Способ биоконверсии отходов промышленного производства сапонинов из корня saponaria officinalis


 


Владельцы патента RU 2549687:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тверской государственный университет" (RU)
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет пищевых производств" (RU)

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и проведение биоконверсионного процесса с аэрацией смеси. Растительные отходы производства сапонинов подвергаются биоконверсии в составе смеси, содержащей торф и птичий помет, с соотношением компонентов торф:птичий помет: растительные отходы - (13%-25%):50%:(25%-50%). Процесс биоконверсии в первые 7 суток производится при температуре 37±2°C и 55±2°C - на 8-е сутки. Изобретение обеспечивает ускорение процесса биоконверсии растительных отходов и повышение его эффективности. 3 з.п. ф-лы, 7 табл., 5 пр.

 

Изобретение относится к области биотехнологии, а именно к способам получения удобрений на основе отходов переработки растительного сырья.

Известен способ биоконверсии растительного сырья (патент РФ №2255979, МПК C12S 3/04, A23K 1/12, C12N 1/14, B01J 19/10, C12N 1/14, Заявка №2003112401/13, 25.04.2003, Опубл. 10.07.2005) путем измельчения растительного сырья, затем обработки его ультразвуком частотой 22.0-24.0 кГц в течение 10-15 минут с последующим биологическим воздействием на растительное сырье инокулятом гриба Panus tigrinus BKM F-3616 D в течение 9-14 суток при температуре (+24)-(+26)°C.

Недостатком способа является использование дорогостоящей обработки ультразвуком и большая длительность процесса.

Также известен способ биоконверсии растительных отходов и установка для его осуществления (патент РФ №2163076, МПК A23K 1/00, A23K 1/165, A23N 17/00, Заявка №99126854/13, 27.12.1999, Опубл. 20.02.2001), включающий подготовку сырья, засев микробной культурой, ферментацию и пастеризацию. Перед ферментацией растительные отходы подвергают импульсной тепловой обработке. В подготовленное сырье вводят путем засева в качестве источника ферментных препаратов смесь культур микроорганизмов, состоящую из дрожжей, бактерий и грибов, вырабатывающих ферменты, обладающие амилолитическими и целлюлозолитическими свойствами, проводят ферментацию полученной биомассы, пастеризацию, в процессе которой производят повторяющийся 3-5 раз импульсный нагрев и последующее снижение температуры до 30°C. В смеси культур микроорганизмов используют дрожжи Sacharomyces cerevisial diataficus, бактерии Acinetobacter и мицелиальные грибы Polyporus Squamosus Endomycopsis fibuliger.

Недостатком данного способа является необходимость тепловой обработки растительных отходов.

Наиболее близким к предлагаемому способу является способ получения кормовой добавки и удобрения из органических отходов (патент РФ №2126779, МПК C05F 9/00, A23K 1/00, опубл. 27.02.1999 г.), включающий приготовление исходной смеси из органических отходов и торфа, загрузку смеси в реактор и проведение четырехстадийного биоконверсионного процесса с продувкой смеси кислородсодержащим газом в продольном и поперечном направлениях на первой и третьей стадиях. Первая и четвертая стадии процесса протекают в течение 24-72 ч, а вторая и третья - в течение 6-48 ч. Первая стадия носит аэробный характер и проводится при температуре 35-40°C с периодической аэрацией, вторая стадия носит анаэробный характер и проводится при температуре 47-53°C. Третья стадия носит аэробный характер и предусматривает постепенное охлаждение субстрата до температуры 55-80°C, а четвертая стадия носит анаэробный характер и проводится при температуре 15-28°C. Подвергаемый биоконверсии субстрат готовят из навоза или помета и торфа и обогащают солями аскорбиновой кислоты и мегатерином. Предлагаемый способ позволяет улучшить характеристики кормовой добавки и удобрения.

Недостатками данного способа является сложность процесса и его большая продолжительность во времени, а также недостаточная стабильность получаемых продуктов биоконверсии.

Задачей, решаемой при создании предлагаемого изобретения, является ускорение процесса биоконверсии растительных отходов и повышение его эффективности с целью получения ценных продуктов для использования в качестве удобрений.

Поставленная задача достигается тем, что в способе биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis, включающем приготовление исходной смеси, загрузку смеси в биореактор и проведение биоконверсионного процесса с аэрацией смеси, согласно изобретению растительные отходы производства сапонинов подвергаются биоконверсии в составе смеси, содержащей торф и птичий помет. Оптимальные результаты достигаются при следующих условиях:

- соотношение компонентов: птичий помет - 50%, растительные отходы - 30%, торф 20%;

- продолжительность процесса биоконверсии - 8 суток;

- температура - 37±2°C первые 7 суток, 55±2°C - последние сутки (пастеризация);

- аэрация смеси при скорости воздушного потока 1,2 л/мин в течение 60 минут в 1-е, 2-е, 4-е, 6-е и 8-е сутки.

Включение в смесь каждого из этих компонентов является обязательным, и ни один из них нельзя исключить из данной смеси. Птичий помет является источником микроорганизмов и азотистых веществ для процесса биоконверсии. Растительные отходы богаты полисахаридами, необходимыми для питания микроорганизмов. Торф является источником углерода, который необходим для поддержания метаболических реакций микрофлоры, а также водорастворимых и легкогидролизуемых веществ, богатых углеводами. Увеличение температуры выше 37±2°C и снижение ниже 37±2°C в первые 7 суток приводит к значительному ингибированию биокаталитических процессов в смеси и подавлению микрофлоры, что существенно ухудшает эффективность процесса биоконверсии. Увеличение температуры в биореакторе до 55±2°C на 8-е сутки необходимо для пастеризации смеси - снижения количества энтеробактерий (санитарно-показательных микроорганизмов) и грибов (микроорганизмов порчи). Уменьшение продолжительности биоконверсии менее 8 суток не приводит к накоплению необходимого количества ценных для удобрений веществ. Продление процесса биоконверсии более 8 суток способствует некоторому подсушиванию конечных продуктов, в связи с чем уровень влажности становился несколько ниже физиологического значения, что также снижает эффективность биоконверсии.

Способ биоконверсии включает следующие этапы: подготовку сырья, приготовление смеси, загрузку в биореактор, ферментацию и отбор проб. Биоконверсия проводится путем закладки сырья (растительные отходы, птичий помет, торф) в биореактор, в которых поддерживается заданный температурный режим и уровень аэрации. Отобранные образцы тестируются по содержанию отдельных физиологических групп микроорганизмов, активности ферментов каталазы и дегидрогеназы, отражающих общую направленность процессов распада и синтеза, по величинам условных коэффициентов (ОВК = отношение активности ферментов каталазы и дегидрогеназы; KmN = отношение численности азоттрансформирующей микрофлоры), а также pH и влажности.

Способ проиллюстрирован примерами:

Пример 1

Продолжительность процесса биоконверсии - 8 суток; температура - 37±2°C первые 7 суток, 55±2°C - последние сутки; аэрация смеси при скорости воздушного потока 1,2 л/мин в течение 60 минут в 1-е, 2-е, 4-е, 6-е и 8-е сутки. Соотношение компонентов исходного сырья в биореакторах:

- Биореактор I - помет - 50%, растительные отходы - 50%.

- Биореактор II - помет - 50%, торф - 25%, растительные отходы - 25%.

- Биореактор III - помет - 50%, торф - 13%, растительные отходы - 37% (предварительно обработан ультразвуком).

Результаты эксперимента представлены в таблице 1. Все процессы сопровождались незначительным падением уровня влажности. В биореакторе I происходило подкисление ферментируемой смеси, а в биореакторах II и III, напротив, наблюдалось подщелачивание. По общей напряженности процессов распада и синтеза наиболее эффективен процесс в биореакторах II и III. Однако поскольку в биореакторе III использовалась предварительная дорогостоящая обработка ультразвуком, то целесообразнее использовать соотношение компонентов из биореактора II.

Пример 2

Соотношение компонентов исходного сырья в биореакторах: помет - 50%, торф - 25%, растительные отходы - 25%; аэрация смеси при скорости воздушного потока 1,2 л/мин в течение 60 минут в 1-е, 2-е, 4-е, 6-е и 8-е сутки.

Продолжительность эксперимента:

- Биореактор I - 8 суток.

- Биореактор II - 9 суток.

- Биореактор III - 12 суток.

Результаты представлены в таблице 2. Они показали, что при увеличении продолжительности процесса происходит углубление процесса (распад до большего количества легко доступных соединений и более быстрый биосинтез новых соединений). В то же время происходит существенное удорожание конечного продукта (за счет подвода большей энергии). Поэтому наиболее эффективным является эксперимент в биореакторе I продолжительностью 8 суток.

Пример 3

Исходное сырье в биореакторах: помет - 50%, торф - 25%, растительные отходы - 25%; аэрация смеси при скорости воздушного потока 1,2 л/мин в течение 60 минут в 1-е, 2-е, 4-е, 6-е и 8-е сутки.

Температура:

- Биореактор I - 37°C в течение первых 7 дней, 55°C - на 8-е сутки.

- Биореактор II - 1-2-е сутки - 37°C, 3-и сутки - 55°C, 4-6-е сутки - 37°C.

- Биореактор III - 70°C в течение всего процесса.

По результатам экспериментов было выявлено, что наиболее эффективное биоудобрение получено при температуре 37°C в течение 7 дней и 55°C - на 8-е сутки (биореактор I). К концу наблюдений количество полезной (азоттрансформирующей) микрофлоры в конечной пробе было максимальным, существенно превышая два других эксперимента (таблицы 3 и 4). Опыт в биореакторе II близок к первому, однако при его использовании ингибируется биокаталитическая активность каталазы. При использовании в процессе биоконверсии температуры 55°C численность определяемой микрофлоры резко упала. Температура 70°C препятствовала развитию мезофильной микрофлоры.

Пример 4

Исходное сырье в биореакторах: помет - 50%, торф - 25%, растительные отходы - 25%. Температура в биореакторах 37°C в течение 7 дней и 55°C - на 8-е сутки.

Биореактор I - аэрирование при загрузке и на 4-е сутки процесса биоконверсии.

Биореактор II - аэрирование при загрузке, на 1-е, 2-е, 4-е, 6-е и 8-е сутки процесса биоконверсии.

Биореактор III - аэрирование при загрузке, далее - ежедневно.

Результаты сведены в таблице 5. Оценка динамики величин физико-химической характеристики процесса и ферментативной активности показала, что наиболее эффективным является опыт в биореакторе II. Кроме того, он характеризуется менее активной трансформацией и меньшей потерей элементов питания микроорганизмов. Таким образом, наиболее эффективной является дробная система аэрирования (на 1-е, 2-е, 4-е, 6-е и 8-е сутки).

Пример 5

Условия проведения процесса:

Биореактор I - 37°C (1-7-е сутки)+55°C - 8-е сутки

Биореактор II - 37°C (1-7-е сутки)+55°C - 8-е сутки

Биореактор III - 37°C (1-9-е сутки)+55°C - 10-е сутки

Соотношение компонентов во всех биореакторах: помет - 50%, торф - 20%, растительные отходы - 30%. Обработка растительных отходов ультразвуком перед закладкой в биореактор II. Дробная система аэрирования (на 1-е, 2-е, 4-е, 6-е и 8-е сутки). Результаты представлены в таблицах 6 и 7.

В целом во всех биореакторах режимы влажности и кислотности протекали по классическому типу, в связи с чем наблюдалось некоторое снижение влажности к концу процесса, конечные пробы подщелачивались (таблица 6). В пробах, отобранных из биореакторов I и III, к концу процесса наблюдалось увеличение всех агрохимических показателей (таблица 7). Удлинение процесса до 10 дней (проба III - 10) способствовало только увеличению азота, содержание фосфора и калия, напротив, несколько снижалось, но было существенно выше, чем в исходных пробах. Таким образом, в отношении накопления элементов питания применение ультразвука оказалось не эффективным.

По результатам экспериментов, приведенных в примерах 1-5, было выявлено, что наиболее эффективно биоконверсия проводится в течение 8 суток при соотношении компонентов исходного сырья в биореакторе - помет - 50%, торф - 20%, растительные отходы - 30%, температуре 37°C в течение 7 дней и 55°C - на 8-е сутки, с дробной системой аэрирования (на 1-е, 2-е, 4-е, 6-е и 8-е сутки).

Предлагаемый способ можно широко применять для переработки органических отходов в удобрения с заданным и стабильным химическим составом.

Таблица 2
- Физико-химические, ферментативные и микробиологические показатели биоконверсии растительных отходов с торфом и пометом при изменении продолжительности процесса (пример 2)
№ реактора День отбора W, % pH Активность каталазы, см3 O2/г/мин Активность дегидрогеназы, мг ТФФ/г/24 ч ОВК, у.е. Использ. минер. азот, млн/г Аммонифиц. Млн/г KmN Грибы, тыс./г Энтеробактерии, млн/г
I 1 66 6,17 0,74 1,17 0,05 47,1 510,6 0,09 24,71 18,82
2 68 5,44 65,47 3,90 1,18 4571,9 4350,0 1,05 387,50 1281,25
4 66 5,25 68,82 4,89 0,99 7470,6 9647,0 0,77 54,41 2423,53
7 69 6,71 26,21 6,41 0,92
II, III 1 73 6,30 0,93 1,54 0,03 74,0 3000,7 0,02 577,78 18,52
2 68 5,34 70,00 3,50 1,39 5221,0 3145,0 1,66 306,56 1633,75
4 66 5,40 72,36 5,33 0,96 8529,4 4594,1 1,86 36,18 1788,24
6 37 5,97 39,68 3,14 0,88 3504,8 3047,6 1,15 90,48 810,79
8 72 7,94 75,72 1,98 2,70 3389,3 3164,3 1,07 8000 1139,29
9 40 6,63 11,84 3,74 0,70
III 10 47 7,50 48,87 2,22 1,55 2739,6 5215,0 0,53 10000 952,45
12 57 7,70 19,48 2,31 1,93
Таблица 3
- Ферментативная и физико-химическая характеристика, отличающаяся температурным режимом процессов биоконверсии растительных отходов с торфопометными смесями (пример 3)
Режим Т°C Пробы Активность каталазы, см3 O2/г/мин Активность дегидрогеназы, мг ТФФ/г/24 ч ОВК, у.е. pH W, %
Исходная смесь 0-я проба 1,93 2,58 0,03 6,71 69
Опыт I - 37°C на протяжении всего процесса Проба 1 29,13 2,73 0,51 5,88 74
Проба 2 38,7 3,01 0,61 7,02 75
Проба 3 51,88 4,02 0,62 8,01 76
Проба 4 53,96 2,29 1,14 8,26 76
Проба 5 74,8 1,64 2,20 8,17 75
Опыт II - 37°C +55°C - в середине процесса Проба 1 44,04 1,95 1,08 5,79 74
Проба 2 83,54 2,57 1,56 6,98 76
Проба 3 10,05 1,34 0,36 8,20 69
Проба 4 17,55 1,30 0,66 8,29 71
Проба 5 39,85 1,08 1,78 8,07 67
Опыт III - 70°C на протяжении всего процесса Проба 1 13,93 2,36 0,29 6,72 72
Проба 2 11,71 2,41 0,23 6,89 65
Проба 3 4,11 1,25 0,16 7,09 47
Проба 4 1,65 1,13 0,07 6,59 9
Проба 5 0,51 1,59 0,02 6,68 61
Таблица 4
- Микробиологические показатели процессов конверсии растительных отходов с торфом и пометом при различных температурных режимах (пример 3)
Режим Т°C Пробы Использ. минер. азот, млн/г Аммонифиц. млн/г KmN Энтеробактерии, млн/г
Исходная смесь 0-я оба 108,06 210,32 0,51 125
Опыт I - 37°C на протяжении всего процесса Проба 1 647,41 2109,62 0,31 2521,85
Проба 2 Не опр. Не опр. Не опр. Не опр.
Проба 3 1336,15 1835,38 0,73 2980,77
Проба 4 Не опр. Не опр. Не опр. Не опр.
Проба 5 566,55 833,79 0,68 251,04
Опыт II - 37°C +55°C - в середине процесса Проба 1 725,60 1826,40 0,40 2332,80
Проба 2 Не опр. Не опр. Не опр. Не опр.
Проба 3 287,88 351,52 0,82 3,22
Проба 4 Не опр. Не опр. Не опр. Не опр.
Проба 5 373,00 436,50 0,85 7,83
Опыт III - 70°C на протяжении всего процесса Проба 1 43,33 10,37 4,18 0,11
Проба 2 Не опр. Не опр. Не опр. Не опр.
Проба 3 45,16 9,68 4,67 0
Проба 4 Не опр. Не опр. Не опр. Не опр.
Проба 5 48,29 326,29 0,15 0,03
Таблица 5
- Физико-химические, ферментативные и микробиологические показатели процессов биоконверсии растительных отходов с торфом и пометом при варьировании условий аэрации (пример 4)
Аэрация, сутки № пробы W, % pH Активность каталазы, см3 O2/г/мин Активность дегидрогеназы, мг ТФФ/г/24 ч ОВК, у.е. Использ. минер. азот, млн/г Аммонифиц. млн/г KmN Грибы, тыс./г Актиномицеты, млн./г KmC Энтеробактерии, млн/г
0-е, 4-е Проба 1 70 6,76 2,14 1,49 0,10 197,7 78,0 2,53 4,10 35,0 8536 3,0
Проба 2 69 7,51 64,32 4,93 0,99 1629,0 3254,2 0,50 1,74 не обн. - 190,9
Проба 3 64 8,17 49,49 1,62 2,33 260,0 715,0 0,36 0,17 4,17 24529 226,6
Проба 4 70 8,00 25,3 3,12 1,81
0-е, 2-е, 4-е Проба 1 71 6,67 0,89 1,25 0,04 274,1 287,6 0,95 6,73 1,38 205 3,8
Проба 2 67 7,97 64,69 3,32 1,49 1491,0 2121,0 0,70 0,83 не обн. - 212,1
Проба 3 69 7,95 43,90 2,41 1,39 396,1 1288,0 0,31 0,32 11,29 35281 103,4
Проба 4 70 7,96 23,3 3,62 1,44
0-е, далее - ежедневно Проба 1 71 6,89 1,37 0,91 0,11 481,0 48,3 9,96 3,96 3,10 782 0,83
Проба 2 67 7,89 60,86 3,50 1,32 1097,0 1818,0 0,60 0,03 1,52 50666 227,2
Проба 3 68 8,27 44,32 2,31 1,47 569,7 1748,7 0,34 0,11 4,69 42636 176,0
Проба 4 66 7,98 13,23 2,55 1,17
Таблица 6
- Показатели биоконверсии торфопометной смеси с растительными отходами при применении пастеризации
Номер реактора - сутки W, % pH Акт-ть каталазы, мл О2/г/мин Акт-ть дегидрогеназы, мг ТФФ/г/24 ч ОВК, у.е. Грибы, тыс./г Энтеробактерии, млн/г
I, III - 1 65 6,03 0,2 3,33 0,06 45,7 60,9
I - 7 62 6,50 26,36 8,57 1,27 56,8 13,6
I - 8 53 7,95 11,67 7,10 0,68 129,2 71,3
III - 10 52 7,42 3,44 4,26 0,33 45,8 32,5
II - 1 63 6,72 0,42 2,78 0,15 668,9 970,0
II - 7 64 7,78 22,50 10,91 0,85 50,0 65,2
II - 8 54 7,69 3,70 5,47 0,28 110,9 98,7
Таблица 7
- Агрохимическая характеристика (%) исходных смесей и продуктов биоконверсии в опытах с пастеризацией
Номер реактора - сутки N P2O5 K2O
I, III - 1 2,43 2,23 2,14
I - 7 3,06 2.82 3.37
I - 8 2,81 2,91 3,29
III - 10 3,02 2,75 2,87
II - 1 2,49 1,76 2,87
II - 7 2.73 1.82 3,55
II - 8 2,71 2,17 2,14

1. Способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis, включающий приготовление исходной смеси, загрузку смеси в биореактор и проведение биоконверсионного процесса с аэрацией смеси, характеризующийся тем, что растительные отходы производства сапонинов подвергаются биоконверсии в составе смеси, содержащей торф и птичий помет, с соотношением компонентов торф:птичий помет: растительные отходы - (13%-25%):50%:(25%-50%), при этом в первые 7 суток процесс биоконверсии производится при температуре 37±2°C и 55±2°C - на 8-е сутки.

2. Способ по п. 1, отличающийся тем, что используется следующее содержание компонентов: птичий помет - 50%, торф - 20%, растительные отходы - 30%.

3. Способ по п. 1, отличающийся тем, что время биоконверсии составляет 8 суток.

4. Способ по п. 1, отличающийся тем, что аэрация смеси проводится при скорости воздушного потока 1,2 л/мин в течение 60 минут в 1-е, 2-е, 4-е, 6-е и 8-е сутки.



 

Похожие патенты:

Изобретения относятся к сельскому хозяйству. Способ производства активного органического удобрения из отходов жизнедеятельности заключается в том, что удаляют механические примеси, производят подачу, перемещение, а также одновременное смешение и гомогенизацию, причем поток отходов жизнедеятельности направляют для смешения и гомогенизации тангенциально, создавая вращающуюся вихревую среду, получают гомогенизированную суспензию плотностью 1,26-1,3 г/см3, воздействуют на нее энергонасыщенным, электромагнитным вращающимся полем с магнитными доменами, которые осуществляют диспергацию отходов жизнедеятельности с разрушением химических и биологических структур на молекулярном уровне, тем самым получают стерильную эмульсию, которую затем разделяют на фракции, при этом органическую фракцию влажностью 85-87% выделяют в самостоятельную питательную среду и вводят в нее добавки в виде штаммов почвообразующих микроорганизмов.
Изобретение относится к сельскому хозяйству. Способ повышения эффективности действия осадков городских сточных вод как органо-минерального удобрения включает полуперепревший навоз крупного рогатого скота (КРС), причем для повышения эффективности действия осадков городских сточных вод (ОГСВ) как органо-минерального удобрения полуперепревший навоз КРС добавляется к ОГСВ при соотношении 1:1 и вносится из расчета: ОГСВ - 40 т/га, навоз КРС - 40 т/га.
Изобретение относится к сельскому хозяйству. Способ получения биоудобрения включает получение биосмеси путем внесения микробных культур Pseudomonas sp.
Изобретение относится к сельскохозяйственной биотехнологии, а именно к получению естественного безпестицидного органического стимулятора роста растений. Способ получения стимулятора роста растений осуществляют путем гидролиза навоза крупного рогатого скота в аэробных и анаэробных условиях с использованием в качестве посевного материала на различных стадиях ведения технологического процесса специально подобранных ассоциаций лактобактерий и аборигенных микроорганизмов метаногенов.

Группа изобретений относится к сельскому хозяйству. Способ переработки органических субстратов в биогаз, жидкие и твердые удобрения и техническую воду, согласно которому исходный субстрат последовательно подвергается усреднению, анаэробной обработке, механическому сгущению с получением твердой и жидкой фракций, с последующим использованием твердой фракции для приготовления твердых удобрений, деаммонизацией жидкой фракции путем отдувки с хемосорбцией парогазовой смеси посредством кислотных или щелочных реагентов с получением жидких удобрений и доочисткой деаммонизированной жидкой фракции, причем жидкую фракцию аэробно обработанного субстрата подвергают анаэробной обработке, доочистку деаммонизированной жидкой фракции производят в аэробном режиме, газы после доочистки деаммонизированной жидкой фракции последовательно используют для предварительной деаммонификации исходного субстрата, при этом часть парогазовой смеси используется для аммонизации твердой фракции при приготовлении твердых удобрений.

Изобретение относится к сельскому хозяйству. Способ утилизации и обеззараживания куриного помета включает разделение биомассы сепарацией на жидкую и твердую фракции, обеззараживание жидкой фракции обработкой в устройстве с нерастворимыми электродами, причем пропущенную через сепаратор жидкую фракцию смешивают с известковым молочком в количестве m Ca(OH)2=3,7·10-6 г/л (для удаления ионов аммония и фосфатов), после чего ее подают в горизонтальный отстойник с электродной системой, установленной по всему его объему и состоящей из 7 плоских углеграфитовых пластин, длиной 30 м, толщиной 2-3 мм с расстоянием между пластинами 5 см, где выдерживают в течение семи с половиной часов, воздействуя нанотоками 40 нА.

Изобретения относятся к производству удобрения на органической основе. Способ получения удобрения на органической основе включает стадии: (a) сбор отходов животноводства в хлеву, (b) быстрое разделение отходов животноводства на жидкие отходы и твердые отходы на конвейерной ленте в хлеву, (c) осветление жидких отходов и тем самым получение надосадочной жидкости и отстоя, (d) извлечение аммиака из надосадочной жидкости с получением соли аммония и водного раствора, (e) фильтрация водного раствора с получением концентрата и пригодной для использования воды, (f) использование соли аммония, концентрата и отстоя в качестве добавки к твердым отходам, (g) придание твердым отходам формы удобрения на органической основе.
Способ получения органического удобрения заключается во внесении в компостосодержащий субстрат дождевого червя Eisenia foetida. Данный субстрат получают путем смешивания куриного помета с отработанной подстилочной соломой в соотношении 2:1 по объему с последующим включением полученной смеси в садовую землю в равных пропорциях с последующим искусственным увлажнением до влажности субстрата 70%.

Изобретение относится к биотехнологии и к сельскохозяйственной микробиологии. Предложен способ получения биоудобрения.
Изобретение относится к сельскому хозяйству. Фосфорное удобрение состоит из золы, получаемой путем термической обработки биологических отходов, причем биологические отходы состоят из тел животных, птиц, рыб, образующихся на предприятиях, осуществляющих производство и переработку мясной, птицеводческой и рыбной продукции, имеющей следующий химический состав, в процентах на воздушно-сухое вещество: СаО 19,1-31,9, P2O5 15,7-23,0, SiO2 10,1-22,5, К2О 1,4-2,7, Na2O 1,6-2,7, MgO 0,7-2,2, MnO2 0,01-0,1, Fe2О3 0,4-5,3, Аl2О3 0,3-1,4.

Изобретение относится к биотехнологии и к сельскохозяйственной микробиологии. Предложен способ получения биоудобрения.
Изобретение относится к сельскому хозяйству, мелиорации и биотехнологии и может быть использовано для получения органического удобрения на основе сплавины, извлеченной из водоемов при их очистке.
Группа изобретений относится к химии синтетических веществ - полиме- рных в смеси с органическими и природными веществами, для городского и сельскохозяйственного назначения используемых в составах для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения или - к составам для мульчирования различных видов почв, газонов, парковых территорий.

Изобретение относится к области сельского хозяйства и биотехнологии, а также может быть использовано при переработке и утилизации целлюлозосодержащих промышленных отходов.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения или - к составам для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения или к составам для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения или к составам для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения - или к составам для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к химии синтетических веществ - полимерных в смеси с органическими и природными веществами, например, для городского и сельскохозяйственного назначения или к составам для мульчирования различных видов почв, газонов, парковых территорий.
Изобретение относится к сельскому хозяйству и может быть использовано в производстве торфо-гуминового препарата, применяемого для корневой и внекорневой подкормки различных культур в открытом и закрытом грунте, а также как биологически активная добавка для животных и рыб.
Наверх