Способ получения термопластичного полимерного материала

Изобретение относится к способу получения термопластичного полимерного материала, используемого для изготовления конструкционных деталей, труб и других изделий, которые могут быть использованы в коммунальном хозяйстве. Способ включает пластикацию нагревом сыпучего термопластичного материала до вязкотекучего состояния и перемещение его под высоким давлением в формующую полость для затвердевания за счет охлаждения. Перед пластикацией дополнительно проводят обработку сыпучего термопластичного материала СВЧ излучением мощностью 450-750 Вт в течение 5-7 минут. Достигаемый при этом технический результат заключается в повышении разрушающего напряжения при растяжении, при статическом изгибе, а также повышение ударной вязкости материала. 1 табл., 4 ил.

 

Предлагаемое изобретение относится к способу получения термопластичного полимерного материала, используемого для изготовления конструкционных деталей, труб и других изделий, которые могут быть использованы в коммунальном хозяйстве.

Известен способ получения полимерного материала, который заключается в том, что исходный сыпучий термопластичный материал предварительно нагревают с последующей пластикацией и получением изделий из расплава [Справочник по композиционным материалам под ред. Дж. Любина, Р.Э. Геллера. - М.: Машиностроение, 1988, т.2 с.580]. Недостатками данного технического решения являются сравнительно невысокие прочностные характеристики, а именно разрушающее напряжение при растяжении и ударная вязкость.

Известен способ получения полимерного термопластичного материала, состоящий в том, что сыпучий термопластичный материал нагревают в материальном цилиндре, расплавляют и гомогенизируют, а затем выдавливают сквозь выходное отверстие формующей головки [Переработка пластмасс под. Ред. Паниматченко, 2005, с.315]

Наиболее близким техническим решением, прототипом, является способ получения термопластичных полимерных материалов, заключающийся в пластикации нагревом сыпучего термопластичного материала до вязкотекучего состояния и его перемещении под высоким в формующую полость литьевой формы, где он затвердевает за счет охлаждения.

Недостатком данного технического решения являются сравнительно невысокие прочностные характеристики, а именно разрушающее напряжение при растяжении и ударная вязкость [Переработка пластмасс. Под. ред. Паниматченко, 2005, с.315].

Задачей, на решение которой направлено заявляемое изобретение, является повышение разрушающего напряжения при растяжении, повышении величин разрушающего напряжения при статическом изгибе и ударной вязкости материала.

Поставленная задача решается за счет того, что в способе получения термопластичного полимерного материала, включающем пластикацию нагревом сыпучего термопластичного материала до вязкотекучего состояния и его перемещение под высоким давлением в формующую полость для затвердевания за счет охлаждения, дополнительно проводят обработку сыпучего термопластичного материала перед пластикацией излучением СВЧ мощностью 450-750 Вт в течение 5-7 минут.

Для изготовления образцов в качестве исходных материалов выбраны:

полиамид стеклонаполненный ПАСН (ГОСТ 17648-83),

полиэтилен высокого давления ПЭВД (ГОСТ 16337-77).

Для изготовления образцов используют литьевую машину.

Для образцов стандартных размеров определили следующие характеристики:

σи - разрушающее напряжение при статическом изгибе МПа (ГОСТ 4678-71)

а уд - ударная вязкость, кДж/м2 (ГОСТ 4648-71)

σр - разрушающее напряжение при растяжении, МПа (ГОСТ 11262-80)

HB - твердость по Бринеллю, МПа (ГОСТ 4670-91).

В таблице 1 представлены физико-механические характеристики стеклонаполненного полиамида и полиэтилена высокого давления.

На фигуре 1 представлена зависимость разрушающего напряжения при растяжении от мощности СВЧ-излучения (полиамид стеклонаполненный, продолжительность 5 минут).

На фигуре 2 представлена зависимость ударной прочности от мощности СВЧ-излучения (полиамид стеклонаполненный, продолжительность 5 минут).

На фигуре 3 представлена зависимость разрушающего напряжения при изгибе от мощности СВЧ-излучения (полиамид стеклонаполненный, продолжительность 5 минут).

На фигуре 4 представлена зависимость твердости по Бринеллю от мощности СВЧ-излучения (полиамид стеклонаполненный, продолжительность 5 минут).

Пример 1. Способ осуществляется следующим образом, берем гранулы стеклонаполненного полиамида, загружаем в СВЧ-устройство, проводим обработку мощностью 450 Вт в течение 5 минут, затем гранулы термопластичного сыпучего материала перемещают в литьевую машину, где происходит их пластикация до вязкотекучего состояния за счет нагрева и перемещение под давлением в формующую полость для затвердевания за счет охлаждения до комнатной температуры.

Пример 2. Способ осуществляется по примеру 1, отличающийся тем, что полиамид стеклонаполненный обрабатывали в течение 5 мин при мощности излучения СВЧ 600 Вт.

Пример 3. Способ осуществляется по примеру 1, отличающийся тем, что полиамид стеклонаполненный обрабатывали в течение 5 мин при мощности излучения СВЧ 750 Вт.

Пример 4. Способ осуществляется по примеру 1, отличающийся тем, что полиамид стеклонаполненный обрабатывали в течение 5 мин при мощности излучения СВЧ 300 Вт.

Пример 5. Способ осуществляется по примеру 1, отличающийся тем, что полиамид стеклонаполненный обрабатывали в течение 7 мин при мощности излучения СВЧ 750 Вт.

Пример 6. Способ осуществляется по примеру 1, отличающийся тем, что полиамид стеклонаполненный обрабатывали в течение 3 мин при мощности излучения СВЧ 750 Вт.

Пример 7. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 5 мин при мощности излучения СВЧ 450 Вт.

Пример 8. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 5 мин при мощности излучения СВЧ 600 Вт.

Пример 9. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 5 мин при мощности излучения СВЧ 750 Вт.

Пример 10. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 5 мин при мощности излучения СВЧ 300 Вт.

Пример 11. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 7 мин. при мощности излучения СВЧ 750 Вт.

Пример 12. Способ осуществляется по примеру 1, отличающийся тем, что полиэтилен высокого давления обрабатывали в течение 3 мин при мощности излучения СВЧ 750 Вт.

Таблица 1
№ примера σраст. МПа σизг. МПа а уд. кДж/см2 НВ
1 99 166 23 210
2 103 169 24 212
3 ПО 177 25 214
4 87 165 19 184
5 108 168 25 210
6 97 164 22 200
Прототип (ПАСН) 87 164 19 180
7 25 32 15 -
8 26 34 16 -
9 27 36 17 -
10 24 31 13 -
11 27 35 17 -
12 24 31 14 -
Прототип (ПЭВД) 24 31 13 -

Техническим результатом, обеспечиваемым приведенной совокупностью существенных признаков, является повышение величин σр, а удизг и НВ образцов из стеклонаполненного полиамида и увеличение величин σр, а уд, σизг для полиэтилена высокого давления. При разработке данного способа основными варьируемыми параметрами являлись наличие СВЧ-обработки, продолжительность СВЧ-обработки, мощность СВЧ-обработки. Оптимальным параметром является излучение СВЧ мощностью 450-750 Вт в течение 5-7 мин, так как при повышении мощности и продолжительности сыпучий термопластичный материал начинает преждевременно подвергаться плавлению, а при недостаточной мощности свойства не подвергаются заметным изменениям.

Анализируя примеры 1, 2, 3, можно увидеть, что увеличение мощности приводит к росту прочностных характеристик σизг. на 5-10%, а уд. на 25%, σраст. на 20% и НВ на 10%.

Анализируя примеры 7, 8, 9, видно, что увеличение мощности приводит к росту прочностных характеристик σизг. на 12%, а уд. на 25% и σраст. на 10%.

Из сравнения физико-механических характеристик образцов (Табл.1), полученных по примерам 3 и 5, также 9 и 11, следует, что увеличение продолжительности СВЧ-обработки отрицательно сказывается на характеристиках материала, т.е. появляется отрицательный эффект. Увеличение же мощности приводит к преждевременному плавлению материала, что также сказывается отрицательно. При уменьшении времени обработки, примеры 6 и 12, значительного увеличения свойств не наблюдается.

Выводом может являться то, что заявляемое изобретение действительно повышает разрушающее напряжения при растяжении при статическом изгибе и ударную вязкость материала.

Способ получения термопластичного полимерного материала, включающий пластикацию нагревом сыпучего термопластичного материала до вязкотекучего состояния, перемещение его под высоким давлением в формующую полость для затвердевания за счет охлаждения, отличающийся тем, что перед пластикацией дополнительно проводят обработку сыпучего термопластичного материала СВЧ излучением мощностью 450-750 Вт в течение 5-7 минут.



 

Похожие патенты:

Изобретение относится к склеивающей прокладке на основе эпоксидных смол и стеклотканей, применяемых для изготовления многослойных печатных плат. Склеивающая прокладка изготавливается с применением стеклоткани, пропитанной смесью эпоксидной диановой смолы, 4,4′-диаминодифенилсульфона, ацетилацетоната никеля и сферических частиц бутадиеннитрилстиролкарбоксилатного полимера диаметром от 10-8 до 10-7 м, при следующем соотношении компонентов, мас.ч.: эпоксидная диановая смола 100, полимер 5-20, 4,4′-диаминодифенилсульфон 15, стеклоткань 130, ацетилацетонат никеля 1.

Настоящая группа изобретений относится к препрегам и получаемым из них при пониженной температуре деталям. Описаны препреги, в основном состоящие из: A) по меньшей мере одной волокнистой основы, и B) в качестве матричного материала по меньшей мере одной содержащей уретдионовые группы порошкообразной полиуретановой композиции с высокой реакционной способностью, которая содержит в основном: a) по меньшей мере один содержащий уретдионовые группы отвердитель на основе продуктов полиприсоединения алифатических, (цикло)алифатических или циклоалифатических полиизоцианатов с уретдионовыми группами и соединений с гидроксильными группами, который при температуре ниже 40°C находится в твердой форме, а при температуре выше 125°C в жидкой форме, и содержит менее 5 мас.% свободных NCO-групп и от 3 до 25 мас.% уретдионовых групп, и b) по меньшей мере один полимер с гидроксильными группами, который при температуре ниже 40°C находится в твердой форме, а при температуре выше 125°C в жидкой форме, и обладает гидроксильным числом от 20 до 200 мг КОН/г, c) от 0,1 до 5 мас.% по меньшей мере одного катализатора, выбранного из группы, включающей четвертичные соли аммония и/или четвертичные соли фосфония с галогенами, гидроксидами, алкоголятами или анионами органических или неорганических кислот в качестве противоионов, и d) от 0,1 до 5 мас.% по меньшей мере одного сокатализатора, выбранного из группы, включающей: d1) по меньшей мере один эпоксид, причем компоненты а) и b) взяты в таком соотношении, чтобы на каждую гидроксильную группу компонента b) приходилось от 0,3 до 1 уретдионовой группы компонента а).

Изобретение относится к способу получения препрега и композиционным материалам на его основе. Способ изготовления препрега включает подачу слоя однонаправленных электропроводных волокон, имеющих определенную ширину, осуществление контакта с первой поверхностью волокон первого слоя смолы, включающей термореактивную смолу, и уплотнение смолы и волокон вместе пропусканием их над одним или более пропитывающими валками, где давление, действующее на электропроводные волокна и смолу, не превышает 40 кг на сантиметр ширины электропроводных волокон, и количество смолы является достаточным для того, чтобы смола проникла в пространства между волокнами и оставался первый наружный слой смолы, по существу не содержащий однонаправленных электропроводных волокон.
Изобретение относится к полимерным композициям с наполнителем в виде полых микросфер. Полимерная композиция для полимерных композиционных материалов содержит олигоцианурат, полые микросферы, дополнительно содержит эпоксидный олигомер с вязкостью менее 5 Па·с при комнатной температуре, при следующем соотношении компонентов масс.ч.: олигоцианурат 20-60, эпоксидный олигомер 5-40, полые микросферы 23-35.

Изобретение относится к препрегам, способу их изготовления и применения, а также к способу изготовления деталей из композиционного материала с использованием вышеуказанных препрегов.

Изобретение относится к эпоксидной композиции для получения высокопрочных, тепло-, щелочестойких стеклопластиковых материалов, которые могут быть использованы при изготовлении строительной арматуры для упрочнения бетонных конструкций.

Изобретение относится к полимерным композициям на основе циановых эфиров, упрочняемым волокнистыми наполнителями и применяемым для создания конструкционных полимерных композиционных материалов (ПКМ) с рабочей температурой до 200°C и изделий из них, которые могут быть использованы в авиационной, аэрокосмической, автомобильной, судостроительной и других отраслях промышленности.

Изобретение относится к композитным материалам с повышенной устойчивостью к повреждению, вызванному ударами молнии. Препрег, содержащий один конструкционный слой электропроводящих однонаправленных волокон и первый наружный слой отверждаемой смолы, по существу, не содержащий конструкционных волокон, и необязательно второй наружный слой отверждаемой смолы, по существу, не содержащий конструкционных волокон, причем суммарная толщина первого и второго наружных слоев смолы в указанной точке имеет среднюю величину, по меньшей мере, 10 мкм и изменяется, по меньшей мере, в диапазоне от 50% до 120% средней величины, и где первый наружный слой содержит электропроводящие частицы.

Изобретение относится к производству композиционных материалов. Изобретение включает связующее, его использование в препрегах, способ получения связующего.

Изобретение относится к композитным материалам, предназначенным для применения в космосе. Использование, по меньшей мере, одной полимеризуемой смолы R1, выбираемой из группы, состоящей из эпоксидированных полибутадиеновых смол и характеризующейся в неполимеризованном состоянии: - величиной общей потери массы (ОПМ), меньшей чем 10%, величиной восстановленной потери массы (ВПМ), меньшей чем 10%, и величиной собранного летучего конденсируемого материала (СЛКМ).

Группа изобретений относится к способу нагрева преформы, к управляющему устройству (7) для управления блоком (9) генерации лазерного излучения системы (10) нагрева преформ и системе (10) нагрева преформ.

Изобретение относится к способу радиочастотного нагрева нефтеносной породы с использованием набора из одной или более радиочастот. Способ включает следующие шаги: (a) смешивание первого вещества, включающего нефтеносную породу, и второго вещества, включающего воспринимающие частицы в виде дипольных антенн, с образованием смеси из 10-99% по объему первого вещества и 1-50% по объему второго вещества; (b) воздействие на упомянутую смесь радиочастотной энергией с частотой или частотами из упомянутого набора из одной или более радиочастот и мощностью, достаточной для нагрева воспринимающих частиц; и (c) продолжение воздействия радиочастотной энергией на протяжении времени, достаточного для нагревания воспринимающими частицами упомянутой смеси до средней температуры, превышающей приблизительно 100°C (212°F).

Изобретение относится к способу производства трехмерного изделия из порошка путем избирательного спекания посредством электромагнитного облучения. Порошок содержит полимер или сополимер, который имеет, по меньшей мере, одну из следующих структурных характеристик: (i) по меньшей мере, одну разветвленную группу в основной цени полимера или сополимера, при условии, что в случае использования простых полиарилэфиркетонов (РАЕК) разветвленная группа представляет собой ароматическое структурное звено в основной цепи полимера или сополимера; (ii) модификацию, по меньшей мере, одной концевой группы основной цепи полимера или сополимера; (iii) по меньшей мере, одну объемную группу в основной цепи полимера или сополимера, при условии, что в случае использования простых полиарилэфиркетонов (PAЕK) объемную группу не выбирают из группы.

Настоящее изобретение относится к способу и устройству для изготовления композитной структуры из армированного волокном термопластичного материала. Техническим результатом заявленного изобретения является увеличение скорости и эффективности укладки и объединения слоев термопластичного материала.

Изобретение относится к способу производства трехмерного объекта посредством способа быстрого макетирования. .

Изобретение относится к формованию из расплава полимеров и касается моновиниловых ароматических полимеров, нагреваемых микроволновым излучением. .

Изобретение относится к области оборудования химической промышленности и машиностроения, в частности к аппаратам термического прессования резинотехнических изделий.
Изобретение относится к области изготовления стержней из армирующих волокон, пропитанных связующим. .

Изобретение относится к области обработки пластических материалов, в частности к технологии переработки полимерных материалов, и предназначено для получения герметизирующих покрытий в производстве бескорпусных полупроводниковых приборов.

Объектом изобретения является форма, нагреваемая за счет индукции, содержащая по меньшей мере одну нижнюю часть и одну верхнюю часть, ограничивающие полость. В полость формы загружают предназначенный для формования материал, нагреваемый до температуры Ttr, превышающей 20°C, где его затем формуют. При этом по меньшей мере одна из частей формы содержит зону теплопередачи с формуемым материалом. Зона теплопередачи содержит по меньшей мере одну подзону теплопередачи, выполненную из по меньшей мере одного ферромагнитного материала с точкой Кюри Tc, находящейся в пределах от 20 до 800°C, входящую в контакт с формуемым материалом и/или с неферромагнитным покрытием, имеющим удельную теплопроводность, превышающую 30 Вт·м-1·К-1. Изобретение касается также способа изготовления форм в соответствии с изобретением и способа изготовления изделия из пластического или композиционного материала при помощи форм в соответствии с изобретением. Технический результат, достигаемый при использовании форм, изготовленных по изобретению, с помощью способа по изобретению для изготовления изделия из пластического или композиционного материала, заключается в упрощении формы при ее изготовлении, позволяющей сгладить неоднородность температуры формования, а способ изготовления форм позволяет легко модулировать искомые магнитные и/или термические характеристики. 7 н. и 16 з.п. ф-лы, 1 ил., 7 пр.

Изобретение относится к способу получения термопластичного полимерного материала, используемого для изготовления конструкционных деталей, труб и других изделий, которые могут быть использованы в коммунальном хозяйстве. Способ включает пластикацию нагревом сыпучего термопластичного материала до вязкотекучего состояния и перемещение его под высоким давлением в формующую полость для затвердевания за счет охлаждения. Перед пластикацией дополнительно проводят обработку сыпучего термопластичного материала СВЧ излучением мощностью 450-750 Вт в течение 5-7 минут. Достигаемый при этом технический результат заключается в повышении разрушающего напряжения при растяжении, при статическом изгибе, а также повышение ударной вязкости материала. 1 табл., 4 ил.

Наверх