Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза

Изобретение относится к способу приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой. Предложенный способ включает перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой не ниже 200оС со скоростью, обеспечивающей рост его температуры не менее 10оС в минуту. Данный способ позволяет получать катализаторы с высокой активностью, а также обеспечивает легкую и надежную регулируемость процесса приготовления. 3 з.п. ф-лы, 1 табл., 6 пр.

 

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций. Изобретение может найти применение в процессах производства ценных химических продуктов и полупродуктов, а также при переработке и утилизации газообразных и жидких отходов.

Поверхностный термосинтез является эффективным и перспективным способом производства катализаторов. Известен способ приготовления оксидных катализаторов глубокого окисления органических веществ кислородом воздуха путем пропитки носителя водным раствором нитратов переходных металлов и мочевины с последующей сушкой и прокаливанием в режиме самораспространения тепловой волны (патент РФ №2039601). Способ позволяет наносить оксидные активные компоненты на неорганический волокнистый носитель (например, на материалы из кварцевых, кремнеземных и базальтовых волокон). Недостатком этого способа является то, что он применим только к узкому спектру возможных активных компонентов - к оксидам переходных металлов (кобальт, никель, хром, железо), а также ограниченному числу носителей.

Наиболее близким к предлагаемому является способ приготовления нанесенных катализаторов методом поверхностного самораспространяющегося термосинтеза активного компонента катализатора из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в одном, либо в разных соединениях, и которые наносятся на носитель из их растворов, расплавов или суспензий (патент РФ №2234979, прототип). С помощью этого способа возможно нанесение широкого спектра различных металлов, их оксидов и их смесей на различные носители, в частности на керамические пористые носители, пористые металлы и на микроволокнистые (в том числе - на стекловолокнистые) носители. Недостатком этого способа являются трудная регулируемость скорости распространения теплового фронта и максимальной температуры тепловой волны, что приводит к недостаточной дисперсности и дефектности образующихся активных частиц и, вследствие этого, к пониженной активности синтезируемых катализаторов.

Авторы поставили перед собой задачу разработки способа приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза (ИПТ), обеспечивающего более высокую активность катализаторов, а также более легкую и надежную регулируемость самого процесса приготовления.

Поставленная задача решается тем, что в способе приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, носитель с нанесенными на него предшественниками перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками не менее 10°C в минуту.

Предшественники активного компонента наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой при температурах не более 120°C. Импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г. При этом в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп периодической системы Д.И. Менделеева. В состав предшественников в качестве топливных добавок (восстановителей) могут входить органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.

Более высокая активность синтезируемых катализаторов объясняется большей дисперсностью и дефектностью активного компонента в результате импульсного поверхностного термосинтеза. Определяющим при этом является сочетание температуры термосинтеза, времени контакта с высокотемпературной зоной и скорости нагрева исходного носителя с нанесенными на него предшественниками активного компонента.

Перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой ниже 200°C нецелесообразно, поскольку при этом скорость твердофазного горения и, следовательно, разложения и окисления предшественников активного компонента на поверхности носителя будет слишком низка для практического применения. При этом повышение температуры носителя с нанесенными на него предшественниками активного компонента менее 10°C в минуту также нецелесообразно, поскольку может приводить к синтезу активного компонента с неоптимальными показателями дисперсности и дефектности и, соответственно, с худшими каталитическими свойствами.

С помощью предложенного способа можно наносить разнообразные активные компоненты на гибкие микроволокнистые носители, что расширяет возможности создания принципиально новых каталитических систем с улучшенными инженерными свойствами для различных применений. Предложенный способ также характеризуется низким энергопотреблением, экологичностью, низкой трудоемкостью, возможностью создания производств катализаторов любого масштаба: от лабораторного до промышленного.

Активность катализаторов в процессах глубокого окисления CO и CH4 характеризовали температурой достижения 50%-ной степени превращения T50%. Испытания проводились в проточной установке, нагрев осуществляли в интервале температур 50-450°C, скорость 1-2°C/мин. Состав реакционной смеси для процесса окисления CO: 1 об.% CO, 20 об.% O2, остальное азот. Состав реакционной смеси для процесса окисления CH4: 1 об.% CH4, 20 об.% O2, остальное азот. Расход реакционной смеси в обоих случаях составил 100, 300 или 1000 мл/мин.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Кремнеземную стеклоткань сатинового плетения КС-11-13 при комнатной температуре пропитывают по влагоемкости раствором предшественника - ацетата меди, содержащего 0,015 г/мл Cu. Затем образец сушат при 120°C в течение 1 ч. Затем аналогичным образом пропитывают раствором топливной добавки - глюкозы с концентрацией 0,213 г/мл. Синтез катализатора осуществляют методом ИПТ (ТТЭН=550°C, τТЭН=10 мин). Полученный катализатор содержит 1,0 мас.% Cu/KC-11-13.

Пример 2

Аналогичен примеру 1, но на поверхность стеклоткани КС-151-ЛА наносят сначала вторичный носитель - 7% γ-Al2O3 из алюмозоля (по патенту РФ 2455067). Носитель по влагоемкости пропитывают раствором предшественника - нитрата палладия, содержащего 0,008 г/мл Pd, раствором глюкозы с концентрацией 0,068 г/мл. Полученный катализатор содержит 0,5 мас.% Pd/7 мас.% γ-Al2O3/КС-151-ЛА.

Пример 3

Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором предшественника активного компонента - гексахлорплатиновой кислоты, содержащего 0,008 г/мл Pt. Полученный катализатор содержит 0,2 мас.% Pt/ 7 мас.%. γ-Al2O3/КС-151-ЛА.

Пример 4

Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором гексахлорплатиновой кислоты с содержанием 0,02 г/мл Pt. Полученный катализатор содержит 0,5 мас.% Pt/ 7 мас.% γ-Al2O3/КС-151-ЛА.

Пример 5

Аналогичен примеру 1, но в качестве предшественника активного компонента используют раствор ацетата марганца с содержанием 0,06 г/мл Mn. Полученный катализатор содержит 5,0 мас.% Mn/KC-11-13.

Пример 6

Пример по прототипу. Катализатор по составу носителя, содержанию топливной добавки и составу предшественника активного компонента (H2[Pt(Cl)6]×6H2O) аналогичен примеру 4, но синтез проводится методом ПСТ - поверхностного самораспространяющегося термосинтеза. Полученный катализатор содержит 0,5 мас.% Pt/7 мас.% γ-Al2O3/КС-151-ЛА.

Данные по составам катализаторов согласно приведенным примерам 1-6 и результатам исследования их каталитических свойств в реакциях окисления СО и СРЦ представлены в Таблице.

Как следует из таблицы, катализаторы, приготовленные предлагаемым способом импульсного поверхностного термосинтеза, по активности превышают образец сравнения по прототипу, полученный методом поверхностного самораспространяющегося термосинтеза, наиболее активными являются образцы на основе платины и палладия.

1. Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой, отличающийся тем, что носитель с нанесенными на него предшественниками активного компонента перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками активного компонента не менее 10°C в минуту.

2. Способ по п.1, отличающийся тем, что в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп таблицы Д.И. Менделеева.

3. Способ по п.2, отличающийся тем, что импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г.

4. Способ по любому из пп.1-3, отличающийся тем, что в состав предшественников активного компонента в качестве топливных добавок (восстановителей) входят органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.



 

Похожие патенты:

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе.

Изобретение относится к способу получения катализатора на основе кристаллического алюмосиликата типа пентасил, включающему стадии: (a) обработка гидрата оксида алюминия водным содержащим кислоту средством, (b) смешивание обработанного водным содержащим кислоту средством гидрата оксида алюминия со стадии (a) с H-цеолитом со средним диаметром первичных кристаллитов от 0,01 мкм и меньше 0,1 мкм, (c) формование смеси, полученной на стадии (b), путем экструзии, и (d) кальцинирование полученной на стадии (c) смеси, причем по меньшей мере 95 об.% частиц гидрата оксида алюминия (в пересчете на средний диаметр) меньше или равно 100 мкм.
Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное.
Изобретение относится к способу приготовления катализатора для получения компонента экологически безопасных буровых растворов на углеводородной основе, имеющему интервал кипения в диапазоне 188-304°C согласно стандарту ASTM D 86, включающему приготовление пасты из геля, полученного смешением бемита Pural SB со смесью азотной кислоты и дистиллированной воды, триэтиленгликоля и цеолита HY с мольным отношением SiO2/АlO3, равным 30 или 60, пористая структура которого представляет собой систему соединенных между собой прямолинейных каналов, образованных 12-членными кольцами с диаметром входного окна 7Å, экструдирование, выдерживание при комнатной температуре в течение 9-10 ч, просушивание, измельчение до фракции с размером 2-4×2 мм и прокаливание.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий.

Группа изобретений относится к каталитическим материалам для химических реакторов. Данные каталитические материалы содержат гибридные неорганические/полимерные носители и иммобилизованные на них предварительно полученные молекулярные катализаторы.

Изобретение относится к способам подавления вредного воздействия металлов на каталитический крекинг углеводородного сырья. Этой цели достигают путем использования металлоулавливающей частицы, которая содержит подвергшуюся распылительной сушке смесь каолина, окиси или гидроокиси магния и карбоната кальция, причем подвергшаяся распылительной сушке смесь была подвергнута прокаливанию при температуре в диапазоне от 816°C почти до 899°C.

Изобретение относится к способу приготовления титаноксидного катализатора, применяемого преимущественно для фотокаталитической очистки воды, загрязненной молекулярными примесями органического происхождения.

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы.

Изобретение относится к способу получения этанола путем восстановления уксусной кислоты, включающему пропускание газообразного потока, содержащего водород и уксусную кислоту в паровой фазе при молярном отношении водорода к уксусной кислоте, по меньшей мере, около 4:1, при температуре примерно от 225°С до 300°С над катализатором гидрогенизации, содержащим платину и олово, диспергированные на модифицированной подложке.
Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий.

Изобретение относится к способу получения катализатора путем покрытия ячеистых тел кристаллическим слоем металла с каталитическими свойствами. Перед нанесением покрытия на поверхности ячеистых тел кристаллического слоя металла упомянутые поверхности предварительно покрывают порошком из драгоценных металлов, имеющим размер частиц <10 мкм.

Изобретение относится к способу и устройству для нанесения на монолитную основу с сотовой структурой, содержащую множество каналов, покрытия из жидкости, содержащей компонент катализатора.
Катализатор для получения синтетических базовых масел в процессе олигомеризации децена-1 содержит в качестве активного компонента оксид хрома, а в качестве носителя - силикагель и оксид циркония или оксид церия при следующем соотношении компонентов, масс.
Изобретение относится к нефтепереработке и каталитической химии, в частности к способу синтеза катализатора для дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков.

Изобретение относится к области каталитической химии и может быть использовано при очистке промышленных газовых выбросов и выбросов автотранспорта от углеводородов.

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное алюмосиликатное покрытие формируется путем микроплазменной обработки подложки, изготовленной из вентильного металла.
Группа изобретений относится к способу получения носителя катализатора гидрокрекинга, носителю, способу получения катализатора, катализатору и способу гидрокрекинга в присутствии полученного катализатора.
Наверх