Способ отслеживания перемещения обрабатывающей жидкости в продуктивном пласте


 


Владельцы патента RU 2548636:

Шлюмберже Текнолоджи Б.В. (NL)

Изобретение относится к добыче углеводородного сырья из продуктивного пласта, пробуренного скважиной, и относится, в частности к нерадиоактивным индикаторам и методам их использования для отслеживания перемещения обрабатывающей жидкости и пластовых флюидов. Технический результат заключается в повышении точности определения положения и распределения обрабатывающей жидкости путем регистрации изменений в физических свойствах пласта, вызванных притоком в него обрабатывающей жидкости со множеством индикаторных добавок. Способ отслеживания перемещения обрабатывающей жидкости в продуктивном пласте, пробуренном скважиной, содержащий: приготовление обрабатывающей жидкости, содержащей множество индикаторных добавок, представляющих собой капли высоковязкой жидкости с диаметром, не превышающим 1000 нм; закачку обрабатывающей жидкости со множеством индикаторных добавок в ствол скважины и продуктивный пласт; определение положения и распределения обрабатывающей жидкости путем регистрации изменений в физических свойствах пласта, вызванных притоком в него обрабатывающей жидкости со множеством индикаторных добавок. 17 з.п. ф-лы.

 

Область изобретения

Данное изобретение относится к добыче углеводородного сырья из продуктивного пласта, пробуренного скважиной, и относится, в частности к нерадиоактивным индикаторам и методам их использования для отслеживания перемещения обрабатывающей жидкости и пластовых флюидов с целью оценки и понимания операций, выполняемых в стволе скважины и/или продуктивном пласте (гравийная набивка, гидравлический разрыв пласта, борьба с поступлением песка и цементирование), призабойных и забойных процессов и участков расположения флюидов, а также участков движения и расположения бурового раствора.

Уровень техники

Использование различных маркеров и индикаторов в нефтегазовой промышленности имеет широкое распространение. Легко распознаваемые радиоактивные и/или химические индикаторы используются для контроля процесса закачки обрабатывающих жидкостей в продуктивный пласт в ходе проведения его гидравлического разрыва, кислотной обработки, борьбы с водопроявлениями и прочих способов обработки ствола скважины и пласта.

Так, в американском патенте №5.243.190 представлен пример радиоактивных элементов, включенных в керамические частицы, используемых для отслеживания потока частиц проппанта, применяемого в процессе гидроразрыва пласта. Использование радиоактивных или химических веществ в качестве индикаторов способно оказать неблагоприятное воздействие, а иногда даже запрещено природоохранным законодательством.

Также предлагаются способы, использующие нерадиоактивные индикаторы. В американском патенте №6.725.926 рассматривается применение индикаторных добавок, выбираемых из группы, включающей водорастворимые неорганические соли, водорастворимые органические соли, металлы, соли металлов органических кислот, оксиды/сульфаты/фосфаты/карбонаты и соли металлов, фосфоресцирующие пигменты, флюоресцирующие пигменты, фотолюминесцентные пигменты и т.д.

Возможно выполнение экономичного анализа и использование индикаторов с продолжительностью эксплуатации около недели - тиоцианата, бромида, йодида или нитратных солей (Р.Д. Хатчинсон и др. «Использование индикаторов на водной основе при разработке нефтяных месторождений». Общество инженеров-нефтяников (США), Международный симпозиум по химическим веществам, используемым в нефтяной промышленности, 20-22 февраля 1991 г., г. Анахайм, шт. Калифорния, 21049-МС).

Кроме того, можно выполнить ионную или жидкостную хроматографию - дорогостоящий анализ, проводимый в лабораторных условиях; можно провести простые, подходящие для полевых условий качественные испытания для обнаружения нитрата, тиоцианата и йодида, называемые «пластинкой с лунками», позволяющие с легкостью установить приблизительный уровень по интенсивности цвета. Альтернативным способом обнаружения солей йода и тиоцианата является простой тест на спектрометре, который может быть использован вместо хроматографии для проведения количественного анализа. Эти ионы не должны взаимодействовать с обычными химическими веществами межмолекулярных связей во флюидах, применяемыми при гидроразрыве пласта, так как они используются при уровне около 1000 частиц на миллион, а обнаруживаемы при уровне 1 частица на миллион. Соли натрия, аммония или калия растворимы и используются для отслеживания перемещения флюида в продуктивном пласте.

Описание химических индикаторов с характеристикой их использования и методологии измерений при анализе скважинного флюида после выполнения гидроразрыва и при выполнении долгосрочного анализа опубликовано в работе Махмуда Асади и др., «Сравнительное изучение анализа скважинного флюида с применением методов отслеживания концентрации полимеров и жидкости для гидравлического разрыва пласта: полевое исследование». Международная нефтегазовая конференция-выставка в Китае, 5-7 декабря 2006 г., г. Пекин, Китай, доклад SPE 101614, а также в работе Махмуда Асади и др., «Выполнение анализа после гидроразрыва пласта на основе результатов анализа скважинного флюида с использованием химических индикаторов». Международная конференция по технологиям нефтедобычи, 3-5 декабря 2008 г., г. Куала-Лумпур, Малайзия, доклад IPTC 11891.

Флюоресцирующие маркеры и индикаторы предназначены для флюидов на водной основе при концентрации 0,018 мл в фильтрате объемом 180 мл и для флюидов на синтетической / нефтяной основе (при концентрации от 9 до 36 мкл в фильтрате объемом 180 мл).

Данные методы достаточно эффективны, но сегодня присутствует необходимость в технологии, безопасной для окружающей среды и позволяющей выполнять измерения при высоком разрешении данных, для отслеживания перемещения обрабатывающих жидкостей, способных проникнуть в глинистую корку, гравийный фильтр, пачку расклинивающего агента и другие среды с крупными порами, а также в поровое пространство (или разломы и трещины) продуктивного пласта на существенное расстояние без закупорки поровых отверстий.

Краткое описание изобретения

Целью настоящего изобретения является создание способа отслеживания перемещения обрабатывающей жидкости в продуктивном пласте, пробуренном скважиной, содержащего приготовление обрабатывающей жидкости с множеством индикаторных добавок субмикронного размера, закачку обрабатывающей жидкости со множеством индикаторных добавок в ствол скважины и в продуктивный пласт, и определение положения и распределения обрабатывающей жидкости путем регистрации изменений в физических свойствах пласта, вызванных притоком в него обрабатывающей жидкости со множеством индикаторных добавок.

Множество индикаторных добавок представляют собой капли высоковязкой жидкости диаметром не более 1000 нм, а обрабатывающая жидкость с множеством индикаторных добавок представляет собой эмульсию, например, такую, как сырая нефть в воде, толуол в воде и т.п., при этом вода пресная; растворы различных солей (неорганических, таких как NaCl, KCl, NH4Cl, CaCl2, MgCl2, NaBr2, ZnBr2, CaBr2, или органических, например формиата натрия, формиата калия и прочие соляные растворы и их смеси, которые обычно используются для интенсификации притока, при гравийной набивке и при заканчивании скважин) в воде (насыщенные и недонасыщенные), соляные растворы и вода с другими химическими веществами, такими как ПАВ, биоциды, а также используемые в качестве присадок при стабилизации глин, железа и при контроле за образованием отложений.

Обрабатывающую жидкость, содержащую множество индикаторных добавок, получают путем смешивания обрабатывающей жидкости со множеством индикаторных добавок посредством генератора, расположенного в стволе скважины, или с использованием наземного оборудования.

Обрабатывающая жидкость, содержащая множество индикаторных добавок, может нагнетаться непрерывно в процессе обработки или периодически.

Обрабатывающая жидкость, содержащая множество индикаторных добавок, может нагнетаться на любом этапе процесса обработки, в том числе до и после обработки, а также в процессе полной или частичной обработки.

Нагнетание флюида в пласт может сопровождаться физическим воздействием (вибрацией, нагреванием или акустической обработкой), которое осуществляют до, во время или после нагнетания.

Существует также вариант осуществления изобретения, в котором в обрабатывающую жидкость, содержащую множество индикаторных добавок, добавляют одну или несколько присадок, выбираемых из группы, содержащей загустители, пенообразователи, понизители трения, ПАВ, деэмульгаторы и ингибиторы.

Физическими свойствами продуктивного пласта являются акустическое сопротивление и/или удельная электропроводность и/или магнитная диэлектрическая проницаемость, отклик ядерного магнитного резонанса (ЯМР), тепловое распространение и гидродинамические характеристики потока.

Для регистрации физических свойств продуктивного пласта используют сейсмические, акустические, электрические, электрокинетические, импульсные, ЯМР, нейтронные и гамма-каротажные измерительные средства, которые располагают на поверхности и/или в стволе скважины, или в межскважинном пространстве.

Возможно выполнение анализа обратного притока обрабатывающей жидкости, содержащей множество индикаторных добавок, из пласта на наличие изменений в функции распределения индикаторных добавок по концентрации, размерам и типу между закачанной и добытой обрабатывающими жидкостями.

Анализ изменений функции распределения индикаторных добавок по концентрации, размерам и типу в закачанной и добытой обрабатывающими жидкостями может быть выполнен посредством акустического, электрического, импульсного, нейтронного или гамма-каротажа, а также за счет сравнения образцов закачанной и добытой обрабатывающих жидкостей.

Прочие аспекты и преимущества данного изобретения рассмотрены в подробном описании и в представленной формуле изобретения.

Подробное описание

Обрабатывающая жидкость выбирается из группы жидкостей, включающей жидкости для гидроразрыва, буровые растворы, жидкости для кислотной обработки, закачиваемые флюиды, соляные растворы и жидкости для заканчивания скважин, жидкости для повышения нефтеотдачи (МПНО), включая жидкости заводнения пласта.

Обрабатывающую жидкость, содержащую множество индикаторных добавок субмикронного размера, закачивают в ствол скважины и в продуктивный пласт.

Закачанные объекты субмикронного размера (так называемые «наноиндикаторы»), содержащиеся в обрабатывающей жидкости, выполняют функцию маркеров/индикаторов, что объясняется их способностью оставаться в объеме транспортируемого флюида без гравитационного разделения и неизменностью типа функции распределения маркеров в течение операции по обработке продуктивного и выполнению измерений. Кроме того, одним из отличительных свойств наноиндикаторов является их способность занимать весь объем пространства, образуемого жидкостью в продуктивном пласте, включая поровое пространство и мельчайшие трещины вытекания жидкости. Это имеет особую важность для кислотной обработки под давлением ниже давления гидроразрыва, в ходе которой жидкость закачивается в поровое пространство, или при выполнении гидроразрыва с применением сланцевого газа, сопровождающегося образованием множества мельчайших трещин. В отличие от микросейсмических измерений, выполняемых при гидроразрыве пласта в условиях сланцевого газа, в ходе которых регистрация процессов характеризуется недостаточностью, при этом они не всегда относятся к распространению обрабатывающей жидкости в продуктивном пласте, результатом чего является неполнота проводимого мониторинга, предлагаемый способ обеспечивает полный охват площади трещиноватости, созданной посредством гидроразрыва.

В данном случае микро- и наносмеси связаны с полным объемом обрабатывающей жидкости или с ее частью, являющейся смесью жидкости с жидкостью - эмульсия, которая может представлять собой высоковязкую жидкость внутри низковязкой жидкости или малые каплии внутри более крупных капель, называемых двойной, тройной эмульсией и т.п.

Обрабатывающую жидкость со множеством индикаторных добавок создают посредством скважинного генератора смеси наноиндикаторов, размещаемого в стволе скважины, или посредством наземного оборудования - генераторов, баков или канистр, из которых осуществляется подача объема, необходимого для закачки смеси.

Данная смесь может нагнетаться непрерывно или периодически в процессе обработки при любой скорости и концентрации. Смесь может нагнетаться на любом этапе процесса обработки, в том числе до и после обработки, а также в процессе полной или частичной обработки. Нагнетание жидкости в пласт может сопровождаться физической обработкой (вибрацией, нагреванием или акустической обработкой), которое осуществляют до, во время или после нагнетания. Данные смеси отличаются по типу основной жидкости и/или газа, используемых при каждой обработке или в ходе процесса, позволяющего выделить разные этапы в рамках одного или нескольких циклов обработки, выполняемой в одном или нескольких стволах скважины.

После этого выполняют измерения для определения расположения и распределения обрабатывающей жидкости и для оценки ее геометрического распределения и отклонения, для чего регистрируют изменения в физических свойствах пористой среды пласта и образованных гидравлических и естественных трещин. Это также позволяет осуществлять контроль и оценку призабойных процессов и процессов в стволе скважины, а также участков размещения флюидов, с применением гидроразрыва пласта, гидроразрыва с установкой сетчатого фильтра, кислотной обработки под давлением ниже давления гидроразрыва, с замедлением процесса отложения твердого осадка, установкой гравийных фильтров, борьбой с поступлением песка, цементированием, а также с использованием буровых растворов для проведения химической и физической обработки продуктивного пласта - нагнетание ПАВ, преобразователей смачиваемости, деэмульгаторов, спиртов, растворителей, нагнетание горячей воды или химикатов при положительном по сравнению с пластовым давлением.

Механизм регистрации и измерений основан на сейсмических, акустических, электрических, электрокинетических, импульсных, нейтронных и гамма-каротажных измерениях, выполняемых с поверхности и/или в стволе скважины, или в межскважинном пространстве.

Приток пластового флюида и обрабатывающей жидкости в ствол скважины, а затем на поверхность, позволяет выполнить анализ с выявлением изменений в функции распределения индикаторов по концентрации, размерам и типу (при использовании множества типов смесей различных маркеров) между закачанной и добытой жидкостями. Анализ выполняется на поверхности или в скважинных условиях с применением подходящего метода, что зависит от особенностей используемых маркеров. Данный анализ позволяет получить дополнительные сведения о пространстве, занятом индикаторами, о проницаемости и проводимости трещины, эффективной проницаемости продуктивного пласта, о флюидах, с которыми маркеры вступают в реакцию, об условиях давления, объема и температуры, которым они подвергались, о количестве жидкости, вышедшей на поверхность в сопоставлении с количеством вытекшей жидкости для гидроразрыва.

Наноиндикаторы могут применяться при самых различных операциях, проводимых в скважинных условиях.

Наноиндикаторы разных типов можно добавлять в проппант или жидкость для гидроразрыва в любой момент в процессе размещения проппанта или обрабатывающей жидкости (основных жидкостей для гидроразрыва, заполнителей или жидкостей для предварительной промывки или промывки при гидроразрыве с использованием проппанта, или кислот, заполнителей, или жидкостей для предварительной промывки, или промывки при кислотном гидроразрыве) в ходе или по завершении операции по гидроразрыву пласта. Нагнетание может осуществляться в процессе основной обработки пласта при гидроразрыве, а также при тестовом гидроразрыве, проводимом, как правило, перед основной операцией (этап определения скорости нагнетания и калибровки или проведения гидроразрыва меньшего масштаба), на этапе охлаждения, предшествующем основной обработке, или по завершении основной обработки в предварительно существовавшую трещину. После этого выполняют различные измерения для определения участка закачки флюида. Механизм регистрации и измерений основан на сейсмических, акустических, электрических, электрокинетических, импульсных, нейтронных и гамма-каротажных измерениях, выполняемых с поверхности и/или в стволе скважины, или в межскважинном пространстве.

Наноиндикаторы разных типов можно добавлять в жидкости для гравийной набивки. По завершении процедуры гравийной набивки выполняются различные измерения с целью определения участка нагнетания/размещения флюида и материалов гравийной набивки. Механизм регистрации и измерений основан на сейсмических, акустических, электрических, электрокинетических, импульсных, нейтронных и гамма-каротажных измерениях, выполняемых с поверхности и/или в стволе скважины, или в межскважинном пространстве.

Наноиндикаторы совместимы с кислотами, твердыми кислотами предварительной или основной промывки, к которым относятся соляные растворы, растворы ПАВ, жидкости с химреагентами для удаления бурового раствора, замедлители отложения твердого осадка и асфальтенов, их растворы, растворители и деэмульгаторы, газовые, пеноматериалы, отводные материалы (твердые, жидкие и газообразные), а также прочие составы, используемые при обработке пласта для отслеживания/контроля операций, выполняемых при заканчивании скважины. Проводимые измерения позволяют выявлять участки размещения и отвода флюидов в стволе скважины, проводить многозональную интенсификацию и обработку, контролировать процесс нагнетания и притока в скважину обрабатывающей жидкости и пластовых флюидов.

Для получения сведений о скорости потока или его профиле можно осуществить разметку наноиндикаторов в потоке. Предлагаемый метод позволяет интерпретировать стратификацию потока, фазовый поток, показатель его отставания или направления движения флюидов в наклонных и горизонтальных скважинах.

Нагнетание и/или выпуск наноиндикаторов может использоваться для установления/контроля размещения фронта заводнения и при применении различных методов повышения нефтеотдачи (МПНО), которые предполагают закачку воды, пено- и газовых материалов (азота, углекислого газа, пара и т.п.), ПАВ, смешивающихся и несмешивающихся углеводородов в нагнетательные скважины с дополнительным тепловым воздействием (или без него) для повышения коэффициента нефтеотдачи пласта. Эти методики широко распространены в нефтяной промышленности, однако осуществление мониторинга фронта заводнения, а также контроль и оптимизация отраслевых систем нагнетания и добычи позволят повысить коэффициент нефтеотдачи.

Наноиндикаторы могут применяться при необходимости отслеживания перемещения жидкости для гидроразрыва в ограниченном пространстве сланцевых газов, в котором в процессе выполнения данной операции образуется множество мельчайших трещин. В отличие от микросейсмических измерений, выполняемых при гидроразрыве пласта в условиях сланцевого газа, в ходе которых регистрация процессов характеризуется недостаточностью, при этом они не всегда относятся к распространению обрабатывающей жидкости в продуктивном пласте, результатом чего является неполнота и некорректность проводимого мониторинга, предлагаемый метод использования наноиндикаторов для гидроразрыва пласта обеспечивает полный охват площади трещиноватости, созданной посредством гидроразрыва.

Настоящее изобретение описано в отношении предпочтительных вариантов осуществления, но специалист в данной области может предложить другие варианты осуществления, которые не выходят за рамки объема раскрытого изобретения. Соответственно объем изобретения ограничен только прилагаемой формулой изобретения.

1. Способ отслеживания перемещения обрабатывающей жидкости в продуктивном пласте, пробуренном скважиной, содержащий:
- приготовление обрабатывающей жидкости, содержащей множество индикаторных добавок, представляющих собой капли высоковязкой жидкости с диаметром, не превышающим 1000 нм,
- закачку обрабатывающей жидкости со множеством индикаторных добавок в ствол скважины и продуктивный пласт и
- определение положения и распределения обрабатывающей жидкости путем регистрации изменений в физических свойствах пласта, вызванных притоком в него обрабатывающей жидкости со множеством индикаторных добавок.

2. Способ по п. 1, в соответствии с которым обрабатывающая жидкость выбирается из группы жидкостей, включающей жидкости для гидроразрыва, буровые растворы, жидкости для кислотной обработки, закачиваемые флюиды, соляные растворы и жидкости для заканчивания скважин, жидкости для повышения нефтеотдачи (МПНО), включая жидкости заводнения пласта.

3. Способ по п. 1, в соответствии с которым обрабатывающая жидкость представляет собой раствор на водной основе.

4. Способ по п. 1, в соответствии с которым обрабатывающая жидкость представляет собой раствор на углеводородной основе.

5. Способ по п. 1, в соответствии с которым высоковязкая жидкость представляет собой сырую нефть или толуол.

6. Способ по п. 1, в соответствии с которым обрабатывающую жидкость, содержащую множество индикаторных добавок, получают путем смешивания обрабатывающей жидкости со множеством индикаторных добавок посредством генератора, расположенного в стволе скважины.

7. Способ по п. 1, в соответствии с которым обрабатывающую жидкость, содержащую множество индикаторных добавок, получают путем смешивания обрабатывающей жидкости со множеством индикаторных добавок посредством наземного оборудования.

8. Способ по п. 1, в соответствии с которым обрабатывающую жидкость, содержащую множество индикаторных добавок, периодически нагнетают в процессе обработки.

9. Способ по п. 1, в соответствии с которым обрабатывающую жидкость, содержащую множество индикаторных добавок, непрерывно нагнетают в процессе обработки.

10. Способ по п. 1, в соответствии с которым обрабатывающую жидкость, содержащую множество индикаторных добавок, нагнетают на любом этапе процесса обработки.

11. Способ по п. 1, в соответствии с которым нагнетание обрабатывающей жидкости в пласт сопровождают физическим воздействием, которое осуществляют до, во время или после нагнетания.

12. Способ по п. 11, в соответствии с которым физическое воздействие представляет собой вибрацию, нагревание или акустическую обработку.

13. Способ по п. 1, в соответствии с которым обрабатывающая жидкость дополнительно содержит одну или несколько присадок, выбираемых из группы, содержащей загустители, пенообразователи, понизители трения и ПАВ.

14. Способ по п. 1, в соответствии с которым физическими свойствами продуктивного пласта являются акустическое сопротивление и/или удельная электропроводность и/или магнитная диэлектрическая проницаемость, отклик ядерного магнитного резонанса (ЯМР), тепловое распространение и гидродинамические характеристики потока.

15. Способ по п. 1, в соответствии с которым для выявления физических свойств продуктивного пласта используются сейсмические, акустические, электрические, электрокинетические, импульсные, ЯМР, нейтронные и гамма-каротажные измерительные средства.

16. Способ по п. 15, в соответствии с которым измерительные средства расположены на поверхности.

17. Способ по п. 15, в соответствии с которым измерительные средства расположены в стволе скважины.

18. Способ по п. 1, в соответствии с которым анализируют обратный приток обрабатывающей жидкости, содержащей множество индикаторных добавок, из пласта на наличие изменений в функции распределения индикаторных добавок по концентрации, размерам и типу между закачанной и добытой жидкостями.



 

Похожие патенты:

Изобретение относится к области добычи нефти и может быть использовано в системах добычи и сбора нефти и газа при разработке нефтяных месторождений, особенно на поздних стадиях разработки, когда продукция нефтяных скважин характеризуется большой обводненностью.

Изобретение относится к мониторингу и проверке качества или уровня цементации в скважине. Техническим результатом является повышение точности и информативности измерений, что позволит оператору предсказать функциональный срок службы скважины и гарантировать целостность ее конструкции.

Изобретение относится к буровой технике, а именно к устройствам коммутации датчиков, измеряющих забойные параметры непосредственно в процессе бурения в составе телеметрической системы.

Изобретение относится к ядерной геофизики и служит для оценки плотности цементного камня скважин подземных хранилищ газа (ПХГ) в процессе их эксплуатации без подъема насосно-компрессорных труб (НКТ).

Изобретение относится к области освоения месторождений углеводородов и может быть использовано для контроля за перетоками углеводородов из осваиваемого месторождения в вышележащие пласты-коллекторы.
Изобретение относится к области нефтегазодобывающей промышленности, в частности к области эксплуатации горизонтальных или наклонно направленных скважин, и может быть использовано при разработке нефтяных, газовых и газоконденсатных месторождений.

Изобретение относится к исследованию нефтяных и газовых скважин. Предложено интеллектуальное устройство гидравлического насоса для добычи нефти, получения и сохранения информации с забоя скважины, содержащее струйную насосную установку, нижний запорный клапан и блок с электронными измерительными приборами, образующие единый комплексный блок, который приводится в действие рабочей жидкостью, накачиваемой в скважину с поверхности для осуществления механизированной добычи нефти, закрытия забоя скважины, восстановления давления в пласте и извлечения устройства на поверхность.

Изобретение относится к нефтедобывающей промышленности, в частности к термическим способам добычи высоковязкой нефти или битума. Способ разработки месторождения нефти или битума с регулированием отбора продукции скважины включает строительство верхней нагнетательной скважины и нижней добывающей скважины с горизонтальными участками, расположенными друг над другом, закачку теплоносителя через горизонтальную нагнетательную скважину с прогревом пласта созданием паровой камеры и отбор продукции через горизонтальную добывающую скважину.

Группа изобретений относится к нефтегазодобывающей промышленности и может быть использована для визуального контроля стенок обсадной колонны (ОК) скважины для определения характера заколонных перетоков флюида.

Изобретение относится к химической или температурной обработке призабойной зоны пласта при разработке месторождений высоковязкой нефти. Технический результат - повышение надежности работы скважинной штанговой насосной установки и снижение трудоемкости ее обслуживания.

Изобретение относится к скважинным измерительным устройствам, используемым для измерения электромагнитных свойств ствола скважины. Техническим результатом является обеспечение направленного действия антенны с возможностью принимать сигналы с разных сторон. Предложен скважинный измерительный инструмент, включающий, по меньшей мере, одну неплоскую антенну, сконфигурированную для передачи и/или приема электромагнитного излучения. При этом неплоская антенна включает в себя, по меньшей мере, одну неплоскую петлю антенного провода, развернутого вокруг корпуса инструмента. Причем в одном примере варианта осуществления неплоскую антенну можно считать двухплоскостной, включающей в себя первую и вторую секции полуэллиптической по форме, образующие первую и вторую пересекающиеся геометрические плоскости. В другом примере варианта осуществления аксиальное разделение между неплоской петлей антенного провода и проходящей по окружности центральной линией антенны изменяется, по существу, синусоидально относительно азимутального угла по окружности инструмента. Являющиеся примером неплоские антенны согласно изобретению могут быть предпочтительно выполнены с возможностью приема и передачи излучения, по существу, чисто x-, y- и z-моды. 4 н. и 11 з.п. ф-лы, 13 ил.

Изобретение относится к нефтегазовой промышленности и касается определения тепловых свойств пород, слагающих разрез скважины и пласт в целом. Техническим результатом является повышение точности измерения среднеинтегрального значения теплопроводности горных пород по разрезу скважины и определение коэффициентов теплопередачи через НКТ и через обсадную колонну, а также длины циркуляционной системы скважины. Способ заключается в том, что выбирается остановленная скважина, производится ее промывка и при этом регистрируется температура на выходе циркуляционной системы. Причем закачка горячей жидкости (теплоносителя) производится через затрубное пространство, при этом на входе в него температура жидкости меняется по периодическому закону и регистрируется, а коэффициент теплопроводности λп и коэффициенты теплопередачи через НКТ k1 и обсадную колонну k2 вычисляются по математическим формулам.

Изобретение относится к оборудованию для контроля рабочих параметров при бурении и может быть использовано для выполнения электрокаротажных работ как в горизонтально, так и в вертикально направленном бурении, а также в наклонно-направленных и разветвленно-горизонтальных скважинах в процессе бурения. Техническим результатом является повышение надежности зонда за счет упрочнения корпуса и надежной герметизации основных электронных узлов. Предложен электронный зонд, содержащий металлический отсек 1 электропитания и сопряженный с ним пластиковый корпус 2, в котором размещены и залиты влагостойким компаундом измерительный блок 3, а также блок 4 обработки сигналов в виде микроконтроллерного блока и магнитная антенна 5. При этом измерительный блок 3 включает в себя датчик 6 наклона продольной оси по отношению к горизонту, датчик 7 крена и импульсный стабилизатор 8. Пластиковый корпус 2 выполнен из многослойного стеклопластика, внутренние слои которого выполнены из стеклонитей, имеющих продольную и ортогональную ориентацию в структуре корпуса, а внешние слои выполнены из стеклонитей, имеющих диагональную ориентацию. Магнитная антенна 5 и измерительный блок 3 имеют многослойное высокоадгезивное к ним влагостойкое покрытие 11, а микроконтроллерный блок 4 - покрытие 12 из лака с низкой адгезивной способностью к влагостойкому покрытию измерительного блока 3 и магнитной антенны 5, и залиты при сборке влагостойким компаундом 13. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, а именно к способу контроля герметичности обсаженной нагнетательной скважины. Техническим результатом является сокращение количества исследований на герметичность системы на скважинах, эксплуатируемых по технологии одновременно-раздельная закачка (ОРЗ). Способ включает: определение фактического перепада давления на пакере ΔΡп_ф=Pу1-Pтр1-Ρу2+Ρтр2-Pпогр1-Рпогр2, где Ру1 и Ру2 - замеренное устьевое давление закачки в верхний и нижний пласты соответственно, Ρтр1 и Ртр2 - потери давления на трение при движении воды по короткой и длинной колоннам соответственно, Рпогр1 и Рпогр2 - значения абсолютной погрешности измерений техническим манометром по короткой и длинной колоннам соответственно, атм. При этом за критерий оценки герметичности принимают заранее заданную критическую величину перепада давления ΔΡп_кр. О герметичности системы судят, сравнивая фактический перепад давления на пакере ΔΡп_ф и заранее заданную критическую величину перепада давления, при |ΔΡп_ф|>|ΔΡп_кр| - система герметична. Способ контроля герметичности нагнетательной скважины включает этапы, на которых: регистрируют изменение давления в скважинном пространстве, перекрытом пакером, путем замера давления на устье на входе в колонну насосно-компрессорных труб (НКТ) в верхнем и нижнем пластах соответственно. Проводят анализ полученных данных и определяют герметичность. При этом предварительно замеряют текущий расход воды по водоводу Qт. О герметичности судят при выполнении следующего условия:, где ΔΡу_т и Qт - соответственно замеренные текущий устьевой перепад давления и текущий расход воды по водоводу; ΔPу_n и Qn - соответственно фактический перепад давления и общий расход воды по водоводу, если условие выполняется, скважина герметична. 3 н. и 13 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к области приборов, перемещающихся в стволах скважин, пробуренных через подземные пласты горных пород. Техническим результатом является передача данных рабочего состояния прибора и/или данных, запомненных в приборе, и/или передача сигналов управления и рабочих инструкций на такие приборы во время нахождения приборов на земной поверхности. Скважинный измерительный прибор, содержащий кожух, выполненный с возможностью перемещения внутри ствола скважины, по меньшей мере, один датчик, выполненный с возможностью измерения параметра ствола скважины, контроллер, установленный в кожухе, включающий в себя, по меньшей мере, одно из следующего: устройство сохранения данных и устройство управления работой, по меньшей мере, одного датчика, и первый порт оптической связи, установленный в первом отверстии в кожухе, причем первый порт оптической связи включает в себя управляемый с помощью электричества источник света, причем первое отверстие в кожухе, герметично закрывающееся заглушкой порта, имеющей оптически прозрачное окно, причем заглушка порта выполнена с возможностью противодействия входу текучей среды скважины внутрь кожуха и второй порт оптической связи, установленный во втором отверстии в кожухе, причем второй порт оптической связи включает в себя фотодетектор, причем второе отверстие в кожухе герметично закрывается заглушкой порта, имеющей оптически прозрачное окно, причем заглушка порта выполнена с возможностью противодействия входу текучей среды скважины внутрь кожуха. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к механизированной добыче жидкости из нефтяных скважин и может быть использовано для оптимизации технологии периодической эксплуатации скважин, дебит которых меньше минимальной допустимой подачи электроцентробежного насоса. Технический результат - увеличение добычи и сохранение надежности погружного оборудования за счет его эксплуатации в режиме максимального КПД. По способу откачку жидкости из скважины чередуют с накоплением жидкости в скважине при выключенной установке и регулируют среднюю во времени подачу установки для согласования с дебитом скважины изменением частоты вращения вала насоса. Подачу насоса в процессе откачки контролируют с помощью расположенного на его выходе погружного расходомера. Откачку производят до достижения на приеме насоса заданного минимального давления, а накопление - до достижения максимального давления. Контроль за величиной давления осуществляют с помощью погружного датчика давления. Частоту вращения вала насоса в течение периода откачки меняют на основе показаний погружного расходомера таким образом, чтобы обеспечить максимальное значение КПД насоса во время откачки. Время накопления ограничивают регламентом нахождения жидкости без движения в наземной арматуре в холодное время года допустимым понижением температуры масла в погружном электродвигателе и допустимой частотой остановок и запусков последнего. Значение максимального давления для сцементированного пласта выбирают из условия максимума добычи, а для пласта, интенсивно разрушающегося в процессе добычи, - из условия минимума выноса механических примесей.

Изобретение относится к области геофизики и может быть использовано при разведке месторождений нефти и природного газа. Заявлена электромагнитная расстановка, сконфигурированная для использования в подземной буровой скважине. Расстановка включает в себя множество расположенных с промежутком вдоль оси электромагнитов и сконфигурирована с возможностью генерации спектра магнитного поля, имеющего по меньшей мере первую и вторую пары магнитно-противоположных полюсов. Преимущественно могут использоваться измерения при пассивной локации возбужденного магнитного поля, например, для исследования и управления непрерывным бурением объединенной скважины. Электромагнитная расстановка может также использоваться в активной локации. При активной локации может также использоваться расстановка постоянных магнитов, обеспечивающая подобный спектр магнитного поля. Технический результат - повышение точности разведочных данных. 2 з.п. ф-лы, 15 ил.

Изобретение относится к измерению перфорационных каналов в нефтяных скважинах. Техническим результатом является уменьшение реверберационного шума. Способ содержит а. размещение каротажного устройства, включающего в себя ультразвуковой приемоизлучатель, в скважине, имеющей обсадную трубу, причем ультразвуковой приемоизлучатель имеет фокусную точку, находящуюся на расстоянии от ультразвукового приемоизлучателя так, что она будет позади внутренней поверхности обсадной трубы, б. излучение ультразвукового сигнала из ультразвукового приемоизлучателя, в. обнаружение отражения ультразвукового сигнала от внутренней части перфорационного канала, проходящего через обсадную трубу в формацию, г. измерение времени, проходящего между передачей и приемом ультразвукового сигнала, д. определение положения ультразвукового приемоизлучателя, соответствующего ультразвуковой передаче и приему отраженного сигнала, е. повторение шагов б)-д) несколько раз и запись полученных данных, ж. обработку полученных данных с помощью компьютера и определение размеров перфорационного канала, з. при этом ультразвуковой приемоизлучатель расположен на отстоянии от обсадной трубы ствола скважины на, по меньшей мере, одну треть минимальной длины открытого канала, которую требуется измерить, и. при этом отстояние такое, что отражения от обсадной трубы реверберируют и существенно рассеиваются перед тем, как отражение изнутри перфорационного канала будет принято ультразвуковым приемоизлучателем. 3 н. и 9 з.п. ф-лы, 12 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к добыче нефти из скважин механизированным способом, и может быть использовано в любых типах электроприводов насосов. Технический результат - поддержание дебита на заданном уровне при снижении затрат на электроэнергию. По способу на устье скважины устанавливают пассивно-акустический многофазный расходомер. Осуществляют эксплуатацию скважины установкой с электроприводом и станцией управления электроприводом. Измеряют дебит скважины и обводненность по фазам ежесекундно в реальном времени. Усредняют дебит за определенное выбранное время. Сравнивают последующие дебиты по фазам с заданными технологическими параметрами. При выходе значений обводненности за заданные границы сокращают объем перекачиваемой насосом пластовой воды при поддержании дебита товарной нефти на заданном уровне. Для этого выполняют одно из действий: снижают производительность насосной установки за счет числа оборотов электродвигателя; повышают производительность насосной установки за счет повышения числа оборотов электродвигателя; останавливают на определенное время насосную установку для накопления нефти в забое скважины. 1 пр., 1 ил.

Изобретение относится к газодобывающей промышленности и может быть использована на газовом промысле для автоматического управления и регулирования технологическими процессами сбора и подготовки газа к дальнему транспорту. Система содержит ПИД-регуляторы расхода газа, подключенные к скважинам и соединенные входом с датчиками расхода газа, а выходом с исполнительными механизмами скважин. К газосборному коллектору куста скважин подключен ПИД-регулятор, соединенный выходом через временной квантователь с ПИД-регуляторами скважин, а входом, через последовательно соединенные инерционный фильтр и устройство сравнения между заданной величиной давления газа куста скважин и величиной давления газа в газосборном коллекторе куста скважин, с датчиком давления газа, установленным в газосборном коллекторе куста скважин. В качестве задатчика производительности используется удаленное автоматизированное рабочее место, которое подает задание производительности на устройство сравнения. Технический результат заключается в обеспечении стабильного согласованного управления скважинами куста, повышении точности и качества переходных процессов регулирования давления газа в газосборном коллекторе куста скважин, увеличении рабочего ресурса исполнительных механизмов скважин, повышении надежности и безаварийности, сокращении «человеческого фактора» при эксплуатации газового промысла.
Наверх