7, а при толщине, например, более 3-х монослоев - островковая пленка объемной фазы 10. Структура низкоразмерных тонкопленочных фаз 5, 6 и 7 состоит из периодических или квазипериодических ячеек-агрегатов или кластеров из атомов 4, имеющих упаковку, близкую к упаковке в островках объемных фаз 10 атомов 4.

Как показано на фиг.3, в этом последнем случае возможны различные типы атомного строения пленок 11-16 с низкоразмерной структурой. Верхний, 11-13, и нижний, 14-16, ряды - это пленки, состоящие из атомов одного типа и, соответственно, атомов двух типов (смеси атомов некоторого адсобата с атомами подложки). Слева-направо в каждом ряду - различные случаи адаптации плотности материала пленки к подложке за счет образования, соответственно: вакансий - пленки 11 и 14, раздельных агрегатов - пленки 12 и 15 и одновременно агрегатов и вакансий - пленки 13 и 16. Для лучшей адаптации агрегатного строения пленки к монокристаллической подложке требуется одновременная модификация типа и углов межатомных связей, а также присутствие междуузельных атомов или пустот (вакансий) в подложке или пленке на границе их раздела (пленки 13 и 16).

Пленка с низкоразмерной структурой или низкоразмерная тонкопленочной фаза 7, как показано на фиг.2, при некоторой критической толщине (обычно если нет эпитаксиального сверхструктурного соотношения с подложкой - при толщине не более 3-х монослоев) уплотняется за счет формирования более плотных агрегатов. При этом происходит переход от низкоразмерной тонкопленочной фазы 7 к агрегатам объемной фазы 8, как схематически показано на фиг.4. Этот переход сопровождается выделением энергии перехода, а та, в свою очередь, идет на формирование более близкого к равновесию термодинамического состояния пленки.

Однако уплотнение и переход от низкоразмерной тонкопленочной фазы 7 к объемной 8, как схематически показано на фиг.5, может произойти и при повышении температуры. Эта температура вызывает, дополнительно к температуре перехода, еще большую волнистость пленки 7 и приводит к формированию в ней островков объемной фазы (см. фиг.20). Обнаружение перехода пленки в структурное состояние объемной фазы является одним из аргументов низкоразмерного состояния этой пленки.

Ниже приведены примеры получения ультратонких пленок, состоящих из низкоразмерных тонкопленочных фаз, и перехода этих тонкопленочных фаз в объемные фазы. При этом для идентификации структурного состояния пленок (плотности и типа химических связей) использованы пики объемных и поверхностных плазменных потерь энергии электронов в спектрах ХПЭЭ, энергия которых связана с концентрацией электронов, участвующих в химической связи того или иного типа, а амплитуда характеризует количество (плотность) этих связей в пределах глубины зондирования образца при снятии спектров ХПЭЭ.

Получение рассматриваемых необъемных тонкопленочных фаз 7 и их перехода в объемные фазы 8, например, реализуют в установке, которая показана на фиг.6 и которая построена на основе сверхвысоковакуумной камеры 17, анализаторов электронных оже-спектров (ЭОС) и спектров характеристических потерь энергии электронов (ХПЭЭ) 18, дифрактометра медленных электронов (ДМЭ) 19 и периферийного, а также встроенного оборудования 20-26 для роста пленок.

В камере 17 с помощью насоса 22 получают базовый вакуум с необходимой степенью глубины (не менее 10-9 Торр). После этого сгоняют загрязнения с внутренних поверхностей камеры 17, а также с поверхности подложки 23 и источника 24, поддерживая глубокий вакуум и доводя его постепенно до базового вакуума. Затем перед напылением пленок нагревают подложку 23 и источник 24 пропусканием тока через электрические вводы 26, расположенные на фланцах манипулятора подложки 20 и источника 21, обеспечивая их более глубокое обезгаживание, и далее охлаждают подложку до температуры, при которой получают пленки. При этом снова поддерживают глубокий вакуум в камере 17 и доводят его постепенно до базового вакуума. После охлаждения подложки до необходимой температуры (обычно комнатной) производят осаждение потока атомов 25 на поверхностный слой 1 подложки 23, при этом поддерживают вакуум в камере 17 вблизи базового вакуума.

В таких условиях атомы с источника 24 поступают на поверхность подложки 23 и встраиваются в поверхностный потенциальный рельеф подложки, одновременно адаптируясь на границе раздела - к плотности подложки 23, а на поверхности пленки 7 к плотности объемной фазы 8. При толщине порядка нескольких монослоев или длин экранирования взаимодействия валентных электронов в пленке 7 взаимодействие атомов пленки 7 с поверхностным слоем 1 подложки 23 еще сохраняется, и в результате растет низкоразмерная тонкопленочная фаза. Толщину, химическое и структурное состояние пленок контролируют по ЭОС, спектрам ХПЭЭ и картинам ДМЭ.

Действительно, в спектрах ХПЭЭ пленок 7 и 8, как показано на фиг.7, присутствуют пики объемных плазменных потерь энергии электронов 28-31, которые образуют суммарные пики потерь 32 и 33 (показаны пунктиром). Энергия пиков 28, 29, 30 и 31 отвечает за конфигурацию химической связи (или концентрацию валентных электронов) между атомами соответственно в подложке 1, на ее границе с пленкой 27, в пленке низкоразмерной фазы 7 и в пленке объемной фазы 8. А амплитуда пиков 28-31 отвечает за количество связей данной конфигурации в пределах глубины зондирования образца или за плотность атомов, имеющих эти связи. Поскольку низкоразмерная тонкопленочная фаза 7 неоднородна по структуре и конфигурации химических связей и в ней плотность атомов с определенной конфигурацией химических связей всегда значительно меньше, чем в объемной фазе пленки 8, то пик 30 низкоразмерной тонкопленочной фазы 7 состоит из множества пиков, каждый из которых отвечает определенной конфигурации химической связи. Поэтому он обычно мал по амплитуде и имеет уширение по отношению к пику 31 объемной фазы 8. При этом в суммарный пик пленки низкоразмерной тонкопленочной фазы 32 дают больший вклад пик 28 подложки 1 и пик 29 ее границы раздела с пленкой 27. В результате суммарный пик 32 близок по энергетическому положению к пику 28 подложки и имеет асимметрию формы с уширением в область пика 31 объемной фазы 8. В случае пленки однородной объемной фазы 8 на подложке 1 суммарный пик 33 состоит в основном только из двух пиков: пленки 31 и подложки 28. Это объясняется тем, что плотность интерфейсных связей у подложки 1 с пленкой 8 значительно меньше и амплитуда пика 27, ответственного за интерфейсные связи существенно меньше, чем в случае пленки низкоразмерной фазы 7, где плотность интерфейсных связей велика. В результате в спектрах ХПЭЭ при переходе от низкоразмерной фазы 7 к объемной 8, в процессе роста пленки, на фоне суммарного асимметричного пика 32, близкого по положению к пику подложки, появляется пик объемной фазы 31.

Это видно в спектрах ХПЭЭ на фиг.8-19, когда происходит рост переходных металлов (Co, Fe, Cr) и их силицидов на монокристаллических подложках кремния с различной ориентацией плоскости среза, (111) и (001). Как показывают спектры ХПЭЭ на фиг.8-18, в процессе осаждения этих металлов на подложку кремния при комнатной температуре подложки, после осаждения, на фоне затухающего спектра от подложки 37, при толщине в один и более монослоев формируется спектр низкоразмерной тонкопленочной фазы 38, а затем при большей толщине (не менее трех монослоев) и спектр объемной фазы 39. При этом пик объемных плазменных потерь в спектре объемной фазы 39 достигает области энергетического положения пика объемных плазменных потерь 35, которая соответствует объемным фазам в пределах состава пленки и которая показана заштрихованным полупрозрачным прямоугольником (широким, в случае формирования силицидов, и узким, в случае формирования металла). В приведенных на фиг.8-19 семействах спектров спектр объемной фазы пленки 39 начинал формироваться, по крайней мере, при трех монослоях, когда появлялось трехмерное окружение у второго атомного слоя пленки. Появление этого трехмерного окружения вызывало структурную нестабильность пленки, и она стремилась уплотниться до плотности объемной фазы. Отметим, что вклад подложки в спектры при этом был ничтожно мал из-за того, что толщина пленки была больше глубины зондирования образца, и из-за того, что к затуханию сигнала подложки на пленке добавлялось затухание на интерфейсном слое подложки.

Когда условия осаждения пленок способствовали перемешиванию металла с кремнием, как это показано на фиг.8-19 с четными номерами, в отличие от случая, когда металл не перемешивался с подложкой кремния (или перемешивался незначительно), как это показано на фиг.8-19 с нечетными номерами, спектры 39 показывали переход от низкоразмерных тонкопленочных фаз смеси металла с кремнием 14-16 к объемным фазам смеси металла с кремнием (силицидам - диапазон энергий объемного плазменного пика для которых показан широким заштрихованным прямоугольником 35). Причем это перемешивание вовлекало некоторое фиксированное количество атомов интерфейсного слоя подложки кремния (в пределах длины экранирования валентных электронов), ослабленных взаимодействием с пленкой. При этом сдвиг энергии объемного плазменного пика в спектре низкоразмерной тонкопленочной фазы 38 по отношению к энергии этого пика в спектре подложки 37 был менее выражен и выражался только в его асимметричном уширении в сторону диапазона энергий 35. Это связано с меньшим отличием энергии объемного плазменного пика низкоразмерной тонкопленочной фазы смеси 14-26 от энергии этого пика у подложки 1, чем в случае роста необъемной фазы чистого 7.

Плазменный пик низкоразмерной тонкопленочной фазы в процессе его формирования можно отделить от пика подложки, если произвести вычитание из спектра вклада от подложки, как это показано на фиг.9. Здесь спектры формирующейся низкоразмерной тонкопленочной фазы 38 показаны в увеличенном масштабе по амплитуде по отношению к спектру подложки 37. Видно, как по мере приближения сначала к спектру монослоя 38, а затем от него к спектру объемной фазы 39, энергетическое положение объемного плазменного пика ступенчато возрастает. Это соответствует формированию связей различного типа с различной плотностью валентных электронов. Сначала (при субмонослойных покрытиях) формируются связи отдельных атомов с подложкой в поверхностной фазе, а затем связи соответственно атомов одного, двух и трех монослоев с подложкой в композитной тонкопленочной фазе. На фиг.9 этим типам связей соответствуют энергетические положения пика, отмеченные вертикальными сплошными линиями.

Отжиг пленки металла на кремнии на стадии роста низкоразмерной тонкопленочной фазы металла на кремнии (эта стадия начинается со спектра 38 пленки толщиной в один-два монослоя), как показано на фиг.18 (до отжига - слева и после отжига - справа), даже при небольшой температуре (250°C) по сравнению с обычной температурой образования силицида на границе раздела объемных фаз (больше 450°C) вызывает перемешивание пленки металла с подложкой кремния и формирование объемных фаз силицидов различного состава.

Низкая температура активации этого процесса показывает неравновесное-метастабильное состояние низкоразмерной тонкопленочной фазы на подложке кремния. При отжиге, в некоторых случаях, низкоразмерная тонкопленочная фаза 7 (спектры 38), благодаря воздействию потенциального рельефа подложки, приобретает упорядоченную сверхструктуру √3×√3, когерентную подложке 1, как это показано картинами ДМЭ и ПМД соответственно на фиг.19 справа и на фиг.20 вверху - справа. При этом, как показывает картина ПЭМ на фиг.20, низкоразмерная тонкопленочная фаза 7 представляет собой сплошную пленку с гофрированным или бугристым рельефом поверхности, а объемная фаза 8 - отдельные островки.

Способ получения дисперсной частицы из оболочки и ядра, включающий в себя формирование в граничащих друг с другом монослоях оболочки и ядра необъемной плотности и конфигураций химических связей атомов, отличающийся тем, что необъемную плотность и конфигурацию химических связей атомов формируют благодаря развороту и упругому изменению длин межатомных связей при атомной сборке оболочки слой за слоем при неравновесных условиях.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления циклически и термически нагруженных до 230°С деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления перспективных авиационных двигателей и газоперекачивающих аппаратов.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС).

Изобретение относится к энергетическому кабелю для передачи или распределения электроэнергии, особенно электроэнергии среднего или высокого напряжения. Кабель содержит по меньшей мере один электрический проводник и по меньшей мере один электроизоляционный слой, окружающий указанный электрический проводник, при этом по меньшей мере один электроизоляционный слой содержит: (a) термопластичный полимерный материал, который выбран из по меньшей мере одного сополимера (i) пропилена с по меньшей мере одним олефиновым сомономером, выбранным из этилена и α-олефина, за исключением пропилена, причем у указанного сополимера температура плавления составляет 130°C и более и энтальпия плавления составляет 20-90 Дж/г; (b) по меньшей мере один наноразмерный неорганический наполнитель.

Изобретение относится к нанотехнологии и может быть использовано для маркирования молекул, квантовой обработки информации, магнитометрии и синтеза алмаза химическим осаждением из газовой фазы.

Изобретение относится к биотехнологии. Описаны вакцины против гриппа, содержащие антиген штамма А/Калифорния/7/09 (H1N1) и адъювант, представляющий собой сферические аморфные наночастицы бетулина, или модифицированный фуллерен, или наночастицы гидроксиапатита.
Изобретение относится к медицине, а именно к хирургической оториноларингологии. Выполняют разрез слизистой оболочки и надхрящницы от перегородки носа до места прикрепления нижней носовой раковины.
Изобретение относится к области медицины и ветеринарии, а именно - направленной доставке лекарственных средств в живом организме. Задачей предлагаемого изобретения является упрощение адресной доставки лекарственного средства в онкологическую опухоль и повышения локальности доставки лекарств в опухоль.

Изобретение относится к способу получения катализатора путем покрытия ячеистых тел кристаллическим слоем металла с каталитическими свойствами. Перед нанесением покрытия на поверхности ячеистых тел кристаллического слоя металла упомянутые поверхности предварительно покрывают порошком из драгоценных металлов, имеющим размер частиц <10 мкм.

Изобретение относится к вакуумной микроэлектронике. Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером включает измерение фототока вакуумного фотодиода, возникающего при облучении непрерывным или импульсным оптическим излучением эмиттера при установке определенного значения ускоряющего напряжения на аноде, при этом облучают планарную поверхность наноструктурированного эмиттера лазерным пучком с длиной волны, выбранной из УФ-, видимого или ИК-диапазона при энергии фотона меньше работы выхода электронов из эмиттера, устанавливают фиксированное значение напряжения на аноде U, не превышающее значение, определяемое из заданного соотношения.

Группа изобретений относится к медицине, конкретно к абсорбирующим нетканым материалам, содержащим дисперсные сорбенты. Описан антисептический сорбционный материал, обладающий противовоспалительным, ранозаживляющим, абсорбирующим, вяжущим и антисептическим действием, представляющий собой микроволокнистую матрицу с закрепленным на ее волокнах дисперсным сорбентом, содержащим высокопористые частицы гидрата оксида алюминия и частицы оксида цинка.

Способ определения вида и концентрации наночастиц в неорганических аморфных средах и композитах на основе полимеров может найти применение в электронике, радиотехнике, природоохранной, химической и нефтяной отраслях для контроля качества проведения технологических процессов и качества готовой продукции, например, при создании полимерных нанокомпозитов, функциональных электронных и радиотехнических элементов. Технической задачей является повышение точности определения концентрации наночастиц в аморфных средах любой природы путем уменьшения влияния фоновых токов на результат измерения. Поставленная задача решается тем, что создается измерительная ячейка, состоящая из двух инжекционных слоев проводящего материала и слоя исследуемого материала между ними, полученная измерительная ячейка помещается в низкотемпературную среду, в которой фоновые токи достигают своего минимального значения и не оказывают существенного влияния на результат измерения, затем измерительная ячейка включается в цепь и снимается вольт-амперная характеристика, по которой определяются значения резонансных потенциалов и соответствующие им значения резонансных токов, далее полученные значения резонансных потенциалов сравниваются с базой данных резонансных потенциалов известных наночастиц и осуществляется идентификация наночастиц в исследуемом материале, затем готовится эталонный образец материала с низкой концентрацией идентифицированных наночастиц, формируется измерительная ячейка, состоящая из двух инжекционных слоев проводящего материала и эталонного материала между ними, полученная эталонная измерительная ячейка помещается в низкотемпературную среду и включается в цепь, после чего снимается вольт-амперная характеристика, по которой определяются резонансные потенциалы и соответствующие им значения резонансных токов, на основании полученных значений резонансных токов в исследуемом и эталонном образцах, а также известного значения концентрации в эталонном образце рассчитывается концентрация наночастиц в исследуемом образце.

Изобретение относится к получению метаматериалов из структурных элементов на основе полупроводников, диэлектриков и металлов и может быть использовано в машиностроении и электронике в качестве материалов с улучшенными свойствами. Способ включает формирование дисперсных композиционных частиц, состоящих из ядра и оболочки, путем вакуумного осаждения на ядро из монокристаллического кремния монослоев переходных металлов Co, Fe или Cr до толщины, равной или большей эквивалентной длине экранирования валентных электронов, с формированием неравновесной низкоразмерной фазы, имеющей неоднородную структуру и атомную плотность в продольном и поперечном направлении, а соединение дисперсных композиционных частиц друг с другом осуществляют при инициировании перехода неравновесной низкоразмерной тонкопленочной фазы в объемную в граничащих друг с другом областях оболочки и ядра. Использование заявленного изобретения обеспечивает возможность получения композитных метаматериалов из структурных элементов с новыми или улучшенными потребительскими свойствами за счет формирования в композиционной частице неоднородного наноструктурированного состояния. 20 ил.

Изобретение относится к противоопухолевому лекарственному средству пролонгированного действия на основе ингибитора синтеза эстрогенов - анастрозола. Лекарственное средство содержит анастрозол, сополимер молочной и гликолевой, поливиниловый спирт и D-маннитол. Лекарственное средство представляет собой частицы субмикронного размера и может быть выполнено в виде капсул, гранул, порошка, а также суспензии для инъекций. Применение разработанного лекарственного средства позволит достигнуть лечебного эффекта меньшими терапевтическими дозами и сделать более удобной для пациента противоопухолевую терапию. 1 з.п. ф-лы, 1 табл., 2 ил., 3 пр.

Использование: для преобразования солнечной энергии в электричество. Сущность изобретения заключается в том, что фотоэлектрический преобразователь содержит воронкообразные сквозные отверстия с просветляющим покрытием и толстопленочное покрытие (с обратной стороны), содержащее сферические микрочастицы, способные отражать сквозные солнечные лучи на грани сквозных отверстий. Технический результат: обеспечение возможности повышения КПД фотоэлектрического преобразователя. 3 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля in situ производства в условиях сверхвысокого вакуума наноразмерных магнитных структур. Магнитоэллипсометр содержит источник излучения с монохроматором, плечо поляризатора, оснащенного переключением положения от 0° до 45°, магнитную систему для воздействия на образец, плечо анализатора эллипсометра, оснащенного переключением положения от 0° до 45°, контроллер с детектором для синхронного измерения световых потоков, а также блок измерения магнитосопротивления, собранный по схеме четырехполюсного измерительного моста и состоящий из трех резисторов и одного сменного модуля в виде подложки, на которую происходит напыление образца-свидетеля, имеющего состав, идентичный составу исследуемого образца, а магнитная система выполнена в виде пары оптимизированных катушек Гельмгольца и перпендикулярно расположенного соленоида. Техническим результатом является расширение функциональных возможностей эллипсометрического метода контроля, повышение точности измерений, получение дополнительной информации об электрических или магнитных свойствах в рамках единого метода. 4 ил.
Изобретение относится к контролю содержания веществ в промышленных сточных водах методом жидкостной хроматографии. Для определения концентрации пентаэритрита в водных растворах используют раствор с содержанием пентаэритрита от 1 до 100 мг/дм3. Определяют концентрацию пентаэритрита в нем при длине волны спектрофотометрического детектора 190 нм. В качестве элюента используют 0,0002 M раствор серной кислоты в деионизированной воде, используют колонку из слабосшитых стиролдивинилбензольных смол. Техническим результатом является сокращение времени определения химического вещества в воде, а также упрощение технологического процесса при сохранении качества определения. 1 табл.
Изобретение относится к медицине, а именно к хирургии, и может быть использовано при лечении пациентов с острым анаэробным парапроктитом. В период предоперационной подготовки пациента выполняют катетеризацию мочевого пузыря и дренирование прямой кишки. Выполняют радикальную хирургическую обработку гнойно-некротического очага с широким раскрытием зоны поражения. Проводят дренирование гнойных полостей и иссечение некротических тканей с образованием обширной раневой поверхности. Радикальную хирургическую обработку гнойно-некротического очага выполняют с сохранением целостности сфинктера запирательного аппарата прямой кишки и серозно-мышечного слоя стенок прямой кишки. На 3-4 сутки послеоперационного периода после выполнения неоднократных некрэктомий раневой поверхности с проведением интенсивной инфузионной, дезинтоксикационной и антибактериальной терапии на обширную раневую поверхность пациента укладывают в качестве раневого заполнителя пористую губку и/или марлевую повязку. Губка выполнена из гидрофильной полиуретановой основы, пропитанной активированным углем. Марлевая повязка пропитана коллоидным раствором наночастиц нульвалентного металлического серебра Ag0 с размером наночастиц серебра от 2 до 25 нм. Размещают пациента под адекватным обезболиванием с уложенным на его обширной раневой поверхности раневым заполнителем в пластиковой герметичной прозрачной камере-изоляторе типа «укороченных брюк». Выполняют в количестве 3-4 раз непрерывное в течение 3-5 суток послеоперационного периода вакуумное дренирование продуктов воспаления мягких тканей раневой поверхности через предварительно уложенную пористую губку и/или через марлевую повязку. Вакуумное дренирование раневой поверхности выполняют без смены повязок при использовании отрицательного давления 85-130 мм рт.ст. После осуществления каждого вакуумного дренирования раневой поверхности и раскрытия камеры-изолятора выполняют визуальный осмотр, бактериальный контроль и ревизию раны. В случае необходимости проводят некрэктомию. После полного купирования воспаления и очищения раневой поверхности при значительном уменьшении площади раневой поверхности выполняют контроль бактериологического посева. Выполняют этапы кожной пластики раневого дефекта местными тканями. При этом в процессе вакуумного дренирования продуктов поражения некротически-гнилостного воспаления мягких тканей используют пористую губку с количеством пор на 1 см2 площади поверхности от 30 до 45 штук при их размере от 700 до 1500 мкм. При этом при совместном использовании в процессе вакуумного дренирования продуктов воспаления мягких тканей пористой губки и марлевой повязки на обширную раневую поверхность сначала размещают марлевую повязку, а затем поверх нее пористую губку. При этом одновременно с выполнением вакуумного дренирования продуктов воспаления мягких тканей выполняют дренирование прямой кишки с контролируемым отведением фекальных масс и отведение мочи по мочевому катетеру в наружный мочеприемник. Способ обеспечивает снижение гиперемии и уменьшение отека краев раны, обеспечение точности визуализации некроза тканей, снижения сроков образования чистой раны, покрытой полноценной грануляционной тканью, предотвращение роста анаэробной флоры, а также снижение сроков очищения и заживления вскрытых гнойных полостей с одновременным повышением качества жизни пациента за счет сочетания предоперационной подготовки, радикальной хирургической обработки, использования в качестве раневого заполнителя пористой губки и/или марлевой повязки, размещения пациента в прозрачной камере-изоляторе типа "укороченных брюк", вакуумного дренирования. 3 з.п. ф-лы, 6 пр.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении катализаторов и сорбентов. Графеновая пемза состоит из графенов, расположенных параллельно на расстояниях больше 0,335 нм, и аморфного углерода в качестве связующего по их краям, при соотношении графена и связующего от 1:0,1 до 1:1 по массе. Удельная площадь поверхности более 1000 м2/г. Абсолютная твердость - 1 единица по шкале Мооса и менее, удельная плотность 0,008-0,3 г/см3 для монолитов, насыпная удельная плотность 0,005-0,25 г/см3 для гранул. Композицию получают поджигом в термостойкой открытой или герметичной форме гомогенной порошковой смеси оксида графита, легкоокисляющегося органического материала и органических и неорганических солей металлов с влажностью всех компонентов 10-15%. В качестве исходного материала для связующего используют химические соединения, способные находиться в жидком состоянии до 180°С, не смачивающие графитовую/графеновую поверхность и разрушающиеся при температуре не выше 800°С. Графеновую пемзу активируют путём восстановления в водороде при 400-450°С и давлении 0,05-0,11 МПа в течение 10-30 мин или в метане при 800-950°С течение не менее 1 ч при атмосферном давлении с последующим охлаждением. Полученные сорбенты позволяют многократно увеличить вместимость емкостей для хранения и транспортировки природного газа. 7 н. и 8 з.п. ф-лы, 8 ил., 2 табл., 4 пр.
Адъювант // 2550263
Изобретение относится к биотехнологии и иммунологии, а именно к применению наногранул фторуглеродного материала в качестве адъюванта для вакцин. Предложенное изобретение может быть использовано в области медицины и ветеринарии для конструирования и производства высокоэффективных вакцин. Предложенное изобретение позволяет создавать вакцины, обладающие низкой токсичностью, повышенной иммуногенной активностью и стабильные при хранении.

Изобретение относится пьезоэлектрическим датчикам, предназначенным для дистанционного контроля различных физических и химических величин. Технический результат, который дает осуществление изобретения, заключается в обеспечении максимальной чувствительность датчика к концентрации моноокиси углерода за счет использования в качестве импеданса, зависящего от концентрации моноокиси углерода, наностержней оксида цинка, сопротивление которых близко к сопротивлению излучения отражательного ВШП. Сущность изобретения: датчик содержит герметичный корпус, внутри которого расположен пьезоэлектрический звукопровод, на рабочей поверхности которого расположены приемопередающий встречно-штыревой преобразователь (ВШП), нагруженный на антенну, которая расположена вне герметичного корпуса, опорный отражательный ВШП и отражательный ВШП, нагруженный на расположенный вне герметичного корпуса импеданс, величина которого чувствительна к измеряемой величине, и акустопоглотитель, нанесенный на торцы звукопровода. Импеданс выполнен в виде решетки параллельно-соединенных наностержней окиси цинка. 2 ил.
Наверх