Способ изготовления детали с износостойким и антифрикционным покрытием


 


Владельцы патента RU 2549812:

Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" (RU)

Изобретение относится к износостойким и антифрикционным покрытиям на рабочих поверхностях узлов трения. Предварительно получают стержень путем прессования и спекания состава, содержащего порошок меди, порошок политетрафторэтилена и хлорид аммония. Наносят на рабочую поверхность детали состав, содержащий 1…3 мас.% хлорида меди в глицерине. Затем приводят стержень во фрикционный контакт с рабочей поверхностью детали со скоростью скольжения 0,06…0,09 м/с при продольной подаче 50…80 мкм/об., давлении 30…50 МПа и числе проходов 4…6. Полученное покрытие пассивируют, после чего наносят смазочную композицию на основе мыльной пластичной смазки, включающей порошок меди и порошок политетрафторэтилена. Причем перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3…5 раз под давлением через зазор между наружными и внутренними обоймами нагретых последовательно расположенных подшипников качения. Обеспечивается повышение противоизносных свойств покрытия на 15…20% и антифрикционных свойств на 20…33% при увеличении долговечности покрытия в 1,6…2,1 раза. 1 табл.

 

Область использования

Изобретение относится к машиностроению и может быть использовано для изготовления деталей с износостойким и антифрикционным покрытием на рабочих поверхностях узлов трения.

Уровень техники

Известен способ получения износостойкого покрытия на рабочей поверхности деталей путем химического меднения их рабочих поверхностей (SU, авторское свидетельство №1579936, МПК C23C 18/38, 1988 [1]). Однако покрытие имеет недостаточную долговечность и после изнашивания этого покрытия начинается интенсивное изнашивание основного материала детали.

Известен также принятый в качестве ближайшего аналога способ изготовления деталей с износостойким и антифрикционным покрытием, включающий предварительное изготовление стержня из материала покрытия, приведение его во фрикционный контакт с рабочей поверхностью детали в присутствии технологического состава, пассивацию полученного покрытия с последующим нанесением на нее смазочной композиции на основе мыльной пластичной смазки, включающей порошки меди, свинца и политетрафторэтилена (SU, авторское свидетельство №1456283, МПК B22F 7/04, 1986 [2]). Применение этого способа повышает противоизносные и антифрикционные свойства покрытия, однако оно имеет недостаточную долговечность.

Раскрытие изобретения

Технической задачей изобретения является дальнейшее повышение противоизносных и антифрикционных свойств покрытия и повышение его долговечности.

Для достижения поставленной задачи в способе изготовления детали с износостойким и антифрикционным покрытием, включающем предварительное изготовление стержня путем прессования и спекания состава, содержащего 87…92 мас.% порошка меди, 6…10 мас.% порошка политетрафторэтилена, 2…3 мас.% хлорида аммония, нанесение на рабочую поверхность детали состава, содержащего 1…3 мас.% хлорида меди в глицерине, приведение стержня во фрикционный контакт с рабочей поверхностью детали со скоростью скольжения 0,06…0,09 м/с, продольной подачей 50…80 мкм/об., давлением 30…50 МПа и числе проходов 4…6, пассивацию полученного покрытия с последующим нанесением на нее смазочной композиции на основе мыльной пластичной смазки, включающей 10…15 мас.% порошка меди и 2…5 мас.% порошка политетрафторэтилена, согласно изобретению перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5…0,7)t°к последовательно расположенных подшипников качения, число которых n=7…9, вращающихся с частотой W=(0,01…0,03)Wдоп., к которым прикладывают давление P=n(0,06…0,60)Qдоп., где Qдоп. - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп. - предельно допустимая частота вращения подшипников.

Ведение некоторых технологических процессов в атмосфере инертного газа само по себе известно. Однако ни в одном из известных способов термообработку смазочной композиции, использующейся для получения износостойкого и антифрикционного покрытия, не проводят в атмосфере инертного газа, т.е. в предлагаемом способе этот признак проявляет новое свойство - расширяет область применения известного способа.

По известным заявителю источникам некоторые общие свойства признаков «нагретых до температуры t°=(0,5…0,7)t°к» и «вращающихся с частотой W=(0,01…0,03)Wдoп., к которым прикладывают давление P=n(0,06…0,60)Qдоп.» известны, например, из патента SU №1196552, МПК F16C 33/66, 1984 г. [3], по которому при обработке подшипника качения перед эксплуатацией между рабочими поверхностями подшипника вводят смазочную композицию, подшипник вращают с частотой W1=(0,01…0,03)Wдоп. в течение 12…20 мин, нагревают до температуры t°=(0,5…0,7)t°к, затем увеличивают частоту вращения до W2=(0,05…0,07)Wдoп. и вращают с этой частотой в течение 5…8 мин. После этого к подшипнику прикладывают давление P=(0,06…0,60)Qдоп., и вращают в этих условиях в течение 2…3 часов. В предлагаемом способе этот признак проявляет новое свойство - расширяет область применения известного способа.

Использование признаков «путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин, через зазор между наружными и внутренними обоймами» и «последовательно расположенных подшипников качения, число которых n=7…9» в других способах получения антифрикционного и износостойкого покрытия по опубликованным источникам неизвестно.

Исходя из приведенного анализа признаков, заявляемое техническое решение соответствует критерию «изобретательский уровень».

Заявителем впервые установлено в своих исследованиях, что после заявляемых действий над смазочной композицией в ней образуются активированные частицы присадки, наличие которых значительно интенсифицирует процесс плакирования ими трущихся поверхностей деталей машин. Это повышает противоизносные и антифрикционные свойства покрытия и увеличивает его долговечность.

Подробное описание изобретения

Способ осуществляют следующим образом. Сначала изготовляют стержень путем прессования и спекания состава, содержащего 87…92 мас.% порошка меди, 6…10 мас.% порошка политетрафторэтилена и 2…3 мас.% хлорида аммония. На рабочую поверхность детали наносят состав, содержащий 1…3 мас.% хлорида меди в глицерине и приводят стержень во фрикционный контакт с рабочей поверхностью детали со скоростью скольжения 0,06…0,09 м/с, продольной подачей 50…80 мкм/об., давлением 30…50 МПа и числе проходов 4…6, после чего полученное покрытие пассивируют. Натирание покрытия может быть осуществлено с помощью приспособления, содержащего корпус с подпружиненным фиксатором стержня. Приспособление монтируют, например, в резцедержателе токарного станка, а обрабатываемую деталь в патроне станка.

Затем термообрабатывают смазочную композицию. Для этого после предварительного перемешивания мыльной пластичной смазки с порошками меди и политетрафторэтилена смазочную композицию в атмосфере инертного газа продавливают 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через зазор между наружными и внутренними обоймами n=7…9 последовательно расположенных, нагретых до температуры t°=(0,5…0,7)t°к подшипников качения, вращающихся с частотой W=(0,01…0,03)Wдоп., к которым прикладывают давление P=n(0,06…0,60)Qдоп., где t°к - температура каплепадения смазочной композиции, Wдоп. - предельно допустимая частота вращения подшипников, Qдоп. - предельная допустимая статическая нагрузка на один подшипник.

Термообработанную смазочную композицию наносят на рабочую поверхность деталей и собирают их в узел трения.

Практическое применение предлагаемого способа иллюстрируется следующими примерами, в которых рабочие поверхности деталей узла трения обрабатывали по предлагаемому способу и по способу-прототипу [2], а также по способам, в которых параметры операций выходили за заявляемые пределы.

Трибологические испытания образцов проводили на стенде для испытания шарниров по схеме «вал-втулка». На валы из стали ЗОХГСА наносили глицерин, содержащий 2 мас.% хлорида меди, затем их натирали стержнем, содержащим 89,5 мас.% меди, 8 мас.% политетрафторэтилена (ПТФЭ) и 2,5 мас.% хлорида аммония, при давлении на стержень 40 МПа, скорости скольжения 0,08 м/с с продольной подачей 50…80 мкм/об. за 5 проходов. После нанесения покрытия валы пассивировали в подогретом до 25°C 0,5%-ном растворе каустической соды. Втулки изготовляли из бронзы БрАЖМц 10-3-1,5. Смазочную композицию на основе мыльной пластичной смазки ЦИАТИМ-201, содержащую 12 мас.% порошка меди и 3 мас.% порошка политетрафторэтилена, термообрабатывали по способам, параметры которых приведены в таблице 1 и наносили на рабочую поверхность валов. При испытаниях вал совершал возвратно-вращательное движение с амплитудой 15 мм и частотой 2 Гц. Удельное давление составляло 90 МПа, база испытаний 2 км пути трения. Во время испытаний измеряли момент трения, а после испытаний - интенсивность изнашивания втулки.

Испытания на долговечность покрытия проводили при этих же условиях. Определяли путь трения до задира, т.е. резкого увеличения коэффициента трения.

Результаты трибологических испытаний также приведены в таблице 1. Обозначения: пример 1 - обработка по способу-прототипу [2], 2 и 6 - обработка по способам, значения параметров операций которых меньше (2) и больше (6) заявленных, 3, 4, 5 - обработка по заявленному способу, параметры которого лежат на нижней (3) и верхней (5) заявленной границе, а также в центре (4) между нижней и верхней границами. Каждое значение интенсивности изнашивания, приведенное в таблице 1 получено в результате вычисления среднеарифметического значения результатов 4…5 опытов.

Таблица 1
Условия реализации технического решения и результаты трибологических испытаний
Наименование операций Номер примера способа
1 2 3 4 5 6
Подача инертного газа в камеру для обработки - - + + + +
Нагрев подшипников до температуры t°/t°к - 0,4 0,5 0,6 0,7 0,8
Приведение подшипников во вращение с частотой W/Wдоп. - 0,005 0,01 0,02 0,03 0,04
Продавливание смазочной композиции под давлением N, МПа - 0,0005 0,01 0,04 0,07 0,10
с расходом G, кг/мин - 0,0005 0,01 0,1 0,20 0,30
Приложение к подшипникам давления, P/nQдоп. - 0,01 0,06 0,33 0,60 0,93
Продавливание через количество подшипников n, шт. - 6 7 8 9 11
Число раз продавливания партии - 2 3 4 5 6
Интенсивность изнашивания втулки, мг/км 21,9 21,1 19,0 18,3 19,1 20,6
Коэффициент трения 0,12 0,12 0,10 0,09 0,10 0,12
Путь трения до задира, км 2,6 2,7 4,2 5,5 4,2 2,8

Таким образом, в соответствии с результатами трибологических испытаний, применение заявленного способа по сравнению с прототипом [2] повышает противоизносные свойства покрытия на 15…20% и антифрикционные свойства на 20…33% при увеличении его долговечности в 1,6…2,1 раза.

Способ изготовления детали с износостойким и антифрикционным покрытием, включающий получение стержня путем прессования и спекания его следующего состава, содержащего, в мас.%: 87…92 порошка меди, 6…10 порошка политетрафторэтилена, 2…3 хлорида аммония, нанесение на рабочую поверхность детали состава, содержащего 1…3 мас.% хлорида меди в глицерине, приведение стержня во фрикционный контакт с рабочей поверхностью детали со скоростью скольжения 0,06…0,09 м/с при продольной подаче 50…80 мкм/об., давлении 30…50 МПа и числе проходов 4…6, пассивацию полученного покрытия с последующим нанесением на него смазочной композиции на основе мыльной пластичной смазки, содержащей, в мас.%: 10…15 порошка меди и 2…5 порошка политетрафторэтилена, отличающийся тем, что перед нанесением смазочной композиции ее предварительно термообрабатывают в атмосфере инертного газа путем продавливания 3…5 раз под давлением N=(0,01…0,07) МПа с расходом G=(0,01…0,20) кг/мин через зазор между наружными и внутренними обоймами нагретых до температуры t°=(0,5…0,7)t°к последовательно расположенных подшипников качения, число которых составляет n=7…9, вращающихся с частотой W=(0,01…0,03)Wдоп., к которым прикладывают давление P=n(0,06…0,60)Qдоп., где Qдоп. - предельная допустимая статическая нагрузка на один подшипник, t°к - температура каплепадения смазочной композиции, Wдоп. - предельно допустимая частота вращения подшипников.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано для повышения износостойкости смазываемых поверхностей трения различных деталей механизмов и машин.

Изобретение относится к деревообработке, в частности к получению подшипников скольжения из древесины. Подшипник скольжения выполнен из прессованной древесины с радиальным расположением волокон и равномерной плотностью по всему сечению и содержит смазку в количестве 7-8% от массы древесины и металлическое включение.

Изобретение относится к применению CuFe2P в подшипнике скольжения или в качестве материала подшипника скольжения, причем CuFe2P представляет собой медный сплав, содержащий 2,1-2,6 мас.% Fe, 0,05-0,2 мас.% Zn, 0,015-0,15 мас.% Р, до 0,03 мас.% Pb и до 0,2 мас.% других добавок.

Группа изобретений относится к деталям скольжения двигателя внутреннего сгорания. Деталь содержит основу и нанесенное на нее термическим напылением покрытие с открытой контактной поверхностью, включающее, по меньшей мере, две фазы материала покрытия с различной прочностью, причем одна из, по меньшей мере, двух фаз материала покрытия, имеющая наименьшую прочность, углублена относительно другой или других фаз покрытия.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.

Изобретение относится к порошковой металлургии, в частности к получению износостойкого антифрикционного самосмазывающегося сплава с большим содержанием олова. Распыленные порошки состава Al-40Sn прессуют в брикет и спекают в инертной атмосфере при температуре 590-615°C в течение 90-30 минут.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.
Изобретение относится к области машиностроения, а именно к антифрикционным покрытиям, используемым в подшипниках скольжения и других сопряженных деталей, работающих в условиях воздействия высоких температур и нагрузок, в частности к покрытиям для лепестковых газодинамических подшипников.
Изобретение относится к обработке металлов давлением, в частности к созданию поверхностного слоя с особыми свойствами на металлических изделиях типа тел вращения с помощью обкатки, выглаживания, дорнования или виброобработки, и может быть использовано для изготовления и ремонта вкладышей подшипников скольжения паровых турбин.

Изобретение относится к применению состава для изготовления минимум одной детали регулирующего устройства автомобиля. .
Изобретение относится к области защиты металлов от коррозии, в частности конструктивных элементов, которые подвергаются воздействию морской воды и/или гидравлических конструктивных элементов.

Изобретение относится к способу и устройству для неэлектролитической металлизации поверхности подложки путем напыления одного или нескольких окислительно-восстановительных растворов.
Изобретение относится к области упрочнения электроосажденного железохромистого покрытия нитроцементацией, применяемого для восстановленных поверхностей стальных деталей.

Изобретение относится к композиционным материалам, в частности к углерод-углеродному композиционному материалу, и может использоваться при изготовлении жидкостных ракетных двигателей.

Изобретение относится к теплозащитным электропроводящим покрытиям. Способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани включает плазменное напыление керметной композиции в виде механической порошковой смеси, содержащей 5-15 вес.% нихрома, 15-5 вес.% диоксида циркония, 70 вес.% алюминия, 10 вес.% никельалюминия и 4-7 вес.% оксида иттрия в качестве стабилизирующей добавки для диоксида циркония.
Изобретение относится к нанесению покрытий и может быть использовано при получении жаростойких и антифрикционных покрытий на детали из углеродистых и легированных сталей, работающих в условиях повышенных температур до 1600°C и сухого трения.
Изобретение относится к электротехнике, в частности к области изготовления светильников. .

Изобретение относится к области технологии машиностроения, в частности к способам антифрикционно-упрочняющей обработки внутренних цилиндрических поверхностей. .
Изобретение относится к порошковой металлургии. Способ включает механическое легирование шихты на основе алюминия углеродом в высокоэнергетической мельнице, формование заготовки и ее последующую горячую обработку давлением.
Наверх