Способ выделения геохимических аномалий на основе анализа химического состава речных отложений



Способ выделения геохимических аномалий на основе анализа химического состава речных отложений

 


Владельцы патента RU 2548608:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к области геохимии и может быть использовано для поиска геохимических аномалий донных отложений рек. Сущность: проводят геоинформационный анализ исследуемой территории. Отбирают 2-3 пробы донных отложений на малоприточных участках с относительно резким уменьшением интенсивности водообмена. Определяют химический состав отобранных проб и рассчитывают среднюю концентрацию вещества. Районы с повышенными значениями концентраций обследуют более детально, проводя более частое опробование донных отложений рек и других компонентов окружающей среды. В период с водным стоком, близким к среднемноголетним значениям, проводят детальное специализированное геолого-геохимическое картирование перспективной площади. Технический результат: выделение геохимических аномалий на основе анализа химического состава донных отложений рек. 1 ил.

 

Изобретение относится к геологии и геохимии (способы поисков и разведки рудных гидрогенных месторождений полезных ископаемых), а также к охране окружающей среды.

Анализ геохимического состояния донных отложений поверхностных водных объектов достаточно широко используется как при проведении поисков полезных ископаемых, так и при оценке состояния окружающей среды, что закономерно обусловило заметный интерес к исследованию генезиса донных отложений и их химического состава со стороны специалистов самого различного профиля - гидрологов, геоморфологов, геохимиков, геоэкологов, биологов. В частности, в области геохимии донных отложений рек и озер в последние годы были выполнены крупные обобщения Е.П. Яниным [Янин Е.П. Русловые отложения равнинных рек (геохимические особенности условий формирования и состава). - М.: ИМГРЭ, 2002. - 139 с; Янин Е.П. Техногенные геохимические ассоциации в донных отложениях малых рек (состав, особенности, методы оценки). - М.: ИМГРЭ, 2002. - 52 с.], М.В. Мартыновой [Мартынова М.В. Донные отложения как составляющая лимнических экосистем. - М.: Наука, 2010. - 243 с.], В.Д. Страховенко [Страховенко В.Д. Геохимия донных отложений малых континентальных озер Сибири: автореф. дис. на соискание ученой степени доктора геолого-минералогических наук. - Новосибирск: Институт геологии и минералогии СО РАН, 2011. - 30 с.] и рядом других авторов, а изучение донных отложений водных объектов уже достаточно давно является неотъемлемым элементом методологии геолого-разведочных и геоэкологических работ [Инструкция по геохимическим методам поисков рудных месторождений; Требования к производству и результатам многоцелевого геохимического картирования масштаба 1:200000. - М.: ИМГРЭ РАН, 2002. - 92 с.; Домаренко В.А. Рациональная методика поисков и геолого-экономической оценки месторождений руд редких и радиоактивных элементов. Ч.1. Прогнозирование, поиски и оценка. - Томск: Изд-во Томск. политехн. ун-та, 2012. - 167 с.]. Тем не менее требуется дальнейшее совершенствование способов поисков полезных ископаемых в труднодоступных территориях на основе изучения пространственных изменений химического состава донных отложений рек с целью оптимизации процесса планирования поисковых и геологоразведочных работ и повышения их эффективности. В качестве наиболее оптимальных индикаторов геохимических аномалий выбраны малые водотоки.

Задачей изобретения является: разработка способа поисков рудных гидрогенных месторождений полезных ископаемых и выделения геохимических аномалий на основе анализа химического состава донных отложений рек.

Описание сущности изобретения:

Способ поисков рудных гидрогенных месторождений полезных ископаемых и выделения геохимических аномалий на основе анализа химического состава донных отложений рек (далее также речных отложений) заключается в проведении следующих мероприятий:

1) геоинформационный анализ исследуемой территории с целью выделения малоприточных участков с относительно резким уменьшением интенсивности водообмена (выходы рек с горных районов на равнинный, обширные участки с русловой многорукавностью);

2) отбор 2-3 проб донных отложений на выявленных участках и определение их химического состава;

3) расчет средних содержаний веществ в истоках рек без выраженной русловой сети (далее - истоки реки) по формуле:

где - средняя концентрация элемента в донных отложениях водотока в створе, замыкающем водосбор с площадью F, мг/кг; - средний слой водного стока, мм; ; kC - коэффициент трансформации вещества, c-1; T - расчетный период для определения слоя стока по среднему значению расхода воды , c; kY - коэффициент перехода от слоя стока Y к условной средней глубине потока; a - коэффициент размерности; и - средние концентрация вещества и слой водного стока в истоках реки; величина 1+η определяется при сравнении измеренных концентраций C1 и C2 (в створах с известными площадями F1 и F2); расчет при отсутствии данных о слоях стока может проводиться в предположении по формуле (1);

4) планирование детального обследования районов с повышенными значениями с большей частотой опробования донных отложений рек и других компонентов окружающей среды и собственно проведение детального специализированного геолого-геохимического картирования перспективной площади в период с водным стоком, близким к среднемноголетним значениям.

Сущность изобретения заключается в следующем.

1. Процесс изменения концентрации вещества в донных отложениях водотоков (а также во взвешенных и влекомых наносах, речных водах) рассматривается преимущественно как процесс геомиграции в одномерном потоке на основе анализа упрощенного уравнения, описывающего изменение концентрации вещества C в одномерном потоке во времени t и вдоль пространственной координаты x:

где w - площадь сечения потока, м2; Q - расход воды, м3/с; D - коэффициент продольной дисперсии, м2/с; f(C) - функция, описывающая поступление и трансформацию вещества в потоке; где kC - коэффициент трансформации вещества, c-1. Применительно к расчетным периодам времени геологического масштаба в первом приближении можно использовать упрощенную модель распространения вещества преимущественно за счет адвективного переноса в виде:

где , , - математические ожидания расхода воды, концентрации вещества и площади живого сечения соответственно.

В части решения уравнения (4) сделаны предположения, что водосбор реки площадью F можно представить как часть кругового кольца внутри сектора с центральным углом β, радиусом L, равным сумме расстояний от дуги сектора до начала выраженного русла водотока L(0), от замыкающего створа водотока шириной B' до начала сектора L(2) и длины реки L(1), а движением водных масс происходит от дуги сектора по направлению к центру окружности. Тогда площадь распространения волны по площади F от источника на границе водосбора примерно описывается уравнением (5), площадь условного сечения водного потока w на расстоянии x от центра дуги - уравнением (6), а расход воды - уравнением (7).

где π≈3.14; - математическое ожидание слоя водного стока, мм. Центральный угол β (в градусах) определяется по данным о морфометрических характеристиках водотока и его водосбора:

С учетом (5-7) уравнение (4) принимает вид (9), а его аналитическое решение - (10):

Очевидно, что величина 1+η может быть определена по формуле (10) обратным расчетом с использованием измеренных концентраций C1 и C2, а затем (при допущении Y≈Y0) по формуле (1) и полученным данным в первом приближении оценивается среднее содержание вещества , что позволяет оптимизировать процесс планирования поисковых и геолого-разведочных работ и повысить их эффективность.

2. Обоснование зависимости концентрации вещества от расхода воды получено на основе замены в одномерном дифференциальном уравнении, описывающем химическую реакцию первого порядка, временной координаты t на расход воды Q по схеме:

где x - координата пространства; v - скорость движения водных масс; τ - время добегания водных масс; λ - удельная скорость изменения расхода воды. Тогда решением (11) является уравнение:

где C и Q - начальные концентрация вещества и расход воды или для непрерывного случайного процесса - математические ожидания (то есть ; ). Совмещение уравнений (13) и (10) позволяет получить результирующее уравнение для определения мгновенной концентрации C:

Если измерение концентраций элементов для определения концентраций вещества в истоках реки проводить при условии , то можно упростить расчет и освободиться от необходимости учета влияния колебаний водного стока.

Таким образом, уравнения (1, 10, 14) являются теоретической основой для планирования и проведения поисков полезных ископаемых, месторождения которых формируются в междуречьях рек в зоне гипергенеза при активном участии гидрологических процессов. При этом сущность способа поисков подобных полезных ископаемых заключается в выявлении участков с однонаправленным и устойчивым (прямым или обратным) изменением интенсивности водообмена (а именно - ее уменьшением), последующем опробовании речных отложений в подобных местах и оценке перспективных для более легальных исследований участков.

Пример осуществления изобретения:

1) с учетом требований [Руководство по определению гидрографических характеристик картометрическим способом. - Л.: Гидрометеоиздат, 1986. - 92 с.] проведен геоинформационный анализ исследуемой территории, в результате которого выделены малоприточные участки реки, определено местоположение створов для проведения отбора проб донных отложений, рассчитана площадь водосбора без выраженной русловой сети (табл.1);

Таблица 1
Площади водосбора малого водотока в междуречье рек Ангара и Подкаменная Тунгуска, км2
Площадь водосбора, км2
1 80 (площадь водосбора без русловой сети)
2 203
3 304
4 315
5 430
Примечание: средний слой водного стока принят в соответствии с [СП 33-101-2003. Определение основных гидрологических характеристик. - М.: Госстрой России, 2004. - 72 с.; Пособие по определению расчетных гидрологических характеристик. - Л.: Гидрометеоиздат, 1984. - 448 с.] в размере 136 мм.

2) отбор проб донных отложений и определение их химического состава (табл.2);

Таблица 2
Измеренные концентрации химических элементов в донных отложениях малого водотока в междуречье рек Ангара и Подкаменная Тунгуска, мг/кг
Химический элемент Площадь водосбора, км2
203 304 315 430
Cr 393 220 288 155
Fe 85167 53890 74885 50175
Ni 82 58 63 47
Au 0.0028 0.0029 0.0028 0.0033
Pb 7.4 10.5 6.4 15
Cu 55 43 62 39
Zn 88 73 97 67

3) расчет средних содержаний веществ в истоках рек по формуле (1) и планирование легального обследования районов с повышенными значениями с большей частотой опробования донных отложений рек и других компонентов окружающей среды (табл.3);

Таблица 3
Расчетная концентрации химических элементов в донных отложениях малого водотока, мг/кг
Химический элемент Расчетная концентрация при F0=80 км2
Cr 1498
Fe 244682
Ni 182
Au 0.0026
Pb 3.3
Cu 97
Zn 135
Примечание: слой водного стока ориентировочно принят постоянным в размере 136 мм

4) с учетом тенденции достаточно резкого возрастания от устья к истоку в случае Ni (фиг.1), Cr, Fe сделан вывод о целесообразности проведения детального специализированного геолого-геохимического картирования перспективной площади в период гидрологического года с водным стоком, близким к среднемноголетним значениям.

На фиг.1. Изменение концентраций Ni в донных отложениях по длине малого водотока.

Технический результат: разработан способ поисков полезных ископаемых на основе анализа изменения концентрации вещества в донных отложениях водотоков, включающий: 1) геоинформационный анализ исследуемой территории с целью выделения малоприточных участков с относительно резким уменьшением интенсивности водообмена (выходы рек с горных районов на равнинный, обширные участки с русловой многорукавностью); 2) отбор 2-3 проб донных отложений на выявленных участках и определение их химического состава; 3) расчет содержаний веществ в истоках рек по формуле (1) и планирование детального обследования районов с повышенными значениями с большей частотой опробования донных отложений рек и других компонентов окружающей среды; 4) проведение детального специализированного геолого-геохимического картирования перспективной площади. Опробование речных отложений рекомендуется проводить в период с водным стоком, близким к среднемноголетним значениям.

Новизна технического решения заключается в том, что впервые для выявления геохимических аномалий предлагается способ, основанный на использовании математической модели миграционных потоков в водосборах малых рек и анализе химического состава речных отложений, позволяющий резко снизить стоимость и, соответственно, увеличить объемы поисков рудных гидрогенных месторождений полезных ископаемых.

Способ выделения геохимических аномалий на основе анализа химического состава речных отложений, включающий геоинформационный анализ исследуемой территории, отбор 2-3 проб донных отложений на малоприточных участках с относительно резким уменьшением интенсивности водообмена, расчет средней концентрации вещества в истоках рек по формуле: ,
где - средняя концентрация элемента в донных отложениях водотока в створе, замыкающем водосбор с площадью F, мг/кг; - средний слой водного стока, мм; ; kC - коэффициент трансформации вещества, c-1; T - расчетный период для определения слоя стока по среднему значению расхода воды , c; kY - коэффициент перехода от слоя стока к условной средней глубине потока; a - коэффициент размерности; и - средние концентрация вещества и слой водного стока в истоках реки (участок водосбора без выраженного русла); расчет при отсутствии данных о слоях стока может проводиться в предположении по формуле (1); планирование детального обследования районов с повышенными значениями с большей частотой опробования донных отложений рек и других компонентов окружающей среды и проведение детального специализированного геолого-геохимического картирования перспективной площади в период с водным стоком, близким к среднемноголетним значениям.



 

Похожие патенты:

Использование: для определения изменения свойств околоскважинной зоны пласта-коллектора под воздействием бурового раствора. Сущность изобретения заключается в том, что отбирают керн из стенки скважины и откалывают от керна по меньшей мере одну часть.

Изобретение относится к области геофизики и может быть использовано при моделировании геологических объектов. Предложен способ (варианты) определения репрезентативных элементов площадей и объемов в пористой среде.

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований.

Изобретение относится к физико-химическим методам анализа и может быть использовано при исследовании алмазов. Заявлен способ восстановления температурно-временных условий генезиса алмазов типа IaAB, либо смешанного типа Ib-IaA, основанный на вычислении по локальным концентрациям примесного азота в формах C, A и B в кристалле, измеренным, например, методом ИК-микроспектроскопии, локальных значений интегрального параметра Knt кинетики агрегации n-го порядка соответствующих азотных центров.

Изобретение относится к области геохимической разведки и может быть использовано для определения уровня эрозионного среза рудопроявлений и эндогенных геохимических аномалий.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины.

Изобретение относится к способу сбора и обработки данных геохимической разведки, представляющему собой градиентный способ геохимической разведки. Способ включает получение в каждой точке отбора набора проб поочередным отбором проб почвы и проб газа с интервалом 0,5-1 м вниз от поверхности земли.

Изобретение относится к области геологии и может быть использовано для прогнозирования нефтегазовых месторождений. Сущность: по данным сейсморазведки определяют объемы геологического пространства, ограниченные хронозначимыми геологическими границами, поверхности напластований и структурно-эрозионных несогласий и их иерархическую соподчиненность.

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени.

Изобретение относится к области геодезического мониторинга и может быть использовано для отслеживания изменений земной коры и прогнозирования землетрясений. Сущность: геодезическим методом выявляют динамические смещения по линиям, перпендикулярным сейсмогенному разлому (11).

Использование: для определения изменений параметров пористой среды под действием загрязнителя. Сущность изобретения заключается в том, что размещают излучатель и приемник акустических волн на противоположных поверхностях образца пористой среды, осуществляют первое облучение по меньшей мере одной части образца пористой среды акустическими волнами и измеряют скорость распространения продольных акустических волн, на основе пористости и характера насыщения образца выбирают эмпирическую взаимосвязь между скоростью продольной акустической волны и пористостью для данного типа пористой среды, осуществляют фильтрационный эксперимент по прокачке раствора загрязнителя через образец пористой среды, осуществляют второе облучение той же части образца акустическими волнами и измеряют скорость распространения продольных акустических волн и, используя выбранную эмпирическую взаимосвязь, определяют изменение пористости в этой части образца пористой среды исходя из скоростей продольной акустической волны, измеренных до и после прокачки загрязнителя. Технический результат: обеспечение возможности определения изменения свойств пористой среды, возникающего в результате воздействия загрязнителя. 17 з.п. ф-лы, 3 ил.

Изобретение относится к оптическим методам исследований вещества и может быть использовано для исследования нерастворимой части органического вещества осадочных пород при определении уровня зрелости органического вещества этих пород. Сущность: отбирают образцы осадочных пород и выделяют из них нерастворимое органическое вещество. Измеряют интенсивности ИК-спектральных полос при 2930, 2850, 1710 и 630 см-1 инфракрасного спектра нерастворимого органического вещества. Полученные величины используют для вычисления нормированных показателей, по которым определяют подстадию катагенеза и соответствующий ей уровень зрелости сапропелевого органического вещества. Технический результат: повышение достоверности и детальности определения зрелости органического вещества. 4 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области гидроакустики и может быть использовано для оценки концентрации растворенного метана в областях его пузырьковой разгрузки. Сущность: излучают в направлении морского дна акустический сигнал. Принимают сигнал обратного рассеяния звука от водной толщи. По принятому сигналу выделяют газовые факелы. Оценивают по наклону газовых факелов профиль скорости и направление течения. Рассчитывают плотность источников газовых факелов на морском дне и профиль потока метана в воду для каждого факела. По полученным данным определяют концентрации метана в водной толще в областях его пузырьковой разгрузки. Технический результат: повышение эффективности и надежности оценки концентрации метана в водной толще. 1 ил.

Изобретение относится к области сейсмологии и может быть использовано для краткосрочного прогнозирования локальной магнитуды землетрясения. Сущность: вычисляют спектры Фурье от волновых форм внешних землетрясений, зарегистрированных двумя сейсмическими станциями. При этом одну из станций, ближнюю к гипоцентру землетрясения, называют входной, а другую, расположенную в месте оценки напряжений земной среды, - выходной. Вычисляют квазиамплитудно-частотную характеристику земной среды в месте расположения выходной станции, а также два критерия от нее: интегральный и дробно-интегральный. Наблюдая резкое уменьшение значений интегрального критерия и резкий рост значений дробно-интегрального критерия, делают вывод о готовящемся землетрясении. По максимальному значению дробно-интегрального критерия прогнозируют локальную магнитуду готовящегося землетрясения. Причем для прогнозирования локальной магнитуды используют заранее построенную для конкретной пары станций калибровочную зависимость локальных магнитуд землетрясений от значений дробно-интегрального критерия. Технический результат: краткосрочное прогнозирование локальной магнитуды землетрясения. 2 ил., 1 табл.
Изобретение относится к области геофизики и может быть использовано при изучении сейсмогенерирующих структур. В способе обнаружения «живущих» разломов в зоне разлома устанавливают акустическую мониторинговую станцию и выполняют суточный мониторинг зоны разлома. Определяют время активизации и время «затишья». Затем задают мониторинговый профиль вкрест исследуемого разлома с выходом на вмещающие породы. На вмещающих породах устанавливают акустическую мониторинговую станцию и второй датчик, вычисляют спектры и энергию и по разности энергии вычисляют среднюю квадратическую ошибку вычисления энергии. Переносят второй датчик на следующие пикеты, выполняют краткосрочный синхронный акустический мониторинг двумя установленными на первом и текущем пикетах датчиками и по каждому из датчиков на первом и текущем пикетах вычисляют амплитудные спектры и энергию акустической эмиссии. По правилу трех сигм выделяют аномалии энергии над фоном, по границам аномалий определяют границы «живущего» разлома, характеризующегося аномальными проявлениями микроземлетрясений, и/или образованием магистральных трещин, и/или микротрещин. Технический результат - повышение точности и достоверности получаемых данных.
Изобретение относится к методам прямых геохимических поисков и может быть использовано для определения участков, перспективных для поиска месторождений углеводородов. Сущность: определяют содержания углеводородов в пробах речной сети и строят карты их распространения по площади. По аномальным значениям содержаний углеводородов судят о наличии залежей. Одновременно с отбором проб в речной сети отбирают режимные пробы в одном или нескольких пунктах наблюдений. Выбирают режимную пробу с наименьшим содержанием углеводородов. По соотношению содержания углеводородов в режимных пробах и содержания углеводорода в режимной пробе с наименьшим содержанием определяют поправочные коэффициенты на дату отбора проб. Перерассчитывают значения содержания углеводородов в пробах, отобранных по речной сети, по датам отбора с учетом поправочных коэффициентов. По полученным значениям строят карту мест с аномальным содержанием углеводородов. Технический результат: повышение точности при определении участков, перспективных для поиска месторождений углеводородов.
Изобретение относится к горной промышленности и может быть использовано при формировании сортов исходного рудного сырья, поступающего на обогащение. Цель - повышение производительности технологической линии обогащения, качества продуктов обогащения и снижение энергетических расходов и реактивов обогащения, а также расширение функциональных возможностей способа типизации руд различного состава и при одновременном упрощении реализации способа. Способ базируется на опережающем непрерывном комплексном автоматическом контроле минералогического и вещественного состава исходных руд и логически обоснованной частоте типизации поступающей по транспортерной ленте рудного сырья. Сочетание видеоимидж-анализа, базы данных для эталонных типов руд, заданных экспертами и оцифрованных данных прямого контроля фотовидеорадиологическими и передвижными рентгенофлуоресцентными приборами и последовательности операции по процессу типизации руд при сравнительной оценке контролируемых параметров поступающих на обогащение руд обеспечивают выполнение отмеченных целей и удовлетворительную точность типизации. Существенно повышается также эффективность реализации заявленного способа при использовании интеллектуальной САУ с ассоциативной памятью или идентификатором-наблюдателем за изменяющимися ситуациями с использованием кластеров эталона характеристик руд, коррелирующих со свойствами обогащаемых видов сырья. 1 з.п. ф-лы.

Изобретение относится к области геофизики и может быть использовано для анализа подземной структуры. Заявлен способ моделирования геологического процесса, в результате которого формируется геологическая область, содержащий этапы, на которых: а/ определяют (200) модель геологической области, b/ получают (201) результат наблюдения (Kobs) за заданным параметром геологической области, с/ определяют (202) зону модели, называемую релевантной зоной, для которой результат наблюдения, полученный на этапе b/, является соответствующим, d/ моделируют (203) геологический процесс на основании модели геологической области, определенной на этапе а/, е/ выполняют оценку (204) значения заданного параметра для релевантной зоны модели, используя результаты моделирования, f/ сравнивают (205) результат наблюдения (Kobs) за заданным параметром, полученный на этапе b/, с оценкой ( K ^ ) упомянутого параметра, полученной на этапе е/, и g/ модифицируют параметр моделирования для коррекции влияния моделирования по меньшей мере на часть модели на основании результатов сравнения на этапе f/. Технический результат - повышение точности и достоверности получаемых данных. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к области геологии и может быть использовано при исследовании процессов карстообразования. Предложен способ моделирования процессов карстообразования в карстовой области, в котором задают решетчатую геологическую модель карстовой области для моделирования множества сред, содержащих первую среду, описываемую значениями по меньшей мере одного параметра геологической решетки, и вторую среду, описываемую значениями параметров кромки между двумя узлами решетки. Далее моделируют стохастические смещения частиц в решетке геологической модели, при этом вероятность каждого смещения частиц рассчитывают, учитывая значения, описывающие среду, в которой происходит смещение. Модифицируют значения, описывающие первую и/или вторую среду, в соответствии с направлениями смещения частиц. Технический результат - повышение точности и достоверности данных исследований. 3 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазовой геологии и может быть использовано для оценки перспектив разработки нефтегазовых месторождений. Сущность: отбирают пробы попутных вод из промысловых скважин после сепарации водонефтяной смеси. Выделяют из водной пробы природный уран в необходимом для физических измерений количестве. Проводят радиохимическую очистку природного урана от альфа-активных изотопов радия и тория. Проводят электролитическое осаждение урана на диск из нержавеющей стали. Выполняют альфа-спектрометрическое измерение количества индикатора - отношения альфа-активностей γ=234U/238U. Строят линии равных значений этого индикатора по площади и разрезу водоносного горизонта. Определяют пространственные процессы образования попутных вод в результате взаимодействия вод различных источников. Судят о наличии притока глубинных вод совместно с глубинными углеводородными флюидами в пределы продуктивного горизонта и выделяют очаги их поступления. Технический результат: повышение эффективности выявления очагов современного поступления углеводородных флюидов в пределы эксплуатируемых нефтегазовых месторождений. 2 табл., 3 ил.
Наверх