Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза


 


Владельцы патента RU 2549906:

Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт проблем переработки углеводородов Сибирского отделения Российской академии наук (ИППУ СО РАН) (RU)

Изобретение относится к способу приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой. Предложенный способ включает перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой не ниже 200оС со скоростью, обеспечивающей рост его температуры не менее 10оС в минуту. Данный способ позволяет получать катализаторы с высокой активностью, а также обеспечивает легкую и надежную регулируемость процесса приготовления. 3 з.п. ф-лы, 1 табл., 6 пр.

 

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов азота и для многих других каталитических реакций. Изобретение может найти применение в процессах производства ценных химических продуктов и полупродуктов, а также при переработке и утилизации газообразных и жидких отходов.

Поверхностный термосинтез является эффективным и перспективным способом производства катализаторов. Известен способ приготовления оксидных катализаторов глубокого окисления органических веществ кислородом воздуха путем пропитки носителя водным раствором нитратов переходных металлов и мочевины с последующей сушкой и прокаливанием в режиме самораспространения тепловой волны (патент РФ №2039601). Способ позволяет наносить оксидные активные компоненты на неорганический волокнистый носитель (например, на материалы из кварцевых, кремнеземных и базальтовых волокон). Недостатком этого способа является то, что он применим только к узкому спектру возможных активных компонентов - к оксидам переходных металлов (кобальт, никель, хром, железо), а также ограниченному числу носителей.

Наиболее близким к предлагаемому является способ приготовления нанесенных катализаторов методом поверхностного самораспространяющегося термосинтеза активного компонента катализатора из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в одном, либо в разных соединениях, и которые наносятся на носитель из их растворов, расплавов или суспензий (патент РФ №2234979, прототип). С помощью этого способа возможно нанесение широкого спектра различных металлов, их оксидов и их смесей на различные носители, в частности на керамические пористые носители, пористые металлы и на микроволокнистые (в том числе - на стекловолокнистые) носители. Недостатком этого способа являются трудная регулируемость скорости распространения теплового фронта и максимальной температуры тепловой волны, что приводит к недостаточной дисперсности и дефектности образующихся активных частиц и, вследствие этого, к пониженной активности синтезируемых катализаторов.

Авторы поставили перед собой задачу разработки способа приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза (ИПТ), обеспечивающего более высокую активность катализаторов, а также более легкую и надежную регулируемость самого процесса приготовления.

Поставленная задача решается тем, что в способе приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из нанесенных на носитель предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, носитель с нанесенными на него предшественниками перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками не менее 10°C в минуту.

Предшественники активного компонента наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой при температурах не более 120°C. Импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г. При этом в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп периодической системы Д.И. Менделеева. В состав предшественников в качестве топливных добавок (восстановителей) могут входить органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.

Более высокая активность синтезируемых катализаторов объясняется большей дисперсностью и дефектностью активного компонента в результате импульсного поверхностного термосинтеза. Определяющим при этом является сочетание температуры термосинтеза, времени контакта с высокотемпературной зоной и скорости нагрева исходного носителя с нанесенными на него предшественниками активного компонента.

Перемещение носителя с нанесенными на него предшественниками активного компонента через высокотемпературную зону с температурой ниже 200°C нецелесообразно, поскольку при этом скорость твердофазного горения и, следовательно, разложения и окисления предшественников активного компонента на поверхности носителя будет слишком низка для практического применения. При этом повышение температуры носителя с нанесенными на него предшественниками активного компонента менее 10°C в минуту также нецелесообразно, поскольку может приводить к синтезу активного компонента с неоптимальными показателями дисперсности и дефектности и, соответственно, с худшими каталитическими свойствами.

С помощью предложенного способа можно наносить разнообразные активные компоненты на гибкие микроволокнистые носители, что расширяет возможности создания принципиально новых каталитических систем с улучшенными инженерными свойствами для различных применений. Предложенный способ также характеризуется низким энергопотреблением, экологичностью, низкой трудоемкостью, возможностью создания производств катализаторов любого масштаба: от лабораторного до промышленного.

Активность катализаторов в процессах глубокого окисления CO и CH4 характеризовали температурой достижения 50%-ной степени превращения T50%. Испытания проводились в проточной установке, нагрев осуществляли в интервале температур 50-450°C, скорость 1-2°C/мин. Состав реакционной смеси для процесса окисления CO: 1 об.% CO, 20 об.% O2, остальное азот. Состав реакционной смеси для процесса окисления CH4: 1 об.% CH4, 20 об.% O2, остальное азот. Расход реакционной смеси в обоих случаях составил 100, 300 или 1000 мл/мин.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Кремнеземную стеклоткань сатинового плетения КС-11-13 при комнатной температуре пропитывают по влагоемкости раствором предшественника - ацетата меди, содержащего 0,015 г/мл Cu. Затем образец сушат при 120°C в течение 1 ч. Затем аналогичным образом пропитывают раствором топливной добавки - глюкозы с концентрацией 0,213 г/мл. Синтез катализатора осуществляют методом ИПТ (ТТЭН=550°C, τТЭН=10 мин). Полученный катализатор содержит 1,0 мас.% Cu/KC-11-13.

Пример 2

Аналогичен примеру 1, но на поверхность стеклоткани КС-151-ЛА наносят сначала вторичный носитель - 7% γ-Al2O3 из алюмозоля (по патенту РФ 2455067). Носитель по влагоемкости пропитывают раствором предшественника - нитрата палладия, содержащего 0,008 г/мл Pd, раствором глюкозы с концентрацией 0,068 г/мл. Полученный катализатор содержит 0,5 мас.% Pd/7 мас.% γ-Al2O3/КС-151-ЛА.

Пример 3

Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором предшественника активного компонента - гексахлорплатиновой кислоты, содержащего 0,008 г/мл Pt. Полученный катализатор содержит 0,2 мас.% Pt/ 7 мас.%. γ-Al2O3/КС-151-ЛА.

Пример 4

Аналогичен примеру 2, но носитель пропитывают по влагоемкости раствором гексахлорплатиновой кислоты с содержанием 0,02 г/мл Pt. Полученный катализатор содержит 0,5 мас.% Pt/ 7 мас.% γ-Al2O3/КС-151-ЛА.

Пример 5

Аналогичен примеру 1, но в качестве предшественника активного компонента используют раствор ацетата марганца с содержанием 0,06 г/мл Mn. Полученный катализатор содержит 5,0 мас.% Mn/KC-11-13.

Пример 6

Пример по прототипу. Катализатор по составу носителя, содержанию топливной добавки и составу предшественника активного компонента (H2[Pt(Cl)6]×6H2O) аналогичен примеру 4, но синтез проводится методом ПСТ - поверхностного самораспространяющегося термосинтеза. Полученный катализатор содержит 0,5 мас.% Pt/7 мас.% γ-Al2O3/КС-151-ЛА.

Данные по составам катализаторов согласно приведенным примерам 1-6 и результатам исследования их каталитических свойств в реакциях окисления СО и СРЦ представлены в Таблице.

Как следует из таблицы, катализаторы, приготовленные предлагаемым способом импульсного поверхностного термосинтеза, по активности превышают образец сравнения по прототипу, полученный методом поверхностного самораспространяющегося термосинтеза, наиболее активными являются образцы на основе платины и палладия.

1. Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях, либо в одном, которые наносят на носитель из их растворов, расплавов или суспензий с последующей сушкой, отличающийся тем, что носитель с нанесенными на него предшественниками активного компонента перемещают через высокотемпературную зону с температурой не ниже 200°C со скоростью, обеспечивающей рост температуры носителя с нанесенными на него предшественниками активного компонента не менее 10°C в минуту.

2. Способ по п.1, отличающийся тем, что в качестве предшественников активного компонента катализатора используют соли металлов IB, V, VII и VIII групп таблицы Д.И. Менделеева.

3. Способ по п.2, отличающийся тем, что импульсный поверхностный термосинтез активного компонента проводят на поверхности микроволокнистых стеклотканых носителей различного состава с удельной поверхностью 0,5-3,0 м2/г, а также на поверхности модифицированных оксидами кремния и/или алюминия микроволокнистых стеклотканых носителей с удельной поверхностью до 60 м2/г.

4. Способ по любому из пп.1-3, отличающийся тем, что в состав предшественников активного компонента в качестве топливных добавок (восстановителей) входят органические вещества, содержащие в своем составе спиртовые, альдегидные (кетонные), карбоксильные, аминные группы.



 

Похожие патенты:

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе.

Изобретение относится к способу получения катализатора на основе кристаллического алюмосиликата типа пентасил, включающему стадии: (a) обработка гидрата оксида алюминия водным содержащим кислоту средством, (b) смешивание обработанного водным содержащим кислоту средством гидрата оксида алюминия со стадии (a) с H-цеолитом со средним диаметром первичных кристаллитов от 0,01 мкм и меньше 0,1 мкм, (c) формование смеси, полученной на стадии (b), путем экструзии, и (d) кальцинирование полученной на стадии (c) смеси, причем по меньшей мере 95 об.% частиц гидрата оксида алюминия (в пересчете на средний диаметр) меньше или равно 100 мкм.
Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное.
Изобретение относится к способу приготовления катализатора для получения компонента экологически безопасных буровых растворов на углеводородной основе, имеющему интервал кипения в диапазоне 188-304°C согласно стандарту ASTM D 86, включающему приготовление пасты из геля, полученного смешением бемита Pural SB со смесью азотной кислоты и дистиллированной воды, триэтиленгликоля и цеолита HY с мольным отношением SiO2/АlO3, равным 30 или 60, пористая структура которого представляет собой систему соединенных между собой прямолинейных каналов, образованных 12-членными кольцами с диаметром входного окна 7Å, экструдирование, выдерживание при комнатной температуре в течение 9-10 ч, просушивание, измельчение до фракции с размером 2-4×2 мм и прокаливание.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий.

Группа изобретений относится к каталитическим материалам для химических реакторов. Данные каталитические материалы содержат гибридные неорганические/полимерные носители и иммобилизованные на них предварительно полученные молекулярные катализаторы.

Изобретение относится к способам подавления вредного воздействия металлов на каталитический крекинг углеводородного сырья. Этой цели достигают путем использования металлоулавливающей частицы, которая содержит подвергшуюся распылительной сушке смесь каолина, окиси или гидроокиси магния и карбоната кальция, причем подвергшаяся распылительной сушке смесь была подвергнута прокаливанию при температуре в диапазоне от 816°C почти до 899°C.

Изобретение относится к способу приготовления титаноксидного катализатора, применяемого преимущественно для фотокаталитической очистки воды, загрязненной молекулярными примесями органического происхождения.

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы.

Изобретение относится к способу получения этанола путем восстановления уксусной кислоты, включающему пропускание газообразного потока, содержащего водород и уксусную кислоту в паровой фазе при молярном отношении водорода к уксусной кислоте, по меньшей мере, около 4:1, при температуре примерно от 225°С до 300°С над катализатором гидрогенизации, содержащим платину и олово, диспергированные на модифицированной подложке.
Группа изобретений относится к области получения биотоплив, а именно к катализаторам и процессам получения компонентов реактивных и дизельных топлив из масложирового сырья, в том числе с улучшенными низкотемпературными свойствами.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий.

Изобретение относится к способу получения катализатора путем покрытия ячеистых тел кристаллическим слоем металла с каталитическими свойствами. Перед нанесением покрытия на поверхности ячеистых тел кристаллического слоя металла упомянутые поверхности предварительно покрывают порошком из драгоценных металлов, имеющим размер частиц <10 мкм.

Изобретение относится к способу и устройству для нанесения на монолитную основу с сотовой структурой, содержащую множество каналов, покрытия из жидкости, содержащей компонент катализатора.
Катализатор для получения синтетических базовых масел в процессе олигомеризации децена-1 содержит в качестве активного компонента оксид хрома, а в качестве носителя - силикагель и оксид циркония или оксид церия при следующем соотношении компонентов, масс.
Изобретение относится к нефтепереработке и каталитической химии, в частности к способу синтеза катализатора для дегидрирования легких парафиновых углеводородов, предпочтительно изобутана и изопентана, для процессов получения изобутилена и изоамиленов - мономеров синтетических каучуков.

Изобретение относится к области каталитической химии и может быть использовано при очистке промышленных газовых выбросов и выбросов автотранспорта от углеводородов.

Изобретение относится к катализатору разложения озона для снаряжения авиационных конвертеров, изготовленного из гофрированной алюминиевой фольги с алюмосиликатным покрытием, которое импрегнировано оксидами переходных металлов с добавками благородных металлов или их оксидов, при этом указанное алюмосиликатное покрытие формируется путем микроплазменной обработки подложки, изготовленной из вентильного металла.
Группа изобретений относится к способу получения носителя катализатора гидрокрекинга, носителю, способу получения катализатора, катализатору и способу гидрокрекинга в присутствии полученного катализатора.
Наверх