Способ обнаружения и сопровождения траектории цели

Изобретение относится к области радиолокации и может быть использовано для обнаружения траекторий скоростных и интенсивно маневрирующих целей с помощью мобильных радиолокационных станций (РЛС) кругового обзора. Достигаемый технический результат - обнаружение и сопровождение траекторий скоростных и интенсивно маневрирующих целей с достаточно малым периодом обновления информации в заданном секторе по азимуту с помощью РЛС кругового обзора с антенной, выполненной в виде ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту, имеющей значительную массу. Указанный результат обеспечивается за счет прохождения лучом антенны области вне этого сектора с максимальными допустимыми ускорением и скоростью вращения антенны, определяемыми возможностями привода антенны и ее механической прочностью. 5 ил.

 

Изобретение относится к области радиолокации и может быть использовано для обнаружения траекторий скоростных и интенсивно маневрирующих целей с помощью мобильных радиолокационных станций (РЛС) кругового обзора с антенной, выполненной в виде фазированной антенной решетки (ФАР), осуществляющей обзор зоны лучом, последовательно перемещаемым по углу места с помощью электронного управления, а по азимуту - с помощью механического вращения антенны.

Известен способ обнаружения и сопровождения траектории цели, включающий обнаружение цели в процессе кругового обзора зоны РЛС, обнаружение и сопровождение траектории цели в стробах обнаружения и подтверждения траектории (Фарина А., Студер Ф. Цифровая обработка радиолокационной информации. Сопровождение целей. - М.: Радио и связь, 1993, с.26-28).

Недостатком известного способа является значительное увеличение размеров стробов обнаружения и сопровождения траекторий скоростных и интенсивно маневрирующих объектов, являющееся следствием характерного для обзорных РЛС большого периода обновления информации (10-15 с). Увеличение размеров стробов приводит к увеличению затрат временных и энергетических ресурсов, требуемых на осмотр стробов, а также к увеличению количества ложных траекторий. В результате происходит перегрузка системы обработки радиолокационной информации, уменьшается пропускная способность РЛС.

Наиболее близким способом является (фиг.1) способ обнаружения и сопровождения траектории цели в заданном секторе по азимуту размером φ с помощью РЛС кругового обзора с антенной, выполненной в виде фазированной антенной решетки, осуществляющей обзор зоны лучом, последовательно перемещаемым по углу места с помощью электронного управления, а по азимуту - с помощью механического вращения антенны, при этом после каждого осмотра упомянутого сектора изменяют направление вращения антенны, после очередного осмотра упомянутого сектора, при котором решение об обнаружении или об отсутствии обнаружения траектории цели принято, осмотр упомянутого сектора прекращают и продолжают круговой обзор зоны РЛС (патент РФ №2347236).

Наиболее близкий способ имеет следующие недостатки.

Для получения достаточно малого периода обновления информации в заданном секторе по азимуту в наиболее близком способе требуется быстрое изменение положения антенны в этом секторе с изменением направления вращения. В мобильных обзорных РЛС, антенны которых имеют значительную массу (более тонны), такие движения антенны неизбежно будут сопровождаться существенными динамическими нагрузками на привод антенны и саму антенну и могут явиться причиной деформации конструкции антенны и, как следствие, изменения ее характеристик. Таким образом, в РЛС с антеннами, имеющими значительную массу, применение наиболее близкого способа для обнаружения и сопровождения траекторий скоростных и интенсивно маневрирующих целей может оказаться весьма проблематичным.

Решаемой задачей (техническим результатом), таким образом, является обнаружение и сопровождение траекторий скоростных и интенсивно маневрирующих целей с достаточно малым периодом обновления информации в заданном секторе по азимуту с помощью РЛС кругового обзора с антенной, выполненной в виде ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту, имеющей значительную массу.

Указанный результат достигается тем, что в способе обнаружения и сопровождения траектории цели в заданном секторе по азимуту размером φ с помощью радиолокационной станции кругового обзора с антенной, выполненной в виде фазированной антенной решетки, осуществляющей обзор зоны лучом, последовательно перемещаемым по углу места с помощью электронного управления, а по азимуту - с помощью механического вращения антенны, согласно изобретению при положении луча в упомянутом секторе антенну вращают с заданной скоростью ω, определяемой исходя из времени, требуемого на осмотр этого сектора, после выхода луча из упомянутого сектора антенну вращают с ускорением α, задаваемым исходя из возможностей привода антенны и ее механической прочности, при этом

если при движении луча по азимуту к середине области вне заданного сектора по азимуту скорость вращения антенны не достигает значения максимальной допустимой скорости вращения антенны ωмакс, задаваемой также исходя из возможностей привода антенны и ее механической прочности, то при положении луча по азимуту далее середины упомянутой области вращение антенны замедляют с замедлением -α до достижения скорости вращения ω,

если при движении луча по азимуту к середине области вне заданного сектора по азимуту при каком-либо положении луча по азимуту φi скорость вращения антенны достигает значения ωмакс, то далее антенну продолжают вращать с этой скоростью ωмакс в пределах угла по азимуту, определяемого из выражения: ϕ ω м а к с = ϕ i + 360 ϕ + ( ω м а к с 2 ω 2 ) α , затем вращение антенны замедляют с замедлением -α до достижения скорости вращения ω.

Суть заявляемого способа заключается в следующем.

Снижение динамических нагрузок на привод антенны и на антенну в заявляемом способе обеспечивается за счет того, что заданный сектор по азимуту размером φ и область вне этого сектора осматриваются при неизменном направлении вращения антенны и без остановки ее вращения.

Скорость вращения антенны ω в пределах заданного сектора по азимуту постоянна, она определяется исходя из затрат времени на осмотр этого сектора при обнаружении и сопровождении траекторий целей.

Достаточно малый период обновления информации в заданном секторе по азимуту обеспечивается за счет максимально быстрого прохождения лучом области по азимуту вне этого сектора. При этом ускорение вращения антенны α и максимальная допустимая скорость вращения антенны ωмакс в этой области задаются исходя из возможностей привода антенны и ее механической прочности.

После выхода луча из заданного сектора по азимуту антенну вращают с ускорением α, далее область вне заданного сектора по азимуту может быть пройдена лучом антенны по одному из двух вариантов.

Первый вариант (фиг.2) реализуется, когда при движении луча к середине области вне заданного сектора по азимуту скорость вращения антенны не достигает значения максимальной допустимой скорости вращения антенны ωмакс. В этом случае при положении луча по азимуту далее середины упомянутой области вращение антенны замедляют с замедлением -α до достижения скорости вращения ω. После замедления вращения антенны луч оказывается в начале заданного сектора по азимуту.

Период обновления информации в заданном секторе по азимуту в этом случае определяется по формуле:

Второй вариант (фиг.3) реализуется, когда при движении луча к середине области вне заданного сектора по азимуту при каком-либо положении луча по азимуту φi скорость вращения антенны достигает значения ωмакс. В этом случае при следующих положениях луча в пределах угла по азимуту, определяемого из выражения:

антенну продолжают вращать с этой скоростью ωмакс, затем вращение антенны замедляют с замедлением -α до достижения к началу упомянутого сектора скорости вращения ω. После замедления вращения антенны луч оказывается в начале заданного сектора по азимуту.

Период обновления информации в заданном секторе по азимуту в этом случае определяется по формуле:

С точки зрения наименьшего периода обновления информации в заданном секторе по азимуту первый вариант предпочтительнее, поскольку в этом случае время прохождения области вне сектора меньше. Выбор варианта осуществляется в зависимости от значений φ, α, ω, ωмакс.

Таким образом, обеспечивается обнаружение и сопровождение траекторий скоростных и интенсивно маневрирующих целей с достаточно малым периодом обновления информации в заданном секторе по азимуту с помощью РЛС кругового обзора с антенной, выполненной в виде ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту, имеющей значительную массу, то есть достигается заявляемый технический результат.

Изобретение иллюстрируется следующими чертежами.

Фиг.1 - направления вращения антенны в наиболее близком способе.

Фиг.2 - расположение областей равномерного, ускоренного и замедленного вращения антенны в первом варианте прохождения лучом зоны обзора РЛС.

Фиг.3 - расположение областей равномерного, ускоренного и замедленного вращения антенны во втором варианте прохождения лучом зоны обзора РЛС.

Фиг.4 - блок-схема РЛС, реализующей заявляемый способ (двойной стрелкой обозначена механическая связь).

Фиг.5 - блок-схема привода антенны 8.

РЛС, реализующая заявляемый способ (фиг.4), содержит антенну 1, устройство управления лучом 2, выход которого соединен с управляющим входом антенны 1, последовательно соединенные передатчик 3, антенный переключатель 4, приемник 5 и вычислитель 6, выполняющий операции обнаружения траекторий целей и управления скоростью вращения антенны 1, первый выход которого является выходом РЛС, а также синхронизатор 7 и привод антенны 8, механически соединенный с антенной 1, при этом сигнальный вход/выход антенны 1 соединен со входом/выходом антенного переключателя 4, а координатный ее выход - со вторым входом вычислителя 6, второй выход вычислителя 6, являющийся выходом сигнала, пропорционального величине скорости вращения антенны 1, соединен со входом привода антенны 8, на третий вход вычислителя 6 подаются координаты границ заданного сектора по азимуту, четыре выхода синхронизатора 7 соединены соответственно со входом устройства управления лучом 2, входом передатчика 3, вторым входом приемника 5 и с четвертым входом вычислителя 6.

Привод антенны 8 (фиг.5) состоит из силовой передачи 9, двигателя 10 и блока управления скоростью вращения антенны 11, при этом вал двигателя 10 механически соединен со входом силовой передачи 9, которая, в свою очередь, механически соединена с антенной 1, а электрический вход двигателя 10 соединен с выходом блока управления скоростью вращения антенны 11, вход которого является входом сигнала, поступающего со второго выхода вычислителя 6 и управляющего скоростью вращения антенны 1.

РЛС, реализующая заявляемый способ, может быть выполнена с использованием следующих функциональных элементов.

Антенна 1 - ФАР с одномерным электронным управлением лучом по углу места и механическим вращением по азимуту (Справочник по радиолокации. Под ред. М. Сколника, т.2. - М.: Сов. радио, 1977, с.138).

Устройство управления лучом 2 - цифровой вычислитель, реализующий известный алгоритм расчета распределения состояний фазовращателей в полотне ФАР и формирования луча в заданном направлении по углу места (Справочник по радиолокации. Под ред. М. Сколника, т.2. - М.: Сов. радио, 1977, с.141-143).

Антенный переключатель 4 - балансный антенный переключатель на базе циркулятора (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с.166-168).

Передатчик 3 - многокаскадный импульсный передатчик на клистроне, выполнен на основе известного передатчика (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с.278-279, рис.7.2).

Приемник 5 - супергетеродинный приемник, выполнен на основе известного приемника (A.M. Педак и др. Справочник по основам радиолокационной техники. Под редакцией В.В. Дружинина. - М.: Военное издательство МО, 1967, с.343-344, рис.8.1).

Вычислитель 6 - цифровой вычислитель. В вычислителе 6 реализуется известный алгоритм обнаружения траектории цели (Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. - М.: Сов. радио, 1974, с.285-287), вычисляются моменты начала ускорения и торможения вращения антенны вне заданного сектора по азимуту исходя из заданных значений φ, α, ω, ωмакс.

Синхронизатор 7 - выполнен на основе задающего генератора и последовательно соединенной с ним цепочки делителей частоты (Радиолокационные устройства (теория и принципы построения). Под ред. В.В. Григорина-Рябова. - М.: Сов. радио, 1970, с.602-603).

Привод антенны 8 - привод (Российский энциклопедический словарь, кн.2. - М.: Большая Российская Энциклопедия, 2000, с.1248).

Силовая передача 9 - редуктор (Типугин В.Н., Вейцель В.А. Радиоуправление. - М.: Сов. радио, 1962, с.578).

Двигатель 10 - машина постоянного тока (Брускин Д.Э., Зорохович А.Е., Хвостов B.C. Электрические машины, ч.2. - М.: Высшая школа, 1987, с.195-203).

Блок управления скоростью вращения антенны 11 - блок управления скоростью вращения вала двигателя. Методы управления скоростью вращения вала двигателя описаны в источнике: Брускин Д.Э., Зорохович А.Е., Хвостов B.C. Электрические машины, ч.2. - М.: Высшая школа, 1987, с.281-287.

Рассмотрим работу РЛС, реализующей заявляемый способ.

По сигналам устройства управления лучом 2 осуществляется электронное перемещение луча антенны 1 по углу места, а за счет вращения антенны 1 происходит его перемещение по азимуту. При этом на вход передатчика 3 по командам синхронизатора 7 поступают импульсы запуска, обеспечивающие излучение зондирующего сигнала в последовательно осматриваемые направления. Период обновления информации первоначально равен периоду кругового обзора зоны.

Отраженный от цели сигнал через антенну 1 и антенный переключатель 4 поступает в приемник 5, где преобразуется на промежуточную частоту, фильтруется, усиливается. На второй вход вычислителя 6 с координатного выхода антенны 1 поступают координаты луча антенны, а с выхода приемника 5 - отфильтрованный и усиленный сигнал. В вычислителе 6 принятый сигнал сравнивается с порогом обнаружения, при превышении которого принимается решение об обнаружении цели. С синхронизатора 7 на четвертый вход вычислителя 6 подается сигнал, пропорциональный моменту излучения зондирующего сигнала. По величине задержки зондирующего сигнала в вычислителе 6 по известным формулам (Теоретические основы радиолокации. Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970, с.221) определяется дальность до цели.

Если от внешнего источника целеуказания на третий вход вычислителя 6 поступили координаты границ заданного сектора по азимуту, в котором ожидается появление скоростных и интенсивно маневрирующих целей, то этот сектор должен быть осмотрен с меньшим периодом обновления информации.

Для этого значение текущей азимутальной координаты луча антенны 1, поступающее на второй вход вычислителя 6, сравнивается с положением границ заданного сектора по азимуту. В момент времени, предшествующий началу этого сектора, со второго выхода вычислителя на вход привода антенны 8 выдается сигнал, по которому скорость вращения антенны устанавливается равной заданной скорости вращения ω. Заданный сектор по азимуту осматривается с постоянной скоростью вращения антенны ω.

При выходе луча из заданного сектора по азимуту по сигналу, поступающему со второго выхода вычислителя 6 на вход привода антенны 8, вращение антенны осуществляется с ускорением α. Затем, если при движении луча к середине области вне заданного сектора по азимуту скорость вращения антенны не достигает значения ωмакс, то при положении луча по азимуту далее середины упомянутой области вращение антенны замедляют с замедлением -α до достижения скорости вращения ω. Если при движении луча к середине области вне заданного сектора по азимуту при каком-либо положении луча по азимуту φi скорость вращения антенны достигает значения ωмакс, то далее антенну продолжают вращать со скоростью ωмакс в пределах угла по азимуту, определяемого из выражения (2), затем вращение антенны замедляют с замедлением -α до достижения скорости вращения ω.

По окончании замедления скорости вращения антенны луч оказывается в начале заданного сектора по азимуту.

При осмотре заданного сектора по азимуту в каждом положении луча осуществляется излучение зондирующего сигнала и прием отраженных сигналов. Если отраженный сигнал обнаружен, то в вычислителе 6 рассчитываются границы строба обнаружения, а затем и стробов подтверждения и сопровождения траектории цели, которые осматриваются при последующих осмотрах заданного сектора по азимуту. При выполнении критерия обнаружения траектории цели параметры траектории с первого выхода вычислителя 6 выдаются потребителю радиолокационной информации. Если координаты границ заданного сектора по азимуту продолжают поступать на третий вход вычислителя 6, то осмотр этого сектора продолжается, продолжается и обнаружение и сопровождение траекторий целей в этом секторе с выдачей их параметров потребителю. Если же поступление координат границ заданного сектора по азимуту прекратилось, то осмотр этого сектора прекращается и продолжается обычный круговой обзор всей зоны с обнаружением и сопровождением траекторий целей с соответствующим периодом обновления информации.

Таким образом, заявляемый способ обеспечивает обнаружение и сопровождение траекторий скоростных и интенсивно маневрирующих целей с достаточно малым периодом обновления информации в заданном секторе по азимуту с помощью РЛС кругового обзора с антенной, выполненной в виде ФАР с электронным управлением лучом по углу места и механическим вращением по азимуту, имеющей значительную массу, то есть достигается заявляемый технический результат.

Способ обнаружения и сопровождения траектории цели в заданном секторе по азимуту размером φ с помощью радиолокационной станции кругового обзора с антенной, выполненной в виде фазированной антенной решетки, осуществляющей обзор зоны лучом, последовательно перемещаемым по углу места с помощью электронного управления, а по азимуту - с помощью механического вращения антенны, отличающийся тем, что при положении луча в упомянутом секторе антенну вращают с заданной скоростью ω, определяемой исходя из времени, требуемого на осмотр этого сектора, после выхода луча из упомянутого сектора антенну вращают с ускорением α, задаваемым исходя из возможностей привода антенны и ее механической прочности, при этом
если при движении луча по азимуту к середине области вне заданного сектора по азимуту скорость вращения антенны не достигает значения максимальной допустимой скорости вращения антенны ωмакс, задаваемой также исходя из возможностей привода антенны и ее механической прочности, то при положении луча по азимуту далее середины упомянутой области вращение антенны замедляют с замедлением -α до достижения скорости вращения ω,
если при движении луча по азимуту к середине области вне заданного сектора по азимуту при каком-либо положении луча по азимуту φ, скорость вращения антенны достигает значения ωмакс, то далее антенну продолжают вращать с этой скоростью ωмакс в пределах угла по азимуту, определяемого из выражения: , затем вращение антенны замедляют с замедлением -α до достижения скорости вращения ω.



 

Похожие патенты:

Изобретение относится к радиолокации, а именно к радиолокационным станциям (РЛС) наблюдения за воздушной обстановкой, работающим в режиме узкополосной доплеровской фильтрации.

Изобретение относится к технике пространственного наведения и сопровождения подвижных точечных объектов. Технический результат - повышение надежности захвата цели в случае редких посылок зондирующих импульсов и точности слежения за быстро летящей точечной целью.

Изобретение относится к космическим радиотелескопам и может быть использовано для адаптации отражающих поверхностей антенны. Технический результат заключается в повышении коэффициента использования поверхности многодиапазонных двухзеркальных антенн.

Изобретение предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением и уничтожения маневрирующих подвижных целей.

Изобретение относится к радиотехнике и может быть использовано в телевизионных, радиотехнических и радиолокационных системах измерения параметров траекторий летательных аппаратов и других системах аналогичного назначения, в которых информация о непосредственно измеряемых координатах объекта сопровождения (дальности, угловых положениях) формируется с помощью соответствующих дискриминаторов.

Изобретение относится к области радиолокации, в частности к области сопровождения траекторий целей в обзорных радиолокационных станциях (РЛС). .

Изобретение относится к радиотехнике и может быть использовано в радиотехнических и радиолокационных системах измерения параметров траекторий летательных аппаратов и других системах аналогичного назначения, в которых информация о непосредственно измеряемых координатах (дальности, угловых положениях) формируется с помощью соответствующих дискриминаторов.

Изобретение относится к обнаружителям маневра воздушной цели радиолокационными системами сопровождения. .

Изобретение относится к автоматическому регулированию, предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Технический результат - повышение точности и устойчивости сопровождения по направлению интенсивно маневрирующих объектов (ИМО). Для этого способ учитывает в законе управления угловую скорость линии визирования, ее первую и вторую производные, а также инерционные свойства привода антенны, при этом в способе в сигнале управления дополнительно учитываются скорость линии визирования, ее первая и вторая производные. 6 ил.

Способ наведения на удаленный объект электромагнитного излучения, основанный на формировании в материальной среде излучения с заданной в направлении объекта диаграммой направленности с длиной волны λ0 длительностью импульса τ0 и одновременным пропусканием в пределах сформированной диаграммы направленности в направлении объекта когерентного излучения с длиной волны λ1 и длительностью τ1<τ0. При этом когерентное элетромагнитное излучение с коэффициентом поглощения α1<α0 направляют относительно оси диаграммы направленности под углом полного внутреннего отражения, а часть отраженного от объекта когерентного электромагнитного излучения длиной волны λ1<λ0 перехватывают диаграммой направленности, подвергают усилению и комплексному сопряжению. Технический результат - увеличение точности измерений и увеличение дальности обнаружения с одновременным уменьшением энергозатрат. 2 ил.

Изобретение относится к области радиолокационных измерений. Особенностью заявленного способа адаптивного измерения угловых координат объекта наблюдения является то, что от системы встроенного контроля на вычислительное устройство поступают также данные о коэффициентах передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и о вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигах, о допустимых значениях изменений коэффициентов передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и данные о допустимых значениях изменений, вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигов, а также о допустимых значениях угловых смещений полотна активной фазированной антенной решетки, которые хранятся в блоке памяти системы встроенного контроля, а поступающие от блока навигации данные об угловых смещениях полотна активной фазированной антенной решетки во входящем в состав системы встроенного контроля преобразователе оцифровываются и поступают в вычислительное устройство. Техническим результатом является повышение точности измерения угловых координат и расширение области применения заявленного способа. 2 ил.

Изобретение относится к локационной технике и предназначено для использования в системах сопровождения подвижных объектов и системах наведения ракет. Достигаемый технический результат - повышение точности оценки параметров траектории сопровождаемого объекта в условиях неопределенности динамики его движения. Указанный результат достигается за счет того, что способ оценки параметров траектории объекта основан на измерении координат объекта, преобразовании их в прямоугольные координаты и использовании для оценки параметров траектории объекта фильтра Калмана, при этом устанавливают контролируемый параметр фильтра Калмана и задают его пороговое значение, в текущем времени оценивания умножают корреляционную матрицу ошибок экстраполяции фильтра Калмана на весовой коэффициент с начальным значением, равным единице, накапливают значение контролируемого параметра, сравнивают накопленное значение контролируемого параметра с пороговым значением и если оно больше порогового значения, то формируют признак "Маневр", обнуляют накопленное значение контролируемого параметра, а значение весового коэффициента дискретно увеличивают и далее продолжают накопление контролируемого параметра и формирование оценок параметров траектории, при этом, если при наличии признака "Маневр" накопленное значение контролируемого параметра станет меньше порогового значения, то признак "Маневр" снимают, обнуляют накопленное значение контролируемого параметра, а значение весового коэффициента дискретно уменьшают и далее продолжают накопление контролируемого параметра и формирование оценок параметров траектории объекта. 3 з.п. ф-лы, 1 ил.

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием производных третьего и четвертого порядка при малом числе используемых измерителей. Указанный результат достигается за счет того, что сигнал наблюдений координат состояния подается на вход многоступенчатого фильтра, представляющего собой серию последовательно соединенных фильтров нарастающей размерности (n≥2), каждый из которых формирует оценки, используемые в следующем фильтре в качестве измерений, согласно соответствующему алгоритму. 6 ил.

Изобретение относится к области авиационно-космического приборостроения устройств и систем фильтрации параметров движения беспилотных летательных аппаратов (БПЛА), определяющих местоположение в пространстве с использованием корреляции данных от нескольких навигационных приборов и может быть использовано для фильтрации параметров движения БПЛА, поступающих с бортовой навигационной системы (БНС) для повышения точности определения параметров движения БПЛА. Технический результат – повышение точности. Для этого процесс фильтрации параметров движения БПЛА происходит в дискретные моменты времени на основе обработки информации о текущем положении БПЛА, поступающей от БНС и спутниковой навигационной системы (СНС). Фильтрация параметров движения БПЛА в текущей позиции состоит из минимаксной фильтрации параметров движения, поступающих с БНС, и периодической коррекции БНС от СНС. Минимаксная фильтрация параметров движения БПЛА основана на расчете информационных областей, учитывающих возможный диапазон ошибок измерительного устройства и областей достижимости (ОД). На основе анализа взаимного положения информационных областей и ОД определяется оценка вектора параметров движения БПЛА, на основе которой определяется управление БПЛА для перехода в новую позицию. При периодической коррекции БНС от СНС в дискретные моменты времени, измеренные информационные области скачком уменьшаются до минимальных размеров, определяемых точностью определения параметров движения СНС, а затем изменяются в соответствии с особенностями работы БНС до следующего момента коррекции. 3 ил.

Изобретения относятся к области радиолокации и могут быть использованы в обзорных радиолокационных станциях при сопровождении траекторий маневрирующих радиолокационных целей. Достигаемый технический результат - уменьшение размеров стробов сопровождения при фильтрации параметров маневрирующих целей и повышение за счет этого достоверности выдаваемой потребителю радиолокационной информации. Указанный результат достигается за счет увеличения точности установки строба по данным, получаемым в процессе фильтрации параметров траектории сопровождаемой цели. При определении координат центра строба в качестве поправок к экстраполированным на следующее обращение к цели координатам цели используются отклонения оценок координат цели от их экстраполированных на текущее обращение к цели значений, полученных в процессе фильтрации параметров траектории цели. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к технике навигации и может использоваться в системах GPS и GLONASS. Технический результат состоит в повышении надежности определения местоположения. Для этого рассматривается радарный детектор для детектирования и распознавания, в качестве управляющего сигнала, жеста рукой или движения пользователя и передачи их в периферийное устройство. Изобретение использует информацию о положении GPS или ГЛОНАСС путем дополнительной установки принимающего блока GPS на радарный детектор с тем, чтобы исправлять некорректную работу радарного детектора в средах, в которых могут быть получены помехи от нежелательных сигналов, например, области сильных радиопомех, в областях центральной части города, где генерируются различные сигналы и т.д., а также с тем, чтобы позволить пользователю произвольно добавлять (или удалять) область отказа от оповещения или область оповещения. Ожидается, что детекторный радар согласно настоящему изобретению будет способствовать безопасному вождению за счет повышения удобства водителя при управлении и предотвращения дорожно-транспортных происшествий. 2 н. и 16 з.п. ф-лы, 10 ил.
Изобретение относится к области радиолокации и может быть использованы для обнаружения и завязывания трассы цели. Достигаемый технический результат по первому варианту способа сопровождения цели - сокращение временных затрат на завязывание трасс целей и увеличение надежности сопровождения за счет уменьшения размеров стробов, а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей. Указанные технические результаты достигаются тем, что в способе сопровождения цели, основанном на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, зондируют области стробов сигналами, обеспечивающими измерение допплеровской скорости цели. Достигаемым техническим результатом по второму варианту способа излучения и приема сигнала является использование той же структуры сигнала для измерения (разрешения) допплеровской скорости, что и для измерения дальности. Указанный технический результат достигается тем, что в способе излучения и приема сигнала при измерении (разрешении) допплеровской скорости, основанном на формировании сигнала с внутриимпульсной модуляцией, сигнал излучают отдельными частями, а при приеме их отражений сжимают их в допплеровских каналах. 2 н. и 5 з.п. ф-лы.

Изобретение относится к радиолокации и может быть использовано для определения путевой скорости неманеврирующей аэродинамической цели преимущественно в радиолокационных станциях (РЛС) с грубыми измерениями угловых координат. Достигаемый технический результат изобретения - повышение точности определения путевой скорости. Для этого перемножают данные измерений дальности и радиальной скорости, определяют с помощью, цифрового нерекурсивного фильтра (ЦНРФ) оценку первого приращения произведения дальности на радиальную скорость за период обзора РЛС, делят оценку на период обзора РЛС, из полученного результата вычисляют квадратный корень. Устройство, реализующее способ, содержит последовательно соединенные умножитель дальности на радиальную скорость, ЦНРФ, делитель на период обзора, вычислитель квадратного корня. 2 н.п. ф-лы, 3 ил., 3 табл.
Наверх