Установка для калибровки скважинных газовых расходомеров

Изобретение предназначено для калибровки скважинных приборов, применяемых для контроля над разработкой газовых месторождений и эксплуатацией подземных хранилищ газа. В установке для калибровки газовых расходомеров магистраль выполнена U-образной формы, в нижней части которой расположен регулируемый компрессор, соединенный изогнутыми трубопроводами через сменные уплотняемые переходные муфты со сменными вертикальными участками магистрали, предназначенными для установки калибруемых скважинных расходомеров, которые через сменные герметичные соединительные муфты соединены с вертикальными участками испытательных камер восходящего и нисходящего потоков, на верхних торцах которых предусмотрены элементы крепления для ирисового клапана и эталонного анемометра, между вертикальными участками магистрали, установлен пульт управления с преобразователем частоты и компьютером, причем один из выходов пульта управления соединен с герметичным разъемом для подключения калибруемого скважинного расходомера. Техническим результатом изобретения является упрощение конструкции, расширение диапазона калибровки, повышение производительности калибровочных работ, возможность проведения калибровки всех модификаций скважинных газовых расходомеров, как на восходящем потоке, так и на нисходящем потоке газа. 2 ил.

 

Изобретение предназначено для калибровки скважинных приборов, применяемых для контроля над разработкой газовых месторождений и эксплуатацией подземных хранилищ газа.

Известно устройство для фадуировки газовых расходомеров, преобразующих расход проходящего через них газа в пропорциональный электрический сигнал, выведенный на регистрирующий компьютер, содержащее магистраль последовательной подачи газа через фадуируемый расходомер в образцовое устройство средства измерения температуры, давления газа и барометрического давления, времени, в котором образцовое устройство выполнено в виде вертикальной контрольной трубки, выполненной из непрозрачного, прочного материала, соединенной с возможностью перекрытия с выходом фадуируемого расходомера и имеющей заправочный штуцер в верхней части, в нижней части которой имеется перекрываемая сменная фильера, через которую производят слив контрольной жидкости в емкость, установленную на электронные весы, выходной сигнал которых выведен на регистрирующий компьютер. Патент Российской Федерации №2296958, МПК G01F 25/00, 2007 г. Недостатком устройства является сложность конструкции, низкие надежность и производительность, конструкция и габариты установки не позволяют использовать ее для калибровки скважинных расходомеров.

Известна установка для испытания расходомеров-счетчиков газа, содержащая трубопровод, запорную арматуру, датчик температуры, датчик абсолютного давления и датчик дифференциального давления, в которую введен компрессор для нагнетания расходуемой среды, эталонный расходомер, эластичный резервуар, накрытый плоской плитой, предназначенной для нагружаемых на нее грузов с определенной массой, устройство задания расхода, причем выход компрессора подсоединен к эластичному резервуару, нагружаемому заданной массой, выход его соединен с входной испытательной магистралью, которая связана с испытательным коллектором, содержащим испытательные участки, предназначенные для установки испытуемых расходомеров-счетчиков газа, в свою очередь, испытательный коллектор связан с выходной испытательной магистралью, которая через фильтр соединена с эталонным расходомером, а его выход соединен с устройством задания расхода. Патент Российской Федерации №2476830, МПК G01F 25/00, 2013 г. Прототип. Недостатком установки является сложность конструкции, габариты установки не позволяют использовать ее для калибровки скважинных расходомеров.

Задачей изобретения является создание установки для эффективной и градуировки, и калибровки скважинных газовых расходомеров любых модификаций во всем диапазоне значений расходов газа, встречающихся в эксплуатационных и нагнетательных скважинах газовых месторождений и подземных хранилищ газа.

Техническим результатом изобретения является упрощение конструкции, расширение диапазона калибровки, повышение производительности калибровочных работ, возможность проведения калибровки всех модификаций скважинных газовых расходомеров как на восходящем потоке, так и на нисходящем потоке газа.

Технический результат достигается тем, что в установке для калибровки газовых расходомеров, содержащей регулируемый компрессор, магистраль с вертикальными участками, предназначенными для установки калибруемых расходомеров, эталонный анемометр и пульт управления с компьютером, испытательная магистраль выполнена U-образной формы, в нижней части которой расположен регулируемый компрессор, соединенный изогнутыми трубопроводами через сменные уплотняемые переходные муфты со сменными вертикальными участками испытательной магистрали, предназначенными для установки калибруемых скважинных расходомеров, которые через сменные герметичные соединительные муфты соединены с вертикальными участками испытательных камер восходящего и нисходящего потоков, на верхних торцах которых предусмотрены элементы крепления для ирисового клапана и эталонного анемометра, между вертикальными участками магистрали, установлен пульт управления с преобразователем частоты и компьютером, причем один из выходов пульта управления соединен с герметичным разъемом для подключения калибруемого скважинного расходомера.

Сущность изобретения поясняется на фиг.1 и фиг.2, на которых схематично представлен разрез общего вида установки для калибровки скважинного расходомера как на восходящем потоке (фиг.1), так и нисходящем потоке (фиг.2), где: 1 - регулируемый компрессор; 2 - испытательная камера восходящего потока; 3 - испытательная камера нисходящего потока; 4 - сменные герметичные соединительные муфты; 5 - изогнутые трубопроводы; 6 - сменные уплотняемые переходные муфты; 7 - ирисовый клапан; 8 - пульт управления с преобразователем частоты и компьютером; 9 - герметичный разъем (для подключения калибруемого скважинного расходомера к пульту управления); 10 - эталонный анемометр; 11 - установочная рама с опорами; 12 - скважинный расходомер.

Для управления регулируемым компрессором 1 в пульте управления 8 с компьютером предусмотрен преобразователь частоты. Каждая испытательная камера 2 или 3 представляет собой последовательное соединение уплотняемой переходной муфты 6, трубного вертикального участка, предназначенного для установки калибруемого расходомера, герметичной муфты 4 и трубного вертикального участка, на верхнем торце которого предусмотрены элементы крепления для ирисового клапана 7 или эталонного анемометра 10.

Трубные участки испытательных камер 2 и 3 представляют собой парный набор труб разного диаметра из нержавеющей стали.

Парный набор герметичных соединительных муфт 4 снабжен соответствующим парным набором уплотняемых переходных муфт 6 различного диаметра для соединения регулируемого компрессора 1 с участками испытательных камер 2 и 3. Геометрические размеры трубных участков испытательных камер 2 и 3 (длина и диаметр) выбраны исходя из геометрических размеров и назначения калибруемых скважинных расходомеров 12, используемых на практике.

Испытательные камеры 2 и 3 позволяют калибровать скважинные расходомеры 12 как в собранном виде, так и отдельно их датчики.

Эталонный анемометр 10 устанавливают в верхней части испытательной камеры 2 или 3 (в зависимости от того, калибруют скважинный расходомер 12 восходящим или нисходящим потоком воздуха) над калибруемым скважинным расходомером 12. Ирисовый клапан 7 устанавливают в верхней части испытательной камеры 3 или 2, свободной от скважинного расходомера 12 и эталонного анемометра 10. Калибровочная установка смонтирована на раме с опорами 11.

Пульт управления с преобразователем частоты и компьютером 8 смонтирован между испытательными камерами 2 и 3 над регулируемым компрессором 1. Калибруемый скважинный расходомер 12, установленный внутри испытательной камеры 2 или 3 подключают к пульту управления 8 через герметичный разъем 9. Эталонный анемометр 10, установленный в верхней части испытательной камеры 2 или 3 подключен к пульту управления 8 через обычный разъем.

Работу установки осуществляют следующим образом.

В соответствии с модификацией калибруемого скважинного расходомера 12 и режимом калибровки монтируют испытательные камеры 2 и 3 необходимого диаметра и длины. Скважинный расходомер 12 устанавливают в выбранную испытательную камеру 2 или 3 и подсоединяют к герметичному разъему 9.

В верхней части испытательной камеры 2 или 3 (в которой находится скважинный расходомер 12) устанавливают и эталонный анемометр 10.

В верхней части другой испытательной камеры 3 или 2 (без скважинного расходомера 12) устанавливают полностью открытый ирисовый клапан 7.

С помощью симметричных изогнутых трубопроводов 5, уплотняемых парными переходными муфтами 6, испытательные камеры 2 и 3 соединяют с регулируемым компрессором 1, собирая магистраль установки. Провода от герметичного разъема 9 и эталонного анемометра 10 подсоединяют к пульту управления 8.

Частотным преобразователем пульта управления 8 в испытательной камере 2 или 3 устанавливают ряд значений расходов воздуха в диапазоне скоростей от 3 до 11 м/с и регистрируют результаты калибровки на компьютере пульта управления 8. Режим работы регулируемого компрессора 1, а также текущие показания калибруемого скважинного расходомера 12 и эталонного анемометра 10 выводят на дисплей пульта управления 8.

Преобразователем частоты пульта управления 8 устанавливают минимальную скорость вращения лопастей регулируемого компрессора 1, плавно закрывают ирисовый клапан 7 и калибруют скважинный расходомер 12 на минимальных значениях расхода воздуха (при скоростях потока воздуха от 0,1 до 3 м/с). При калибровке в режиме воспроизведения малых расходов необходимо проверить качество соединения уплотнений, иначе возможен «подсос» атмосферного воздуха в магистраль, что не позволит произвести калибровку.

Результаты калибровки регистрируют в памяти компьютера пульта управления 8 и с помощью соответствующих программ их обрабатывают, оформляют протокол и сертификат о калибровке (или извещение о непригодности).

Установка для калибровки скважинных газовых расходомеров, содержащая регулируемый компрессор, трубную магистраль с вертикальными участками, предназначенными для установки калибруемых расходомеров, эталонный анемометр и пульт управления с компьютером, отличающаяся тем, что испытательная магистраль выполнена U-образной формы, в нижней части которой расположен регулируемый компрессор, соединенный изогнутыми трубопроводами через сменные уплотняемые переходные муфты со сменными трубными вертикальными участками магистрали, предназначенными для установки калибруемых скважинных расходомеров, которые через сменные герметичные соединительные муфты соединены с трубными вертикальными участками испытательных камер восходящего и нисходящего потоков, на верхних торцах которых предусмотрены элементы крепления для ирисового клапана или эталонного анемометра, между вертикальными участками магистрали, установлен пульт управления с преобразователем частоты и компьютером, причем один из выходов пульта управления соединен с герметичным разъемом для подключения калибруемого скважинного расходомера.



 

Похожие патенты:

Использование: для определения времени задержки ультразвуковых расходомеров. Изобретение ваключает систему и способ калибровки ультразвукового расходомера.

Представленное устройство для определения положения вытеснителя в калибровочном устройстве для расходомера, а также способ его использования и система, содержащая данное устройство, относятся к измерительной технике, а именно, к устройствам для калибровки аппаратуры для измерения расхода жидкости.

Изобретение относится к области измерительной техники и может быть использовано при градуировке и поверке расходомеров газа (сверхкритических расходомеров и расходомеров переменного перепада), применяемых в промышленных и лабораторных установках.

Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа относится к измерительной технике, в частности к поверочным установкам на критических соплах, и предназначено для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков различных типов.

Изобретение относится к нефтяной отрасли, может быть использовано для проверки мультифазных расходомеров в условиях эксплуатации нефтяных скважин. Технический результат направлен на повышение точности определения калибровочных коэффициентов мультифазного расходомера и обеспечение возможности оперативного контроля и корректировки его показаний в условиях эксплуатации нефтяных скважин.

Изобретение относится к приборостроению, в частности к устройствам, передающим давление жидкости или газа, и может быть использовано в метрологических целях для калибровки или поверки средств измерения и контроля давления.

Изобретение относится к области расходомеров. Более конкретно, изобретение описывает прувер расходомера, способ поверки расходомера и компьютер прувера расходомера.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение относится к контрольно-измерительной технике и может быть использовано для калибровки расходомеров многофазного потока без предварительной сепарации, например при измерении дебита нефтяных скважин.

Изобретение относится к области техники, связанной с количественными оценками расхода жидкости произвольной плотности. Способ экспресс-оценки мощности притока жидкости в резервуар включает непрерывное прямое измерение давления в одной точке ниже уровня находящейся в резервуаре жидкости, предварительное определение плотности этой жидкости по гидростатической формуле через значения измеренного давления и уровня жидкости, определение на основе измеренного давления и плотности жидкости текущего значения высоты переменного уровня жидкости.

Изобретение относится к области приборостроения, в частности к генераторам переменного расхода, предназначенным для формирования импульсного давления и/или расхода рабочей среды при исследовании метрологических характеристик средств измерений давления и расхода жидкости, и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений. Устройство генерации колебаний содержит ротор 1, соединенный с помощью редуктора 11, муфты 10 с валом двигателя 12, управляемого блоком управления 13, статор 2, жестко закрепленный с корпусом 9 устройства. Ротор 1 является съемным и имеет два выходных окна 3, расположенных на разных уровнях. Статор 2 представляет собой цилиндр с входным окном, связанным с входным трубопроводом 6, и двумя выходными окнами 4, связанными с выходными трубопроводами 7 и 8. С целью снижения влияния гидравлического удара при воспроизведении импульсов генерируемого потока в роторе 1 имеются дополнительные окна 5, которые обеспечивают зазор между ротором 1 и статором 2 при совмещении выходных окон 3 ротора 1 с выходными окнами 4 статора 2 в начальный и конечный момент времени. Технический результат - снижение погрешностей измерения расхода и давления генерируемого потока жидкости. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области приборостроения, в частности к генераторам переменного расхода, предназначенным для формирования импульсного давления и/или расхода рабочей среды при исследовании метрологических характеристик средств измерений давления и расхода жидкости, и может найти применение в приборостроительной промышленности при метрологической аттестации этих средств измерений. Устройство генерации колебаний содержит ротор 1, соединенный с помощью редуктора 11, муфты 10 с валом двигателя 12, управляемым блоком управления 13, статор 2, жестко закрепленный с корпусом 9 устройства. Ротор 1 имеет два выходных окна 3, расположенных на разных уровнях. Статор 2 представляет собой цилиндр с входным окном, связанным с входным трубопроводом 6, и двумя выходными окнами 4, связанными с выходными трубопроводами 7 и 8. Для снижения гидравлического удара между внутренней поверхностью статора 2 и внешней поверхностью ротора 1 имеется зазор 5, площадь которого не превышает погрешности живого сечения потока. Технический результат - снижение погрешностей измерения расхода и давления генерируемого потока жидкости при воспроизведении импульсов генерируемого потока различных форм и амплитуд. 1 ил.

Предлагается способ поверки электромагнитного расходомера жидких металлов с помощью проливного расходомерного стенда, работающего на водопроводной воде при комнатной температуре. Электромагнитный расходомер для жидких металлов имеет трубу с электродами, индуктор низкочастотного магнитного поля и электронный преобразователь. Расходомер не имеет изоляционного покрытия канала, а электроды приварены к внешней стороне трубы. Предлагаемый способ состоит в следующем. Производится предварительная, т.е. предпроливная подготовка расходомера жидкого металла к поверке на водяном расходомерном стенде. Предварительная подготовка состоит в том, что в канал вставляется электроизоляционная футеровка с электродами, которая защищает индуцированное электрическое поле в измеряемой среде от шунтирующего действия металлической стенки канала. Футеровка может быть выполнена из резины. Кроме того, вход электронного преобразователя подключается к электродам, установленным на футеровке канала, а не к электродам расходомера, приваренным к внешней стенке трубы. Расходомер поверяется на водяном проливном расходомерном стенде таким же образом, как поверяется расходомер общепромышленного назначения. На мерный участок трубы водяного проливного расходомерного стенда устанавливается поверяемый расходомер со вставленной в него футеровкой. Через канал расходомера пропускается нормированный поток водопроводной воды при комнатной температуре. По результатам поверки расходомера на водяном расходомерном стенде определяется коэффициент преобразования расходомера по формуле где α - показания электронного преобразователя, Q - объемный расход водопроводной воды. После испытаний расходомера на водяном расходомерном стенде производится послепроливная подготовка расходомера. Из расходомера изымается футеровка, вход электронного преобразователя подключается к электродам, приваренным к наружной поверхности трубы расходомера, а в электронном преобразователе программными методами производится корректировка коэффициента преобразования посредством введения поправок, учитывающих различие условий поверки расходомера на воде и жидком металле. При этом коэффициент преобразования расходомера на жидком металле Km вычисляется по формуле Поправка kD учитывает изменение диаметра канала, вызванное введением электроизоляционной футеровки, а поправка kM учитывает шунтирующее действие проводящей стенкой канала при измерении жидкого металла. Поправка kD вычисляется по формуле где DF - диаметр канала с футеровкой, D1 - диаметр канала без футеровки при рабочей температуре жидкого металла. Поправка kM вычисляется по формуле где D2 - наружный диаметр трубы при рабочей температуре, σ и σt - проводимость жидкого металла и материала трубы при рабочей температуре. Технический результат, который может быть получен при осуществлении изобретения, состоит в повышении точности измерения расхода жидкого металла в трубах большого диаметра. 2 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано в составе автоматизированных систем учета при приеме нефти или НП на базах топлива, в частности на нефтебазах и АЭС. Способ автоматического контроля метрологических характеристик средств измерения (СИ) массы нефти или жидких нефтепродуктов (НП) на базах посредством сравнения результатов измерений массы принимаемых нефти или НП при входном контроле в транспортировочной емкости (цистерне), на потоке в приемном коллекторе при сливе и в приемном резервуаре, по результатам измерений массы до и после приема нефти или НП, с документальной массой нефти или НП и, при выявлении отклонений, последующего сравнения результатов измерений с оценкой измеряемой массы нефти или НП, полученной на основе мажоритарного выбора результатов измерений, имеющих наименьшее значение абсолютной разности. Технический результат - повышение достоверности измерения массы нефти. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройству и способу для поверки (калибровки) расходомера, объемного счетчика, массового счетчика. Устройство содержит калиброванный участок трубопровода, поршень-вытеснитель, движущийся в калиброванном участке под действием потока измеряемой среды, детекторы начального и конечного положений поршня-вытеснителя в калиброванном участке трубопровода, вторичный прибор, осуществляющий накопление и математическую обработку измерительной информации, поступающей от поверяемого (калибруемого) расходомера, объемного счетчика, массового счетчика в виде последовательностей импульсов, ограниченных во времени моментами срабатывания детекторов начального и конечного положений поршня-вытеснителя в калиброванном участке трубопровода. В устройство введены дополнительные детекторы начального и конечного положений поршня-вытеснителя и дополнительные измерительные каналы вторичного прибора, осуществляющего накопление и математическую обработку импульсных последовательностей от преобразователя расхода, ограниченных во времени моментами срабатывания детекторов начального и конечного положений поршня-вытеснителя. Суммарное число детекторов начального и конечного положений поршня-вытеснителя составляет не менее пяти. Технический результат - сокращение времени работы устройства в процессе измерений и повышение точности результатов измерений. 2 н. и 4 з.п. ф-лы, 6 ил.

Предоставляется вибрационный расходомер (5, 300). Вибрационный расходомер (5, 300) включает в себя сборку (10, 310) расходомера, включающую в себя, по меньшей мере, два вибрационных датчика (170L и 170R, 303 и 305), которые создают, по меньшей мере, два вибрационных сигнала, и измерительную электронику (20, 320), которая принимает, по меньшей мере, два вибрационных сигнала, создает новую временную разность (Δt), используя многократные измерения временной разности, полученные для текущего материала, и определяет, находится ли новая временная разность (Δt) в пределах заданных границ старой временной разности (Δt0). Причем измерительная электроника (20, 320) сконфигурирована для определения, стабильны ли по существу измерения временной разности. Технический результат - повышение точности за счет исключения некорректного обнуления измерителя. 2 н. и 16 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Заявленная установка для испытания расходомеров-счетчиков газа содержит трубопровод, запорную арматуру, компрессор, эластичный резервуар, входную испытательную магистраль, испытательный коллектор, испытательные участки, выходную испытательную магистраль, фильтр, датчик температуры, датчик абсолютного давления и датчик дифференциального давления, причем устройство задания расхода выполнено в виде двух вращающихся друг относительно друга плотно прилегающих отполированных соосных диска с отверстиями, при этом в одном из дисков отверстия калиброванные. Техническим результатом является устранение ограничения точности установки для испытания расходомеров-счетчиков газа точностью эталонного расходомера, обеспечение более технологичного устройства задания расхода. 1 ил.

Изобретение относится к способам диагностирования датчиков измерения. Предложенный способ заключается в том, что сигнал с выхода диагностируемого датчика сравнивают с контрольными типичными сигналами. При этом физическую величину, измеряемую посредством диагностируемого датчика, дополнительно измеряют не менее чем тремя датчиками, осуществляющими измерения разными способами. Далее для каждой пары датчиков рассчитывают значение критерия проверки гипотезы о равенстве центров распределения двух независимых выборок, состоящих из полученных результатов многократных измерений физической величины. Полученное значение критерия сравнивают с нормированным значением, и при наличии существенного расхождения в показаниях пары датчиков делают вывод о наличии метрологического отказа датчика. Техническим результатом изобретения является повышение метрологической надежности и достоверности результатов диагностирования датчиков измерения.

В способе автоматического контроля перед началом и по завершении каждой операции отпуска автоматически регистрируют результаты измерения массы нефти или нефтепродуктов (НП) и выполняют автоматический сравнительный анализ результатов измерений массы отпущенной нефти или НП по данным как минимум трех средств измерения (СИ). По данным автоматической системы измерения в резервуарах, по данным топливораздаточных устройств и по данным автоматической системы измерения в приемных емкостях и баках транспортных средств с накоплением статистики по фактам превышения предельных погрешностей измерений отдельными СИ для подготовки заключения судят о возможности дальнейшей эксплуатации или необходимости внеплановой поверки СИ. Для анализа результатов трех неравноточных измерений массы отпущенной нефти или НП применяют метод сравнения результатов измерений с определением общей арифметической середины, а для каждого СИ, примененного в операции отпуска. Сравнивают фактическое отклонение от общей арифметической середины с предельно допустимым отклонением , где Mi - масса отпущенных нефти или НП по данным i-го средства измерения; Mo - общая арифметическая середина результатов измерения; ΔMi - предельное допустимое отклонение результата единичного измерения от общей арифметической середины для i-го средства измерения. Технический результат - способ автоматического контроля метрологических характеристик средств измерения (СИ), обеспечение возможности своевременного выявления отклонения метрологических характеристик СИ от установленных эксплуатационных значений без остановки основного технологического процесса отпуска нефти или НП. 1 ил.

Изобретение относится к системам управления и контроля процесса производства того типа, который применяется для измерения и контроля процессов производства. В частности, данное изобретение относится к измерению скорости потока в процессах производства по принципу дифференцированного давления. Система 100 измерения скорости потока технической жидкости в технологическом трубопроводе 102 включает в себя ограничитель потока 108 в технологическом трубопроводе, создающий дифференцированное давление между входной стороной ограничителя 108 и выходной стороной ограничителя 108. Дифференцированное давление зависит от скорости потока технической жидкости. Измерители первичного и вторичного давления на входе 104С, 104D соединены с технологическим трубопроводом 102 на входной стороне ограничителя потока 108 и измеряют первичное и вторичное давление на входе. Измерители первичного и вторичного давления на выходе 104А, 104В соединены с технологическим трубопроводом 102 на выходной стороне ограничителя потока 108 и измеряют соответствующее первичное и вторичное давление на выходе технической жидкости. Скорость потока технической жидкости рассчитывается на основании по меньшей мере одного давления на входе и одного давления на выходе. Технический результат - создание метода и приспособления для измерения дифференцированного давления, вместе с тем предоставляя диагностические данные, которые могут применяться для обнаружения неисправного датчика. 3 н. и 22 з.п. ф-лы, 3 ил.
Наверх