Способ получения износостойкого и антифрикционного покрытия рабочей поверхности детали

Изобретение относится к машиностроению и может быть использовано для получения износостойкого и антифрикционного покрытия на рабочих поверхностях деталей узлов трения. Осуществляют электроискровое легирование поверхности детали электродом, выполненным из материала на основе меди. Затем проводят шлифование покрытия со съемом 10-30% его толщины, натирание материалом на основе меди при давлении на покрытие 50-120 МПа, скорости перемещения материала по обрабатываемой поверхности 0,01-0,10 м/с в среде из смеси глицерина с хлоридом меди, взятых в соотношении от 97:3 до 99:1, пассивацию, сушку и нанесение на обработанную поверхность смазочной композиции, содержащей 4-12 мас.% меди, 2-8 мас.% политетрафторэтилена и 2-8 мас.% бората гликоля в мыльной пластичной смазке, которую периодически дополнительно наносят при эксплуатации узла трения. Перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3-5 раз под давлением N=(0,01-0,07) МПа с расходом G=(0,01-0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5-0,7)t°к последовательно расположенных подшипников качения, число которых n=7…9 и которые вращаются с частотой W=(0,01-0,03)Wдоп. К подшипникам качения прикладывают давление P=n(0,06-0,60)Qдоп, где Qдоп - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп - предельно допустимая частота вращения подшипников. Повышаются противоизносные свойства покрытия на 15-19% и антифрикционные свойства на 10-22% при увеличении его долговечности в 1,4-1,5 раза. 1 табл.

 

Область использования

Изобретение относится к машиностроению и может быть использовано для получения износостойкого и антифрикционного покрытия на рабочих поверхностях деталей узлов трения.

Уровень техники

Известен способ получения износостойкого и антифрикционного покрытия на рабочих поверхностях деталей узлов трения, включающий предварительное изготовление стержня из материала покрытия, приведение его во фрикционный контакт с рабочей поверхностью детали в присутствии технологического состава, пассивацию полученного покрытия с последующим нанесением на нее смазочной композиции на основе мыльной пластичной смазки, включающей порошки меди, свинца и политетрафторэтилена (SU, авторское свидетельство №1456283, МПК B22F 7/04, 1986 [1]). Однако это покрытие изнашивается в процессе работы узла трения.

Известен также принятый в качестве ближайшего аналога способ обработки рабочей поверхности детали узла трения для придания ей износостойких и антифрикционных свойств путем электроискрового легирования ее рабочей поверхности с помощью электрода, выполненного из материала на основе меди, шлифование покрытия со съемом 10…30% толщины, натирания материалом на основе меди при давлении на покрытие 50…120 МПа, скорости перемещения материала по обрабатываемой поверхности 0,01…0,10 м/с в среде из смеси глицерина с хлоридом меди, взятых в соотношении от 97:3 до 99:1, пассивации, сушки и нанесения на обработанную поверхность композиции, содержащей 4…12 мас.% меди, 2…8 мас.% политетрафторэтилена и 2…8 мас.% бората гликоля в мыльной пластичной смазке. Указанную композицию периодически дополнительно наносят в режиме эксплуатации узла трения (RU, патент №2319790, МПК C23C 28/00, 2006 [2]).

Применение этого способа повышает противоизносные и антифрикционные свойства покрытия, однако оно в недостаточной степени обеспечивает продолжительную работу узла трения.

Раскрытие изобретения

Техническим результатом изобретения является повышение противоизносных и антифрикционных свойств покрытия и увеличение срока работы узла трения.

Для достижения этого технического результата в способе получения износостойкого и антифрикционного покрытия на рабочей поверхности детали, включающем ее электроискровое легирование электродом, выполненным из материала на основе меди, шлифование покрытия со съемом 10…30% толщины, натирание материалом на основе меди при давлении на покрытие 50…120 МПа, скорости перемещения материала по обрабатываемой поверхности 0,01…0,10 м/с в среде из смеси глицерина с хлоридом меди, взятых в соотношении от 97:3 до 99:1, пассивацию, сушку и нанесение на обработанную поверхность смазочной композиции, содержащей 4…12 мас.% меди, 2…8 мас.% политетрафторэтилена и 2…8 мас.% бората гликоля в мыльной пластичной смазке, которую периодически дополнительно наносят при эксплуатации узла трения, согласно изобретению перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5…0,7)t°к последовательно расположенных подшипников качения, число которых n=7…9, вращающихся с частотой W=(0,01…0,03)Wдоп, к которым прикладывают давление P=n(0,06…0,60)Qдоп, где Qдоп - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдoп - предельно допустимая частота вращения подшипников.

Ведение некоторых технологических процессов в атмосфере инертного газа само по себе известно. Однако ни в одном из известных способов термообработку смазочной композиции, использующейся для получения износостойкого и антифрикционного покрытия, не проводят в атмосфере инертного газа, т.е. в предлагаемом способе этот признак проявляет новое свойство - расширяет область применения известного способа.

По известным заявителю источникам некоторые общие свойства признаков «нагретых до температуры t°=(0,5…0,7)t°к» и «вращающихся с частотой W=(0,01…0,03)Wдоп, к которым прикладывают давление P=n(0,06…0,60)Qдоп» известны, например, из патента SU №1196552, МПК F16C 33/66, 1984 г., по которому при обработке подшипника качения перед эксплуатацией между рабочими поверхностями подшипника вводят смазочную композицию, подшипник вращают с частотой W1=(0,01…0,03)Wдоп в течение 12…20 мин, нагревают до температуры t°=(0,5…0,7)t°к, затем увеличивают частоту вращения до W2=(0,05…0,07)Wдоп и вращают с этой частотой в течение 5…8 мин. После этого к подшипнику прикладывают давление P=(0,06…0,60)Qдоп, и вращают в этих условиях в течение 2…3 часов. В предлагаемом способе эти признаки проявляют новое свойство - расширяют область применения известного способа.

Использование признаков «путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин, через зазор между наружными и внутренними обоймами» и «последовательно расположенных подшипников качения, число которых n=7…9» в других способах получения антифрикционного и износостойкого покрытия по опубликованным источникам не известно.

На основании этого анализа отличительных признаков изобретения заявляемый способ получения антифрикционного и износостойкого покрытия соответствует критерию «изобретательский уровень».

Заявителем впервые установлено в своих исследованиях, что после заявляемых действий над смазочной композицией в ней образуются активированные частицы присадки, наличие которых значительно интенсифицирует процесс плакирования ими трущихся поверхностей деталей машин. Это повышает противоизносные и антифрикционные свойства покрытия и увеличивает его долговечность.

Подробное описание изобретения

Способ согласно изобретению осуществляют следующим образом. Сначала на рабочую поверхность детали узла трения электроискровым легированием наносят покрытие электродом, выполненным из материала на основе меди. Затем покрытие шлифуют, снимая 10…30% толщины нанесенного слоя, и натирают материалом на основе меди при давлении на стержень 50…120 МПа, скорости перемещения материала по обрабатываемой поверхности 0,01…0,10 м/с в среде из смеси глицерина с хлоридом меди, взятых в соотношении от 97:3 до 99:1, пассивируют и сушат.

Смазочную композицию, содержащую 4…12 мас.% меди, 2…8 мас.% политетрафторэтилена и 2…8 мас.% бората гликоля в мыльной пластичной смазке, термообрабатывают в атмосфере инертного газа путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин, через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5…0,7)t°к последовательно расположенных подшипников качения, число которых n=7…9, вращающихся с частотой W=(0,01…0,03)Wдоп, к которым прикладывают давление P=n(0,06…0,60)Qдоп, после чего ее наносят на поверхность обработанной детали. Периодически ее дополнительно наносят при эксплуатации узла трения. Здесь Qдоп - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп - предельно допустимая частота вращения подшипников.

Натирание покрытия материалом на основе меди может быть осуществлено с помощью приспособления, содержащего корпус с подпружиненным фиксатором медьсодержащего стержня. Приспособление монтируют, например, в резцедержателе токарного станка, а обрабатываемую деталь - в патроне станка.

Практическое применение предлагаемого способа иллюстрируется следующими примерами, в которых рабочие поверхности деталей узла трения обрабатывали по предлагаемому способу и по способу-прототипу [2], а также по способам, в которых параметры операций выходили за заявляемые пределы.

Была проведена обработка внутренних рабочих поверхностей 6 партий стальных втулок подшипников скольжения. При электроискровом легировании на все втулки наносили покрытие из бронзы БрАЖМц 10-3-1,5 при напряжении на электродах 105 В, токе короткого замыкания и рабочем токе 5,2 А, энергии импульсного разряда 0,5 Дж, токе в импульсе 0,78 кА, удельном времени обработки 2,2 мин/см2, частоте вращения электрода 5000 об/мин, длительности импульса 10-4 с. Затем поверхность шлифовали со съемом 20% нанесенного слоя и натирали стержнем из материала на основе меди при давлении на стержень 85 МПа, скорости перемещения стержня по обрабатываемой поверхности 0,05 м/с за 5 проходов, пассивировали и сушили. После этого в мыльную пластичную смазку ЦИАТИМ-201 добавляли 8 мас.% порошка меди, по 5 мас.% порошков политетрафторэтилена и бората гликоля, перемешивали и термообрабатывали по режимам, указанным в таблице.

Затем ее наносили на рабочую поверхность втулок и проводили испытания на стенде для испытания шарниров по схеме «вал - втулка». Сравнительную эффективность обработки втулок определяли по интенсивности их изнашивания, среднему коэффициенту трения в процессе испытаний и пути трения до достижения заданного значения коэффициента трения, равного 0,22 в паре трения с валами из стали ЗОХГСА. Валы совершали возвратно-вращательное движение с амплитудой 15 мм и частотой 2 Гц. Удельное давление составляло 120 МПа.

Результаты трибологических испытаний также приведены в таблице. Обозначения: пример 1 - обработка по способу-прототипу [2], 2 и 6 - обработка по способам, значения параметров операций которых меньше (2) и больше (6) заявленных, 3, 4, 5 - обработка по заявленному способу, параметры которого лежат на нижней (3) и верхней (5) заявленной границе, а также в центре (4) между нижней и верхней границами. Каждое значение интенсивности изнашивания, приведенное в этой таблице, получено в результате вычисления среднеарифметического значения результатов 4…5 опытов.

Параметры технологического процесса приготовления партий смазочной композиции и результаты их трибологических испытаний
Наименование операций Номер примера способа
1 2 3 4 5 6
Подача инертного газа в камеру для обработки - - + + + +
Нагрев подшипников до температуры t°/t°к - 0,4 0,5 0,6 0,7 0,8
Приведение подшипников во вращение с частотой W/Wдоп - 0,005 0,01 0,02 0,03 0,04
Продавливание смазочной композиции под давлением N, МПа - 0,0005 0,01 0,04 0,07 0,10
с расходом G, кг/мин - 0,0005 0,01 0,1 0,20 0,30
Приложение к подшипникам давления, P/nQдоп - 0,01 0,06 0,33 0,60 0,93
Продавливание через количество подшипников n, шт. - 6 7 8 9 11
Число раз продавливания партии - 2 3 4 5 6
Интенсивность изнашивания втулки, мг/км 3,1 3,1 2,7 2,6 2,7 2,9
Коэффициент трения 0,11 0,11 0,10 0,09 0,10 0,11
Путь трения до f=0,22, м 866 870 1213 1299 1215 997

Таким образом, в соответствии с результатами трибологических испытаний, применение заявленного способа по сравнению с прототипом [2] повышает противоизносные свойства покрытия на 15…19% и антифрикционные свойства на 10…22% при увеличении его долговечности 1,4…1,5 раза.

Способ получения износостойкого и антифрикционного покрытия на рабочей поверхности детали узла трения, включающий ее электроискровое легирование электродом, выполненным из материала на основе меди, шлифование покрытия со съемом 1-30% толщины, натирание материалом на основе меди при давлении на покрытие 50-120 МПа, скорости перемещения материала по обрабатываемой поверхности 0,01-0,10 м/с в среде из смеси глицерина с хлоридом меди, взятых в соотношении от 97:3 до 99:1, пассивацию, сушку и нанесение на обработанную поверхность смазочной композиции, содержащей 4-12 мас.% меди, 2-8 мас.% политетрафторэтилена и 2-8 мас.% бората гликоля в мыльной пластичной смазке, которую периодически дополнительно наносят при эксплуатации узла трения, отличающийся тем, что перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3-5 раз под давлением N=(0,01-0,07) МПа с расходом G=(0,01-0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5-0,7)t°к последовательно расположенных подшипников качения, число которых n=7-9, вращающихся с частотой W=(0,01-0,03)Wдоп, к которым прикладывают давление P=n(0,06-0,60)Qдоп, где Qдоп - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп - предельно допустимая частота вращения подшипников.



 

Похожие патенты:
Изобретение относится к области энергомашиностроения, в частности к материалам для парогазовых установок на базе газотурбинных установок большой мощности и может быть использовано для защиты лопаток и других деталей газотурбинного двигателя от воздействия высоких температур, эрозионного износа и коррозии.

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, например, формирования преобразованных слоев, а именно к процессам микроплазменного оксидирования вентильных металлов и может быть использовано для получения функциональных покрытий, в том числе электропроводных покрытий в электронике и микроэлектронике.

Изобретение относится к области изготовления электровакуумных приборов, в частности к способу получения интерметаллического антиэмиссионного покрытия Pt3Zr на сеточных электродах генераторных ламп, и может быть использовано для получения интерметаллических антиэмиссионных покрытий на сеточных электродах генераторных ламп.

Изобретение относится к слоистой системе со слоем MCrX и слоем, обогащенным хромом. Слоистая система (1) содержит подложку (4) и многослойное покрытие, при этом многослойное покрытие содержит один слой MCrX (7, 7′) в качестве самого нижнего слоя (7, 7′) на подложке (4), в котором Х является, по меньшей мере, иттрием (Y) и/или кремнием (Si), и/или алюминием (Al), и/или бором (B), в котором М является никелем (Ni) и/или кобальтом (Co), обогащенный хромом слой (10) на или в по меньшей мере одном слое MCrX (7, 16) и первый внешний MCrX″ слой (13), который находится на обогащенном хромом слое (10), где X″ является, по меньшей мере, Y, Si и/или B, причем указанный нижний слой MCrX (7) присутствует на подложке (4) и под обогащенным хромом слоем (10).

Изобретение относится к области производства алмазных инструментов, в частности к алмазным инструментам, содержащим корпус и алмазные зерна, расположенные на корпусе в один и более слоев и удерживаемые металлическим связующим материалом.

Изобретение относится к области получения покрытий на полюсные наконечники (ПН) (анод и катод) эндокардиального электрода (ЭКЭ) электрокардиостимулятора. Тонкопленочное покрытие состоит из пористого слоя биосовместимого металла толщиной L/n1, где n1=1,3÷3, образованного из порошка металлов со средним размером фракций d=L/n1, где L - шероховатость рабочей поверхности ПН ЭКЭ, слоя биосовместимого нитрида металла MeN, полученного PVD методом со столбчатой высокопористой структурой толщиной Λ=d/n2, где n2=1,3÷10, и ионно-модифицированного поверхностного слоя MeN толщиной δ=Λ/n3, где n3=1,3÷100.
Изобретение относится к области упрочнения электроосажденного на стальные детали железохромистого покрытия цементацией, применяемого для восстановленных поверхностей стальных деталей.

Изобретение относится к области обработки металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллических материалов с увеличенным уровнем механических свойств, и может быть использовано при обработке изделий из магнитомягких сплавов.
Изобретение относится к области металлургии, а именно к получению стального листа с многослойным покрытием, используемого для производства автомобильных деталей.

Изобретение относится к многослойному защитному барьерному покрытию для конструкционного сплава V-4Cr-4Ti, которое может быть использовано для нанесения на конструкционные элементы термоядерных установок, имеющие контакт с водородсодержащими средами, и препятствовать накоплению водорода в элементах конструкций, а также утечке через элементы конструкций трития путем диффузии через металл.

Изобретение относится к машиностроению и может быть использовано для получения антифрикционных и износостойких покрытий на рабочих поверхностях деталей узла трения. Осуществляют химическое меднение рабочей поверхности детали при 140-160°C в течение 12-20 с в растворе, содержащем 30-50 г хлорида меди, 25-40 мл 35%-ной соляной кислоты и глицерина до 1 л, нанесение на рабочую поверхность предварительно термообработанной при температуре t° смазочной композиции, содержащей 10-15 мас.% порошка меди и 2-5 мас.% порошка политетрафторэтилена. Термообработку смазочной композиции проводят в атмосфере инертного газа путем ее продавливания 3-5 раз под давлением N=(0,01-0,07) МПа с расходом G=(0,01-0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5-0,7)t°к последовательно расположенных подшипников качения, число которых n=7-9 и которые вращаются с частотой W=(0,01-0,03)Wдоп. К подшипникам качения прикладывают давление P=n(0,06-0,60)Qдоп, где Qдоп - предельно допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп - предельно допустимая частота вращения подшипников. Обеспечивается повышение противоизносных свойств покрытия в 2,2-3,0 раза и антифрикционных свойств в 1,4-1,7 раза при сокращении времени его получения в 6-11 раз и уменьшении температуры технологического процесса в 1,5-2,5 раза.1 табл.

Изобретение относится к суспензиям для алюминизации компонентов из жаропрочного сплава и может быть использовано для изготовления деталей, работающих в условиях воздействия горячих коррозионно-активных газов, например газотурбинных компонентов. Суспензия содержит органическое связующее и твердое содержимое, включающее алюминий, иттрий и гафний, при этом содержание серы в ней составляет не более 5 ч/млн в расчете на массу композиции. Компонент (1) из жаропрочного сплава содержит алюминидное покрытие, причем материал покрытия содержит, по меньшей мере, один слой (3), который в дополнение к алюминию содержит гафний и иттрий. Техническим результатом изобретения является повышение стойкости к окислению и коррозии компонента из жаропрочного сплава с алюминидным покрытием. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к пассивированию нефтеперерабатывающего оборудования для уменьшения отложения загрязняющих веществ в оборудовании. Способ пассивирования поверхности нефтеперерабатывающего оборудования включает стадии нанесения на указанную поверхность первой смеси при температуре по меньшей мере 100°C и нанесения второй смеси при температуре по меньшей мере 100°C после того, как нанесена первая смесь, причем первая смесь содержит кислый эфир фосфорной кислоты, образующий комплексный полифосфатный слой, а вторая смесь содержит соль металла. При этом соль металла представляет собой карбоксилатную соль и выбрана из перечня, состоящего из октоата циркония, октоата титана, октоата ванадия, октоата хрома, октоата ниобия, октоата молибдена, октоата гафния, октоата тантала, октоата вольфрама и любой их комбинации. Изобретение обеспечивает получение на поверхности металлического нефтеперерабатывающего оборудования модифицированного металл-фосфатного покрытия, предотвращающего отложение загрязняющих веществ на поверхности металлического оборудования. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к способу герметизации микроотверстий в металлическом покрытии, полученном химическим восстановлением, включающему нанесение на подложку путем химического восстановления слоя металлического покрытия, содержащего дефекты в виде микроотверстий, допускающих гидравлическое сообщение между подложкой и окружающей средой, нанесение поверх упомянутого слоя металлического покрытия слоя отверждаемого эпоксидного герметика посредством распыления и заполнение дефектов в виде микроотверстий, причем указанный отверждаемый эпоксидный герметик имеет вязкость от 20 до 1200 сПз при температуре окружающей среды, отверждение нанесенного эпоксидного герметика для обеспечения отвержденного эпоксидного покровного слоя и удаление значительной части отвержденного эпоксидного покровного слоя для обеспечения изделия, включающего металлическое покрытие, полученное химическим восстановлением, по существу не содержащее дефектов в виде микроотверстий, допускающих гидравлическое сообщение между подложкой и окружающей средой. Способ обеспечивает повышение механической прочности и защитных свойств нанесенного покрытия, а также позволяет легко обрабатывать изделия большой площади и устранять дефекты, возникшие в ходе эксплуатации изделия. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к производству патронов и предназначено для нанесения защитного полимерного покрытия на поверхность стальных гильз. Способ включает обезжиривание гильзы и травление, чередующиеся промывками горячей и холодной водой, формирование на поверхности гильзы фосфатной пленки, пассивацию и нанесение покрытия с чередующимися сушками, при этом формирование фосфатной пленки на поверхности гильзы осуществляют, по меньшей мере, в двух ваннах. В первой ванне на поверхности гильзы создают центры кристаллизации в водной смеси концентрата Фоскон-26, а во второй и последующих ваннах осуществляют формирование фосфатной пленки, после чего поверхность гильзы пассивируют в растворе бихромата калия с последующей сушкой воздухом. Запассивированную фосфатную пленку на поверхности гильзы пропитывают водной смесью полиоргансилоксана и сополимера бутадиена со стиролом, затем с поверхности гильзы удаляют излишки состава путем ворошения на воздухе и дополнительно осуществляют уплотнение покрытия гильзы и проводят двухэтапную термическую обработку, сначала обезвоживают покрытие, а затем его полимеризуют. Изобретение позволяет получить надежное и долговечное полимерное покрытие на поверхности гильзы без образования трудноудаляемого мучнисто-дисперсного налета. 1 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к способу изготовления многослойного покрытия, образующего тепловой барьер, на металлической подложке из жаропрочного сплава и содержащего, по меньшей мере, один металлический подслой (13) и слой (14) керамики на основе диоксида циркония, стабилизированного иттрием и представляющего столбчатую структуру, определяющую поры. В способе при помощи метода золь-гель осуществляют пропитку, по меньшей мере, части пор упомянутого керамического слоя (14) золем диоксида циркония для формирования подслоя (22) закрепления для защитного слоя, формируют на упомянутом слое (14) керамики, поверх которого располагается упомянутый подслой (22) закрепления, при помощи метода золь-гель сплошной защитный слой (20) на основе оксида, используя золь, содержащий предшественники упомянутого оксида, и путем термической обработки формируют наружный защитный слой, противодействующий воздействию материалов, образованных в основном оксидами кальция, магния, алюминия и кремния, на упомянутый тепловой барьер. Изобретение обеспечивает получение защитного теплового барьера со структурой, препятствующей или задерживающей его разрушение или нормальное функционирование, а также позволяет существенно увеличить продолжительность срока службы системы, образующей тепловой барьер. 2 н. и 13 з.п. ф-лы, 5 ил.

Изобретение относится к металлургии, в частности к получению на деталях из безуглеродистых жаропрочных никелевых сплавов покрытий с барьерным слоем для защиты от газовой коррозии в условиях температур выше 900°C, и может быть использовано в авиадвигателестроении, судостроении, танкостроении и других отраслях промышленности. Способ включает формирование карбидного барьерного слоя на поверхности детали в газовой углеродсодержащей среде и последующее нанесение алюминидного покрытия, при этом формирование карбидного слоя осуществляют в вакууме от 10-1 до 10-5 мм рт.ст. и температуре детали от 850 до 10500С, при давлении газовой углеродсодержащей среды от 0,5 до 10 мм рт.ст. и выдержке в ней от 2 до 10 мин. Изобретение позволяет снизить трудоемкость и повысить долговечность деталей из безуглеродистых никелевых сплавов. 1 пр., 1 ил.

Изобретение относится к области машиностроения и металлургии, а именно к технологической вакуумной установке для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности стальной детали. Упомянутая установка содержит вакуумную камеру, соединенную с вакуумным насосом, механизм закрепления детали, газопламенную горелку, жестко закрепленную в корпусе вакуумной камеры под углом к поверхности детали, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки поверхности обрабатываемой детали, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя с эффектом памяти формы, выполненное в виде пресса с верхней неподвижной и нижней подвижной траверсой с закрепленной плоской обрабатываемой деталью, которые расположены в вакуумной камере, понижающий трансформатор для дополнительного нагрева поверхности детали, узел для охлаждения детали для получения отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании и блок управления для высокоскоростного газопламенного напыления. Рассматриваемая установка дополнительно содержит ванну для жидкометаллического расплава, установленную в вакуумной камере под нижней траверсой с деталью. Вокруг ванны расположены нагревательные элементы, а между ними и корпусом установлены теплоотражающие экраны, предохраняющие корпус вакуумной камеры от перегрева. Механизм закрепления детали расположен на нижней траверсе, узел для охлаждения детали закреплен на верхней траверсе, а газопламенная горелка выполнена многоканальной для подачи порошковых материалов одновременно из нескольких порошковых дозаторов. 3 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к защитному коррозионно-стойкому покрытию, нанесенному на подложку (4) из жаропрочного сплава. Указанное покрытие содержит по меньшей мере двухслойный металлический слой (7, 10), состоящий по меньшей мере из одного нижнего (7) и верхнего (10) слоя на нижнем слое (7). Нижний слой (7) выполнен из MCrAlX-сплава, содержащего, по меньшей мере, следующие элементы, вес. %:24-26 кобальта (Со),12-14 хрома (Cr),10-12 алюминия (Al),0,2-0,5 по меньшей мере одного элемента из группы, содержащей скандий и редкоземельные элементы, никель - остальное. Верхний слой (10) выполнен из MCrAlX-сплава, содержащего тантал (Та) и/или железо (Fe), причем М в сплаве нижнего и верхнего слоев представляет собой по меньшей мере один элемент из группы, содержащей железо (Fe), кобальт (Со) и никель (Ni), а X в упомянутых сплавах является необязательным и представляет собой по меньшей мере один элемент из группы, включающей скандий (Sc), рений (Re) и редкоземельные элементы, в частности иттрий (Y). Обеспечивается защитное покрытие, которое имеет хорошую устойчивость к высокотемпературным коррозии и окислению, а также проявляет хорошую долговременную стабильность и хорошо приспособлено к механической нагрузке. 41 з.п. ф-лы, 5 ил.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А и микродуговое оксидирование в анодном режиме при плотности тока (1-2)×103 А/м2, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л. Задачей изобретения является повышение механических свойств плазмонапыленных покрытий на титане и его сплавах, в частности микротвердости, при сокращении времени нанесения. 2 ил., 2 табл., 1 пр.
Наверх