Способ получения кремния из силицида магния

Изобретение относится к области неорганического синтеза и может быть использовано для получения чистого кремния. Способ включает получение силицида магния смешиванием диоксида кремния с магнием, термическое разложение силицида магния в кислородсодержащей атмосфере при температуре выше 650°C и обработку минеральной кислотой с получением порошка кремния. Технический результат - получение элементного кремния, пригодного для использования в солнечной энергетике, при меньших энергетических затратах по сравнению с традиционными способами. 2 пр.

 

Изобретение относится к области неорганического синтеза и может быть использовано для получения чистого кремния.

Известен способ получения кремния восстановлением диоксида кремния магнием [US 2010/0092141 A1 / Apr. 15, 2010]. Восстановление SiO2 проводится парообразным магнием при температуре 1100°C, поступающим в емкость, содержащую диоксид кремния. Недостатком способа является высокая температура проведения восстановления, наряду с основной реакцией происходит потеря восстановленного кремния на образование постороннего соединения - силицида магния.

Известен способ получения кремния (прототип), основанный на получении технического кремния магнийтермическим восстановлением оксида кремния, получением силицида магния из кремния и выделении SiH4 соляной кислотой из силицида магния с последующим разложением моносилана на кремний выше 400°C [US 7972584 / Aug 25, 2009]. Недостатками данного метода являются: многостадийность, высокая энергоемкость, используемый для получения кремния силан является токсичным и пожаровзрывоопасным.

Задачей настоящего изобретения является разработка промышленного способа получения кремния с низким содержанием примесей.

Задача достигается тем, что синтез силицида магния проводят в смеси диоксида кремния с магнием (магний предварительно очищают от примесей металлов и неметаллов методом перегонки). Способ получения кремния из силицида магния включает получение силицида магния и термическое разложение силицида магния. Получение силицида магния осуществляют в смеси диоксида кремния с магнием, которая соответствует стехиометрическому соотношению 1:1 для восстановления диоксида кремния до силицида магния, процесс термического разложения силицида магния осуществляют термической обработкой в кислородсодержащей атмосфере при температуре выше 650°C.

Протекающая реакция описывается уравнением:

SiO2+4Mg=Mg2Si+2MgO

Полученную шихту подвергают термической обработке при температуре выше 650°C в кислородсодержащей атмосфере для разложения силицида магния на кремний и оксид магния. Процесс разложения силицида магния описывается уравнением:

Mg2Si+O2=2MgO+Si

Выделение кремния из смеси можно осуществить обработкой минеральной кислотой или методами электростатической сепарации.

В результате перечисленных операций получается твердый продукт - элементный кремний.

Пример 1

Смешивают 10 г диоксида кремния и 16,2 г магния, нагревают до 600°C. Продукты магнийтермического восстановления подвергают термической обработке в печи при 650°C в атмосфере воздуха. Полученную шихту промывают 80 г соляной кислоты, твердую фракцию отфильтровывают. Получают порошок массой 4,5 г, выход продукта составляет 96,3%.

Пример 2

Смешивают 10 г диоксида кремния и 16,2 г магния, нагревают до 600°C. Продукты магнийтермического восстановления подвергают термической обработке в печи при 700°С. Полученную шихту промывают 80 г соляной кислоты, твердую фракцию отфильтровывают. Получают порошок массой 4,58 г, выход продукта составляет 98%.

В результате перечисленных операций получают элементный кремний, пригодный для использования в солнечной энергетике, при меньших энергетических затратах по сравнению с традиционными способами.

Способ получения кремния из силицида магния, включающий получение силицида магния и термическое разложение силицида магния, отличающийся тем, что получение силицида магния осуществляют в смеси диоксида кремния с магнием, которая соответствует стехиометрическому соотношению 1:1 для восстановления диоксида кремния до силицида магния, процесс термического разложения силицида магния осуществляют термической обработкой в кислородсодержащей атмосфере при температуре выше 650°С.



 

Похожие патенты:

Изобретение относится к области порошковой металлургии, в частности к получению композиционных материалов на основе силицида ниобия Nb5Si3 методом высокотемпературного синтеза (CBC) под давлением.

Изобретение относится к компонентам высокотемпературных систем сгорания с улучшенными эксплуатационными характеристиками. Предложены варианты компонента системы сгорания, содержащего композиционный материал и металлическую основу, где композиционный материал содержит карбид кремния и силицид тугоплавкого металла, содержащий фазу, выбранную из Rm5Si3, Rm5Si3C, RmSi2 и их сочетаний (Rm означает тугоплавкий металл, выбранный из молибдена, вольфрама и их сочетания).

Изобретение относится к области получения кремнийсодержащих реагентов и может быть использовано в производстве моносилана для его дальнейшего преобразования в полупроводниковый или электронный кремний, а также для синтеза кремнийорганических соединений.

Изобретение относится к области химии металлургических процессов. .
Изобретение относится к порошковой металлургии, в частности к получению силицидов в режиме СВС. .

Изобретение относится к области неорганической химии, а именно к получению силицида магния, который используется в качестве сырья для получения моносилана. .

Изобретение относится к порошковой металлургии и электронной промышленности и может быть использовано при изготовлении из силицидов тугоплавких металлов деталей, изделий методами порошковой металлургии, при нанесении защитных покрытий и для изготовления токопроводящих и резистивных элементов интегральных схем.

Изобретение относится к способам получения порошкообразного силицида молибдена, применяемого при изготовлении изделий для химической и электрохимической промышленности, а также в качестве огнеупоров, и позволяет повысить гранулометрическую однородность продукта.
Изобретение относится к области химической технологии неорганических веществ. В тигель при температуре не менее 2000°C заливают расплав диоксида кремния и герметизируют его для создания условий поддержания в газовой фазе над расплавом избыточного давления не менее 2,0 МПа.

Изобретение относится к технологии получения чистых веществ, используемых в отраслях высоких технологий: полупроводниковой, солнечной энергетики, волоконно-оптической связи.

Изобретение относится к производству высокочистого кремния в виде наноразмерного порошка, который может быть использован в полупроводниковой электронике и в нанотехнологиях.

Изобретение относится к области химической технологии неорганических веществ и может быть использовано для получения синтетического кремния. .

Изобретение относится к использованию в качестве энергоносителей исходных материалов, содержащих диоксид кремния. .
Изобретение относится к области химической технологии неорганических веществ и может быть использовано для получения синтетического кремния. .

Изобретение относится к технологии получения высокочистого кремния, используемого для производства фотогальванических элементов. .
Изобретение относится к металлургии и может быть использовано при производстве кремния, который может быть использован в полупроводниковом приборостроении, металлургической промышленности.

Изобретение относится к процессам и аппаратам для получения кристаллического кремния повышенной чистоты. .
Изобретение относится к области цветной металлургии, в частности к производству высокочистого кремния, который может быть использован при изготовлении солнечных элементов.

Изобретение может быть использовано в химической, горнорудной промышленности. Восстановление железа, кремния и восстановление диоксида титана до металлического титана проводят путем генерации электромагнитных взаимодействий частиц SiO2, кремнийсодержащего газа, частиц FeTiO3 и магнитных волн. При этом осуществляют накачку энергии в скрещенных полях с параметрическим резонансом в RLC-контуре с многомодовой модуляцией на резонансных частотах в диапазоне 105÷1012 Гц и более при индуктивном взаимодействии частиц сырья SiO2, кремнийсодержащего газа или частиц FeTiO3 в бегущих магнитных и электрических волнах с круговой или эллиптической поляризацией в замкнутом объеме электронно-ионной петли тока или вихрей частиц типа ротора, в диапазоне 101÷106 Гц циклической частоты, с магнитно-электрически инерционным удержанием вращающихся магнитных и электрических волн типа статора. Изобретение позволяет переработать трудноразлагаемое кремний- и титансодержащее сырье без использования кислот, повысить при этом экологичность и уменьшить энергозатраты. 3 з.п. ф-лы, 38 ил., 4 табл., 3 пр.
Наверх