Способ изоляции водопритоков в скважину (варианты)



Способ изоляции водопритоков в скважину (варианты)
Способ изоляции водопритоков в скважину (варианты)

 


Владельцы патента RU 2550617:

Открытое акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Группа изобретений относится к нефтегазодобывающей промышленности, в частности к способам проведения ремонтно-изоляционных работ в добывающих скважинах, а также тампонирования промытых зон в нагнетательных скважинах. Способ изоляции водопритоков в скважину включает закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, 3,6-10 или 1-3,5 об.ч. этилацетата и поверхностно-активного вещества. При этом в водоизоляционной композиции в качестве модифицированного жидкого стекла при температурах выше 10°С используют 100 об.ч. высокомодульного жидкого стекла с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3. В качестве поверхностно-активного вещества применяют 0,2 об.ч. моющего препарата с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С. Техническим результатом является повышение эффективности изоляции водопритока и расширение температурного диапазона применения способов. 2 н.п. ф-лы, 2 пр., 2 табл.

 

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проведения ремонтно-изоляционных работ в добывающих скважинах, а также выравнивания профиля приемистости в нагнетательных скважинах.

Известен способ отключения пластов и изоляции водопритоков в скважину, включающий закачку водного раствора силиката натрия, натрия кремнефтористого, триацетина и древесной муки (патент RU №2244819, МПК Е21В 43/32, опубл. 20.01.2005 г., бюл. №2) при следующем соотношении компонентов, мас.%:

водный раствор силиката натрия плотностью 1,36 г/см3 и силикатным модулем М=3,0 90,0-95,0
кремнефтористый натрий 3,0-8,0
древесная мука 1,0-4,0
триацетин 1,0-4,0

Недостатком известного способа является осаждение нерастворившейся части кремнефтористого натрия, что может привести к аварийной ситуации - отверждению состава в насосе цементировочного агрегата и насосно-компрессорных трубах (НКТ).

Наиболее близким к данному способу является способ приготовления тампонажного раствора (патент RU №2270328, МПК Е21В 43/32, опубл. 20.02.2006 г., бюл. №5), включающий растворение при нагревании в присутствии воды, натриевой силикат-глыбы и модифицирующей добавки, смешение полученного жидкого стекла - водного раствора силиката натрия с водой и органическим отвердителем. В качестве модифицирующей добавки используют кремнеземный наполнитель Росил-175, который вводят в процессе растворения силикат-глыбы при нагревании в соотношении 27-50 мас.ч. к 100 мас.ч. натриевой силикат-глыбы и 200-300 мас.ч. воды и перемешивают до достижения силикатного модуля 3,5-5,0. В качестве органического отвердителя используют этилацетат в присутствии неонола АФ9-12 при следующем соотношении компонентов, мас.ч.:

модифицированное жидкое стекло 100
вода 100
этилацетат 5-10
неонол АФ9-12 1

Плотность модифицированного жидкого стекла в способе по наиболее близкому аналогу составляет 1300-1390 кг/м3, причем на 100 мас.ч. модифицированного жидкого стекла берут 100 мас.ч. пресной воды, т.е. плотность его уменьшается и находится в пределах 1130-1160 кг/м3.

Недостатками известного способа являются трудоемкость его исполнения, так как для его использования необходимо растворить при нагревании в присутствии воды натриевую силикат-глыбу с модифицирующей добавкой кремнеземным наполнителем Росил-175 до достижения силикатного модуля 3,5-5,0, а также то, что в зимнее время при температуре ниже 10°С время гелеобразования высокомодульного жидкого стекла сокращается, что может привести к аварийной ситуации. У неонола АФ9-12 температура замерзания находится в пределах от 13 до 17°С, что также является недостатком при работе в зимнее время.

Техническими задачами предложения являются повышение эффективности изоляции водопритока и расширение температурного диапазона применения способа.

Технические задачи решаются способом изоляции водопритоков в скважину, включающим закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, этилацетата и поверхностно-активного вещества.

Новым является то, что в водоизоляционной композиции в качестве модифицированного жидкого стекла при температуре выше 10°С используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3, а в качестве поверхностно-активного вещества применяют моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С при следующих соотношениях компонентов, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3 100
этилацетат 3,6-10
моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С 0,2

Технические задачи также решаются способом изоляции водопритоков в скважину, включающим закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, этилацетата и поверхностно-активного вещества.

Новым является то, что в водоизоляционной композиции в качестве модифицированного жидкого стекла при температуре ниже 10°С используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3, а в качестве поверхностно-активного вещества применяют моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С при следующих соотношениях компонентов, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3 100
этилацетат 1-3,5
моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С 0,2

В качестве высокомодульного жидкого стекла (ВМЖС) используют жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3 (по первому варианту) и жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3 (по второму варианту). ВМЖС представляет собой раствор полисиликата натрия от прозрачного до серого цвета с pH в пределах 9,5-11,5. Силикатный модуль жидкого стекла показывает отношение массовой концентрации диоксида кремния к массовой концентрации оксида натрия в жидком стекле.

Этилацетат - этиловый эфир уксусной кислоты по ГОСТу 8981-78 представляет собой прозрачную жидкость с плотностью 898-900 кг/м3.

Моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С представляет собой водный раствор смеси анионных (сульфанол, сульфонат) и неионогенных (неонол) поверхностно-активных веществ (ПАВ), подвижную вязкую жидкость от желтого до коричневого цвета (далее моющий препарат). Показатель активности водородных ионов водного раствора моющего препарата с массовой долей 1% (по активному веществу) pH находится в пределах от 7 до 9. В состав моющего препарата входят алкилбензолсульфонат натрия, моноалкилфениловые эфиры, полиэтиленгликоль, алкилсульфат натрия, этиленгликоль и метанол.

В предложении расширен диапазон плотности высокомодульного жидкого стекла от 1025 до 1200 кг/м3, в отличие от способа по наиболее близкому аналогу, где он находится в пределах от 1130 до 1160 кг/м3. Использование моющего препарата в качестве ПАВ способствует совмещению органической и неорганической фаз водоизоляционной композиции, вследствие чего происходит ее равномерное гелеобразование. Моющий препарат не замерзает до минус 30°С и удобен для работы в зимнее время. Этилацетат является гелеобразователем композиции. Время гелеобразования водоизоляционной композиции зависит от количества этилацетата: чем его больше, тем время гелеобразования короче. Время гелеобразования водоизоляционной композиции зависит также от температуры окружающей среды: в зимнее время года при температуре ниже 10°С оно сокращается, а ниже 5°С высокомодульное жидкое стекло может замерзнуть, для предотвращения чего на скважинах используют парогенераторные передвижные установки (ППУ), с помощью которых ВМЖС размораживают паром, причем после разморозки оно не теряет своих свойств.

Водоизоляционную композицию готовят непосредственно на скважине. В мерники цементировочного агрегата ЦА-320 закачивают высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3. В чанок цементировочного агрегата ЦА-320 наливают этилацетат, туда же добавляют моющий препарат и перемешивают, полученный в чанке раствор перекачивают в мерники агрегата, где находится высокомодульное жидкое стекло (ВМЖС) с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3 (по первому варианту) или ВМЖС с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3 (по второму варианту), и тщательно перемешивают. Далее водоизоляционную композицию закачивают в скважину. До водоизоляционной композиции и после нее в скважину закачивают буфер из пресной воды в объеме 200-300 л для предупреждения ее преждевременного гелеобразования.

Время гелеобразования водоизоляционной композиции определяют в лабораторных условиях. Результаты лабораторных испытаний при температуре ВМЖС выше 10°С (по первому варианту) приведены в табл.1. В стеклянный стакан объемом 200 мл наливают 100 мл (100 об.ч.) высокомодульного жидкого стекла с силикатным модулем 4 и плотностью 1140 кг/м3. Во втором стеклянном стакане объемом 25 мл готовят раствор моющего препарата в этилацетате, для чего 0,2 мл моющего препарата растворяют в 5 мл этилацетата. Далее 5 мл этилацетата с растворенным в нем моющим препаратом наливают в стакан с высокомодульным жидким стеклом с силикатным модулем 4 и плотностью 1140 кг/м3, перемешивают и оставляют полученную композицию на гелеобразование. Периодически наклоняя стакан, фиксируют время, когда мениск жидкости в стакане перестанет смещаться. Определенное таким образом время является временем гелеобразования, которое составляет 3 ч (табл.1, опыт 7). Остальные опыты, представленные в табл.1, готовят аналогичным образом. Оптимальное время гелеобразования получено в опытах №№4-16. По времени гелеобразования выбирают оптимальное соотношение компонентов состава для применения в предлагаемом способе по первому варианту при следующих соотношениях, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3 100
этилацетат 3,6-10
моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С 0,2

В предлагаемом способе количество этилацетата менее 3,6 об.ч. сильно увеличивает время гелеобразования, и при этом образуется непрочный гель, а количество этилацетата более 10 об.ч. ведет к очень быстрому гелеобразованию при перемешивании компонентов, поэтому такие опыты не были включены в оптимальный диапазон.

Результаты лабораторных испытаний при температуре ВМЖС ниже 10°С (по второму варианту) приведены в табл.2. Оптимальное время гелеобразования при температуре ниже 10°С получено в опытах №№3-15, исходя из чего оптимальным для применения в предлагаемом способе по второму варианту является состав при следующих соотношениях компонентов, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3 100
этилацетат 1-3,5
моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С 0,2

Примеры практического применения.

1. На скважине при температуре окружающей среды 20°С для ликвидации заколонной циркуляции в скважине с текущим забоем 1785 м и интервалом перфорации 1764-1767,2 м приготовили водоизоляционную композицию, для чего в мерник цементировочного агрегата ЦА-320М набрали 2 м3 ВМЖС (100 об.ч.) с силикатным модулем 4,0 и плотностью 1140 кг/м. В чанке агрегата растворили 4 л моющего препарата (0,2 об.ч.) в 100 л этилацетата (5 об.ч.) и перемешали с ВМЖС в течение 10 мин (опыт №7, табл.1). В насосно-компрессорные трубы закачали последовательно буфер 0,3 м3 пресной воды, водоизоляционную композицию, приготовленную в мернике цементировочного агрегата, буфер 0,3 м3 пресной воды; 1,6 м3 цементного раствора, затворенного из 2 т цемента при В/Ц = 0,5. Продавили водоизоляционную композицию и цементный раствор водой с плотностью 1,00 г/см3 в объеме 5,1 м3. Оставили скважину на реагирование в течение 48 ч. Далее скважину освоили, спустили подземное оборудование и пустили скважину в эксплуатацию. В результате проведенных работ обводненность скважины снизилась на 30%, дополнительная добыча нефти составила при этом 2,5 т в сутки.

2. На скважине при температуре окружающей среды 5°С для ликвидации заколонной циркуляции в скважине с текущим забоем 1805,5 м и интервалом перфорации 1783,5-1785,3 м приготовили водоизоляционную композицию, для чего в мерник цементировочного агрегата ЦА-320М набрали 2 м3 ВМЖС (100 об.ч.) с силикатным модулем 4,0 и плотностью 1120 кг/м3. В чанке агрегата растворили 4 л моющего препарата (0,2 об.ч.) в 40 л этилацетата (2 об.ч.) и перемешали с ВМЖС в течение 10 мин (опыт №5, табл.2). В насосно-компрессорные трубы закачали последовательно буфер 0,3 м3 пресной воды, водоизоляционную композицию, приготовленную в мернике цементировочного агрегата, буфер 0,3 м3 пресной воды; 2,4 м3 цементного раствора, затворенного из 3 т цемента при В/Ц = 0,5. Продавили водоизоляционную композицию и цементный раствор водой с плотностью 1,00 г/см3 в объеме 4,5 м. Оставили скважину на реагирование в течение 48 ч. После освоения и запуска скважины в эксплуатацию обводненность добываемой продукции снизилась на 30%, дополнительная добыча нефти составила при этом 2,5 т в сутки.

Таким образом, в данном предложении достигается результат - повышение эффективности изоляции водопритока и расширение температурного диапазона применения способа.

1. Способ изоляции водопритоков в скважину, включающий закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, этилацетата и поверхностно-активного вещества, отличающийся тем, что в водоизоляционной композиции в качестве модифицированного жидкого стекла при температурах выше 10°С используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3, а в качестве поверхностно-активного вещества применяют моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С при следующих соотношениях компонентов, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1200 кг/м3 100
этилацетат 3,6-10
моющий препарат с массовой долей
поверхностно-активных веществ 30-38%
и температурой замерзания не выше минус 30°С 0,2

2. Способ изоляции водопритоков в скважину, включающий закачку в зону изоляции водоизоляционной композиции, состоящей из модифицированного жидкого стекла, этилацетата и поверхностно-активного вещества, отличающийся тем, что в водоизоляционной композиции в качестве модифицированного жидкого стекла при температурах ниже 10°С используют высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3, а в качестве поверхностно-активного вещества применяют моющий препарат с массовой долей поверхностно-активных веществ 30-38% и температурой замерзания не выше минус 30°С при следующих соотношениях компонентов, об.ч.:

высокомодульное жидкое стекло с силикатным модулем 3,5-6 и плотностью 1025-1150 кг/м3 100
этилацетат 1-3,5
моющий препарат с массовой долей
поверхностно-активных веществ 30-38%
и температурой замерзания не выше минус 30°С 0,2



 

Похожие патенты:

Настоящее изобретение относится к нефтегазодобывающей промышленности и может быть использовано при строительстве нефтяных и газовых скважин. В способе устранения заколонных перетоков и межколонных давлений, включающем приготовление аэрированных облегченного и нормальной плотности тампонажных растворов, их последовательное нагнетание в обсадную колонну и продавку в заколонное и межколонное пространства продавочной жидкостью, в качестве аэрированных облегченного и нормальной плотности тампонажных растворов используют седиментационно-устойчивые мелкодисперсно-аэрированные растворы с плотностями не выше 1650 кг/м3 и не ниже 1800 кг/м3, содержащие бездобавочный портландцемент и термостойкую пластифицирующе-расширяющую добавку, включающую каолиновую глину, термически активированную при температуре 900÷1000°C с удельной поверхностью 300÷400 м2/кг, сульфат алюминия, борную кислоту и воздухововлекающую добавку Аэропласт, исключающую образование устойчивой пены, и жидкость затворения при следующем соотношении компонентов, масс.%: бездобавочный портландцемент 85-75, каолиновая глина 10-18, сульфат алюминия 4,7-6,1, борная кислота 0,2-0,5, воздухововлекающая добавка Аэропласт 0,1-0,4, жидкость затворения сверх 100% до получения водосмесевых отношений 0,63÷0,65 м3/т и 0,40÷0,50 м3/т, при этом сначала нагнетают седиментационно-устойчивый аэрированный облегченный тампонажный раствор с регулируемой плотностью не более 1650 кг/м3, затем аэрированный тампонажный раствор нормальной плотности не более 1950 кг/м3, причем необходимые плотности тампонажных растворов обеспечивают изменением водосмесевого отношения, интенсивностью и продолжительностью перемешивания, а продавку ведут до частичного вытеснения аэрированного облегченного тампонажного раствора из заколонного (межколонного) пространства продавочной жидкостью, нагретой до 50÷60°C в зимний период и при цементировании низкотемпературных скважин.

Изобретение относится к технологии повышения продуктивности скважины. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) карбонатных коллекторов.
Изобретение относится к нефтегазодобывающей промышленности и может найти применение при изменении фильтрационных характеристик пластов, при проведении гидроразрыва, разделении потоков жидкостей в скважине, очистке ствола скважин и других ремонтных работах.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам приготовления составов для ликвидации заколонных перетоков в скважине. Технический результат - повышение технологичности и эффективности ликвидации заколонных перетоков в скважине за счет увеличения прочности и расширения диапазона времени отверждения состава на основе микроцемента.
Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритока в скважину с применением кремнийорганических соединений, может использоваться для изоляции водопритока в добывающих скважинах и регулирования профиля приемистости нагнетательных скважин.

Предложение относится к нефтедобывающей промышленности, в частности к способам изоляции зон водопритока в скважине. Способ изоляции зон водопритока в скважине включает спуск в эксплуатационную колонну на насосно-компрессорных трубах (НКТ) перфорированного патрубка.
Изобретение относится к нефтедобывающей промышленности, а именно к способам ограничения водопритока в добывающих и выравниванию профиля приемистости в нагнетательных нефтяных скважинах.

Изобретение относится к нефтяной промышленности и может найти применение при разработке неоднородного нефтяного месторождения. Технический результат - увеличение охвата неоднородного месторождения воздействием, снижение обводненности добываемой продукции, выравнивание проницаемости месторождения, повышение коэффициента конечной нефтеотдачи.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для изоляции водопритоков в горизонтальных стволах добывающих скважин. Способ включает в себя спуск гибкой трубы колтюбинговой установки, заполнение скважины блокирующей жидкостью в интервале от забоя до нижней части ближнего к забою интервала водопритока.
Предложение относится к нефтедобывающей промышленности, в частности к области цементирования зон водопритока в скважинах. Способ цементирования зон водопритока скважин включает спуск в скважину колонны насосно-компрессорных труб (НКТ), установку открытого конца НКТ выше зоны водопритока.

Настоящее изобретение относится к нефтегазодобывающей промышленности и может быть использовано при строительстве нефтяных и газовых скважин. В способе устранения заколонных перетоков и межколонных давлений, включающем приготовление аэрированных облегченного и нормальной плотности тампонажных растворов, их последовательное нагнетание в обсадную колонну и продавку в заколонное и межколонное пространства продавочной жидкостью, в качестве аэрированных облегченного и нормальной плотности тампонажных растворов используют седиментационно-устойчивые мелкодисперсно-аэрированные растворы с плотностями не выше 1650 кг/м3 и не ниже 1800 кг/м3, содержащие бездобавочный портландцемент и термостойкую пластифицирующе-расширяющую добавку, включающую каолиновую глину, термически активированную при температуре 900÷1000°C с удельной поверхностью 300÷400 м2/кг, сульфат алюминия, борную кислоту и воздухововлекающую добавку Аэропласт, исключающую образование устойчивой пены, и жидкость затворения при следующем соотношении компонентов, масс.%: бездобавочный портландцемент 85-75, каолиновая глина 10-18, сульфат алюминия 4,7-6,1, борная кислота 0,2-0,5, воздухововлекающая добавка Аэропласт 0,1-0,4, жидкость затворения сверх 100% до получения водосмесевых отношений 0,63÷0,65 м3/т и 0,40÷0,50 м3/т, при этом сначала нагнетают седиментационно-устойчивый аэрированный облегченный тампонажный раствор с регулируемой плотностью не более 1650 кг/м3, затем аэрированный тампонажный раствор нормальной плотности не более 1950 кг/м3, причем необходимые плотности тампонажных растворов обеспечивают изменением водосмесевого отношения, интенсивностью и продолжительностью перемешивания, а продавку ведут до частичного вытеснения аэрированного облегченного тампонажного раствора из заколонного (межколонного) пространства продавочной жидкостью, нагретой до 50÷60°C в зимний период и при цементировании низкотемпературных скважин.

Группа изобретений относится к нефтепромысловым применениям, в частности к способам для устранения поглощения бурового раствора в забое скважины, в подземном резервуаре.

Изобретение относится к извлечению тяжелой нефти из подземного месторождения. Способ извлечения тяжелой нефти из подземного месторождения включает: закачивание наноэмульсии типа масло-в-воде в одну или более нагнетательных скважин, извлечение указанной тяжелой нефти из одной или более эксплуатационных скважин, где указанную наноэмульсию получают способом, включающим: получение однородной смеси (1) вода/нефтепродукт, отличающейся поверхностным натяжением не выше 1 мН/м, содержащей воду в количестве от 65% масс.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для повышения нефтеотдачи пластов. Состав для повышения нефтеотдачи пластов, включающий загуститель и моющий агент, содержит в качестве загустителя смесь рапсового и пальмового масел, в качестве моющего агента - ксилол при следующем соотношении компонентов, мас.%: рапсовое масло 90,0 - 95,0, пальмовое масло 3,0 - 8,0, ксилол 2,0 - 5,0.
Изобретение относится к нефтегазодобывающей промышленности и может найти применение при изменении фильтрационных характеристик пластов, при проведении гидроразрыва, разделении потоков жидкостей в скважине, очистке ствола скважин и других ремонтных работах.

Изобретение относится к композициям и способам для обработки подземного пласта. Способ включает вытеснение первого флюида на углеводородной основе, присутствующего в необсаженном интервале ствола скважины, вторым флюидом, контактирование второго флюида с кислым природным пластовым флюидом с образованием третьего флюида, где второй флюид содержит водную жидкость, диспергированную как дисперсная фаза в маслянистой жидкости, и поверхностно-активное вещество ПАВ на основе амина, выбранное так, что указанное контактирование протонирует, по меньшей мере, часть ПАВ с образованием третьего флюида, включающего эмульсию, содержащую маслянистую жидкость, обратимо диспергированную как дисперсная фаза в водной жидкости, где по меньшей мере 40 об.% каких-либо твердых веществ, не относящихся к проппанту, присутствующих во флюиде, являются водорастворимыми при рН меньше чем или равном 6,5, а ПАВ имеет указанную структуру.
Изобретение относится к нефтегазодобывающей промышленности, а именно к технологии изготовления керамических проппантов. Технический результат изобретения заключается в снижении разрушаемости гранул проппанта при сохранении низкой плотности материала.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи карбонатных коллекторов с различной проницаемостью, насыщенных высоковязкой нефтью.

Изобретения относятся к нефтегазовой промышленности. Технический результат - придание кислотному составу минимальной начальной вязкости при минимальном влиянии на реологическое поведение кислотного состава при истощении кислоты.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам приготовления составов для ликвидации заколонных перетоков в скважине. Технический результат - повышение технологичности и эффективности ликвидации заколонных перетоков в скважине за счет увеличения прочности и расширения диапазона времени отверждения состава на основе микроцемента.

Изобретение относится к вариантам способа исправления зоны внутри подземного, содержащего углеводороды пласта, чтобы задержать прорыв рабочей жидкости из нагнетательной скважины, имеющей первое значение давления забоя, через зону, которая простирается к эксплуатационной скважине, имеющей второе значение давления забоя, при этом разница между первым значением давления забоя и вторым значением давления забоя определяется как ΔPbh, причем зона содержит свободный поровый объем и/или область ореола, образованные за счет добычи углеводородов из эксплуатационной скважины, и позволяет создавать связь по давлению между нагнетательной скважиной и эксплуатационной скважиной посредством указанной зоны, такую что ΔPbh уменьшается по меньшей мере на 50 фунт/кв. дюйм (psi) за двенадцатичасовой период; причем способ включает в себя следующие операции: введение закупоривающей композиции в зону, содержащей цементный раствор, который может быть закачан в зону и подземный пласт; создание условий для схватывания закупоривающей композиции в зоне внутри подземного пласта в течение времени, достаточного для образования цементной пробки внутри зоны, чтобы снизить поток связи рабочей жидкости между нагнетательной скважиной и эксплуатационной скважиной через зону; введение предшественника геля в зону и создание условий для схватывания предшественника геля в течение времени, достаточного для образования пробки из геля внутри зоны, чтобы дополнительно снизить поток связи рабочей жидкости между нагнетательной скважиной и эксплуатационной скважиной. Изобретение развито в зависимых пунктах формулы изобретения. Технический результат - повышение эффективности способа. 2 н. и 38 з.п. ф-лы, 8 ил., 1 табл.
Наверх