Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналов и датчик для осуществления способа

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления. Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом заключается в том, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, разделенные вакуумированным промежутком. Датчик измерения разности давлений с частотно-модулированным выходным сигналом содержит полый корпус, две идентичные мембраны с эпитаксиально выращенными на них резонаторами, систему возбуждения колебаний резонаторов с постоянным магнитом и систему формирования выходного сигнала, разделенные вакуумированным промежутком. Техническим результатом изобретения является упрощение конструкции датчика и повышение технологичности его изготовления. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред.

Изобретение может быть использовано в измерительно-вычислительных комплексах для систем транспортировки жидкостей, газов, в системах подачи топлива, в двигателях внутреннего сгорания, паровых и газовых турбинах, инженерных сетях различного назначения, в бытовой технике.

Известен способ измерения разности давлений датчиками с частотно-модулированным выходным сигналом. Кремниевые резонаторы обладают одинаковыми формой, размерами и идентичными механическими характеристиками, эпитаксиально выращены на рабочих поверхностях мембран.

Известен патент США №4841775 [1], содержащий датчик разности давлений, выполненный в виде единого кремниевого кристалла, включающего диод и транзистор.

Известен способ измерения разности давлений с частотно-модулированным выходным сигналом (патент ЕРО 456029 А1) [2], по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, возбуждают колебания резонаторов и формируют выходной сигнал.

Известен также микромеханический датчик давления с частотно-модулированным выходным сигналом по указанному патенту [2], содержащий корпус, кремниевую мембрану с эпитаксиально выращенными на ней в едином технологическом процессе резонаторами и вакуумирующими их капсулами для обеспечения достаточно высокого уровня добротности механической колебательной системы, систему возбуждения колебаний с постоянным магнитом, систему формирования выходного сигнала.

Этот датчик обладает достаточно высокими метрологическими характеристиками, поскольку мембрана, резонаторы и капсула являются фрагментами одного монокристалла и изготовлены без применения операций соединения методами эпитаксиального наращивания и селективного травления. Решение по данному патенту выбрано в качестве ближайшего аналога.

Однако сложность процесса изготовления пары «резонатор-капсула» и вакуумирования пространства внутри капсулы делает способ и конструкцию ближайшего аналога нетехнологичной, поскольку применяемый процесс является одним из наиболее сложных среди применяемых в технологии микросистем.

Предлагаемые способ и конструкция датчика не требуют применения вакуумирующих капсул, как у прототипа, что существенно упрощает конструкцию и делает ее намного технологичней при сохранении высоких метрологических характеристик и добротности резонатора.

Указанный технический результат достигается тем, что в предлагаемых способе и датчике с частотно-модулированным выходным сигналом в полом корпусе содержится чувствительный элемент - две кремниевые монокристаллические мембраны с эпитаксиально выращенными на ней вторичными измерительными элементами - резонаторами, разделенные вакуумированным промежутком, обеспечивающим требуемый уровень добротности механической колебательной системы без дополнительного капсулирования (замкнутых капсул), которое применяется в прототипе.

Таким образом, сущность изобретения можно сформулировать так.

Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом, по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, возбуждают колебания резонаторов и формируют выходной сигнал, отличающийся тем, что дополнительно вводят мембрану с резонаторами с возможностью образования вакуумированного промежутка.

Датчик измерения разности давлений с частотно-модулированным выходным сигналом, реализующий способ по п. 1, содержащий мембрану с эпитаксиально выращенными на ней резонаторами, систему возбуждения колебаний резонаторов с постоянным магнитом и систему формирования выходного сигнала, отличающийся тем, что обе мембраны с резонаторами разделены вакуумированным промежутком и образуют корпус.

Изобретение иллюстрируется на чертежах: фиг. 1 - конструктивное исполнение датчика, фиг. 2 - разрез фиг. 1 по линии А-А (увеличенный масштаб), фиг. 3 - функциональна схема датчика. На чертежах цифрами обозначено: 1 - корпус датчика, 2 - идентичные кремниевые мембраны 2 с резонаторами 3, 4, постоянный магнит 5 с магнитопроводом 6; система возбуждения резонаторов 7, система съема и обработки сигнала 8.

На чертежах представлен предлагаемый датчик. Он содержит полый корпус 1, чувствительный элемент - две независимые идентичные кремниевые мембраны 2 с резонаторами 3, 4. Возбуждение собственных колебаний резонатора осуществляется в результате взаимодействия магнитного поля, создаваемого постоянным магнитом 5, с магнитопроводом 6, находящимся в вакуумированном пространстве между мембранами, с магнитным полем тока, пропускаемого через балки резонаторов.

Датчик работает следующим образом. Под действием сил давления происходит деформация мембран 2, приводящая к растяжению или сжатию резонаторов 3, 4 и изменению их резонансных частот пропорционально измеряемым давлениям.

Разность давлений определяется сравнением резонансных частот резонаторов каждой мембраны, при этом собственные колебания резонаторов обеспечиваются силой Ампера, возникающей при взаимодействии магнитных полей постоянного магнита и тока в балке возбуждения резонатора.

Датчик может выполняться как в защищенном, так и незащищенном вариантах, а также может использоваться как датчик абсолютного давления.

Источники информации

1. Патент США №4841775, G01L 9/00, G01L 011/00, заявл. 19.01.1988, опубл. 27.06.1989.

2. Европейский патент ЕРО 456029 A1, G01L 11/00, заявка №91106472.3, заявл. 23.04.1991, опубл. 13.11.1991.

1. Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом, по которому используют мембрану с эпитаксиально выращенными на ней резонаторами, возбуждают колебания резонаторов и формируют выходной сигнал, отличающийся тем, что дополнительно вводят мембрану с резонаторами с возможностью образования вакуумированного промежутка.

2. Датчик измерения разности давлений с частотно-модулированным выходным сигналом, реализующий способ по п. 1, содержащий мембрану с эпитаксиально выращенными на ней резонаторами, систему возбуждения колебаний резонаторов с постоянным магнитом и систему формирования выходного сигнала, отличающийся тем, что обе мембраны с резонаторами разделены вакуумированным промежутком и образуют корпус.



 

Похожие патенты:

Способ определения потерь нефти и нефтепродуктов применим как в процессе сбора, подготовки, транспортировки и хранения нефти на промыслах, так и при транспортировке нефти по магистральным нефтепроводам, а также может быть использован на предприятиях, занимающихся переработкой нефти, хранением, транспортировкой и распределением нефтепродуктов.

Изобретение относится к области измерительной техники. Устройство для измерения давления и скорости его изменения состоит из проточного пневматического канала 1, содержащего два анемочувствительных элемента 2, 3 измерения скорости изменения давления и сообщающего глухую камеру 4 с газодинамическим объектом, микронагнетателя 5 с электроприводом, измерительного 6 анемочувствительного элемента, компенсационного 7 анемочувствительного элемента, первого 8 и второго 9 формирующих сопел, канала 10 измерения давления, канала 11 измерения скорости изменения давления, микроконтроллера 12 и средства 13 отображения информации.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Резонансный сенсор давления содержит измерительную мембрану с возбуждающим электродом и резонансной полостью, к краям которой с двух сторон жестко закреплен резонансный элемент в форме балки с прямоугольным сечением, в теле которого сформированы тензорезисторы, при этом размер сечения балки в ортогональном направлении к плоскости колебаний постоянен, а в направлении колебаний возрастает по линейному закону, достигая максимального значения по середине балки, причем отношение максимального размера сечения к минимальному в указанном направлении лежит в интервале от 1 до 6.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды. Вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора.
Изобретение относится к акустической диагностике и может быть использовано в магистральных нефтегазопроводах. .

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды - жидкости, суспензии, газа. .

Изобретение относится к пищевой промышленности, а именно представляет собой прибор для одновременного мониторинга нескольких физико-химических параметров молока в процессе его свертывания, например температуры, вязкости, активной кислотности, активности ионов кальция (или других ионов в зависимости от выбора ион-селективных электродов).

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред. Способ измерения разности давлений с частотно-модулированным выходным сигналом характеризуется тем, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, возбуждают собственные колебания резонаторов и формируют частотно-модулированный выходной сигнал. Способ также характеризуется тем, что для возбуждения собственных колебаний используют силу Ампера, возникающую в результате взаимодействия магнитного поля тока, текущего по проводнику с током, текущим по резонаторам, при этом проводник и резонаторы размещают внутри вакуумированной полости между мембранами. Датчик разности давлений с частотно-модулированным выходным сигналом содержит полый корпус, две идентичные мембраны с эпитаксиально выращенными на них резонаторами, систему возбуждения колебаний резонаторов и систему формирования выходного сигнала. Внутри вакуумированной полости расположены токонесущий напыленный проводник, создающий магнитное поле для возбуждения собственных колебаний резонаторов, и резонаторы. Техническим результатом изобретения является упрощение конструкции и повышение технологичности изготовления датчика. 2 н.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления. Устройство измерения динамического давления содержит пьезоэлемент 1 и измерительный блок 2, который состоит из генератора переменного тока 3, усилителя широкополосного 4, полосового фильтра 5, выпрямителя 6, фильтра нижних частот 7 и микроконтроллера 8. Выход пьезоэлемента 1 подключен к выходу генератора переменного тока 3, а выход генератора переменного тока 3 - к усилителю широкополосному 4. Усилитель широкополосный 4 соединен с полосовым фильтром 5 и фильтром нижних частот 7. Полосовой фильтр 5 через выпрямитель 6 соединен с первым входом микроконтроллера 8, второй вход которого подключен к фильтру нижних частот 7. Технический результат заключается в повышении быстродействия устройства путем одновременного измерения температуры и динамического давления, повышении точности устройства при измерении динамического давления путем коррекции температурной погрешности измерения динамического давления. 1 ил.

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Датчик давления включает корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый и подвижный световоды. Подвижный световод соединен через штангу с мембраной. Подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки. По торцам входа и выхода световодов расположен сальник. Технический результат - расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых габаритов. 2 ил.

Изобретение относится к испытаниям металлических конструкций и может быть использовано в кабельной технике для оценки работоспособности муфт кабельных погружных электродвигателей. Стенд испытаний кабельных муфт содержит термокамеру с крышкой, в которой размещают испытываемую муфту. Термокамера разделена поршнем на верхнюю и нижнюю полости, к верхней полости подведен трубопровод для закачки соленого раствора, а к нижней полости и к внутренней полости испытываемой муфты подключены трубопроводы для подачи масла. Трубопровод для закачки соленого раствора и трубопровод для подачи масла, подключенный к внутренней полости испытываемой муфты, соединены через распределитель и оснащены индивидуальными манометрами и общим дифференциальным манометром. Кабельная муфта вмонтирована в пробку, закрепленную в крышке. Техническим результатом изобретения является возможность проведения испытания кабельных муфт на перепад давлений при высоких температурах и при наличии агрессивной среды. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано в датчиках давления. Устройство для измерения давления состоит из штока, первого, второго и третьего пьезоэлементов. Шток неподвижно соединен с первым и третьим пьезоэлементами, первой мостовой измерительной схемой, образованной дифференциальным емкостным преобразователем, состоящим из первого конденсатора C1 и второго конденсатора С2, а также резисторов R1 и R2, первого режекторного фильтра, первого усилителя заряда, второго режекторного фильтра, второго усилителя заряда, генератора высокой частоты, первого усилителя сигнала разбаланса мостовой измерительной цепи, выпрямителя, источника питания постоянного тока, образованной терморезисторами R3 и R4, а также резисторами R4 и R5, второго усилителя сигнала разбаланса мостовой измерительной цепи и микроконтроллера. Выходы первого и третьего пьезоэлементов соединены с первым входом A1 микроконтроллера через первый режекторный фильтр и первый усилитель заряда. Выходы второго пьезоэлемента соединены со вторым входом микроконтроллера А2 через второй режекторный фильтр и второй усилитель заряда. Выходы генератора высокой частоты соединены с третьим входом А3 микроконтроллера через первую мостовую измерительную цепь. первый усилитель сигнала разбаланса мостовой измерительной цепи и выпрямитель. Выходы источника постоянного тока соединены через вторую мостовую измерительную цепь с четвертым входом А4 микроконтроллера через второй усилитель разбаланса мостовой измерительной цепи. Технический результат заключается в повышении точности измерения, а также увеличении функциональных возможностей. 4 ил.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник. При этом в заявленное устройство введены дополнительный фотоприемник, зеркало и две параллельные кремниевые пластины, расположенные перпендикулярно мембранному упругому элементу. Кроме того, оба фотоприемника включены по дифференциальной схеме и расположены на одной кремниевой пластине, а на другой пластине размещено зеркало, которое представляет собой плоскую отражающую поверхность кристаллографической ориентации типа (100) с углублениями пирамидальной формы, стенки углублений сходятся в одной точке, а кристаллографическая ориентация стенок типа (111). Технический результат - повышение чувствительности и снижение нелинейности преобразовательной характеристики. 1 ил.
Наверх