Способ формирования тонкопленочных микромостиков

Изобретение относится к приборам с использованием сверхпроводимости, в частности к приборам с переходом между различными материалами с использованием эффекта Джозефсона. Указанный результат достигается тем, что предложен способ формирования тонкопленочных микромостиков, в котором наносят сверхпроводящий материал на подложку через маску, при этом в качестве маски используют пластины из тугоплавких материалов заданной геометрии, между остриями пластин при начальной фиксированной температуре T1 формируют величину первичного фиксированного зазора d1 и его геометрию, рассчитывают величину вторичного зазора, получаемой ширины микромостика d2 в зависимости от конечной фиксированной температуры T2 по формуле

d2=d1-{α1L1(T2-T1)+α2L2(T2-T1)}-α3{(L1+L2+d1)(T2-T1)},

где:

L1 - расстояние от линии фиксации первой пластины до зазора,

L2 - расстояние от линии фиксации второй пластины до зазора,

T1 - начальная фиксированная температура,

T2 - конечная фиксированная температура,

α1 - температурный коэффициент теплового расширения первой тугоплавкой пластины,

α2 - температурный коэффициент теплового расширения второй тугоплавкой пластины,

α3 - температурный коэффициент теплового расширения подложки, затем производят: нагрев, напыление или лазерную абляцию сверхпроводящего материала фиксированной длительности t и фиксированной энергии E, определяющих конечную фиксированную температуру T2. 1 з.п. ф-лы, 6 ил., 1 табл.

 

Изобретение относится к приборам с использованием сверхпроводимости, в частности к приборам с переходом между различными материалами с использованием эффекта Джозефсона.

Известен способ получения металлических микромостиков а.с. СССР №1485970, включающий электрохимическое травление металлического кристалла до образования узкого перешейка, соединяющего два массивных электрода, при этом перешеек расплавляют проходящим через него в режиме заданного напряжения током и выдерживают в расплавленном состоянии до уменьшения его размеров до заданной величины. Недостатком данного метода является невозможность его применения для сверхпроводимых микромостиков, поскольку при температуре плавления ВТСП пленок деградируют сверхпроводящие свойства и технологически трудно установить однозначную зависимость между толщиной микромостика и временем его плавления.

Известен способ формирования пленочных микромостиков из высокотемпературных сверхпроводников, патент РФ №2080693, включающий нанесение пленки высокотемпературного сверхпроводника и формирование в ней путем фотолитографии дорожки со слабой связью, при этом формирование слабой связи осуществляют облучением поперек дорожки сфокусированным электронным лучом с дозой облучения не менее 5*1019 см-2.

Недостатком данного решения является технологически трудно осуществимое регулирование параметров токов микромостика в зависимости от дозы облучения.

Кроме того, известно три традиционных метода формирования сверхпроводящих тонкопленочных микромостиков: фотолитография, ионно-лучевая литография, лазерное скрайбирование. При первом методе сверхпроводящая пленка подвергается химическому и термическому воздействию, что влияет на сверхпроводящие свойства микромостика, а сам процесс фотолитографии достаточно длительный и требует применения специальных масок, реактивов, обученного персонала. При втором методе требуется наличие сложного дорогостоящего оборудования и специальных масок. При лазерном скрайбировании сфокусированный лазерный луч оставляет следы реза на подложках и они становятся непригодными для повторного использования. Для этого их необходимо заново шлифовать и полировать.

Задачей настоящего изобретения является улучшение: технологичности, воспроизводимости, точности - получения заданных токов сверхпроводящих тонкопленочных микромостиков.

Указанный технический результат достигается тем, что предложен способ формирования тонкопленочных микромостиков, в котором наносят сверхпроводящий материал на подложку через маску, при этом в качестве маски используют пластины из тугоплавких материалов заданной геометрии, между остриями пластин при начальной фиксированной температуре T1 формируют величину первичного фиксированного зазора d1 и его геометрию, рассчитывают величину вторичного зазора, получаемой ширины микромостика d2 в зависимости от конечной фиксированной температуры T2 по формуле

d2=d1-{α1L1(T2-T1)+α2L2(T2-T1)}-α3{(L1+L2+d1)(T2-T1)},

где:

L1 - расстояние от линии фиксации первой пластины до зазора,

L2 - расстояние от линии фиксации второй пластины до зазора,

T1 - начальная фиксированная температура,

T2 - конечная фиксированная температура,

α1 - температурный коэффициент теплового расширения первой тугоплавкой пластины,

α2 - температурный коэффициент теплового расширения второй тугоплавкой пластины,

α3 - температурный коэффициент теплового расширения подложки, затем производят: нагрев, напыление или лазерную абляцию сверхпроводящего материала фиксированной длительности t и фиксированной энергии E, определяющих конечную фиксированную температуру T2.

Кроме того, при оптимальным варианте реализации способа пластины из тугоплавких материалов шлифуются под углом 15-30 градусов в месте образования микромостика, при этом шлифовка осуществляется только с одной стороны плоскопараллельной пластины.

Заявляемый способ заключается в том, что на подложке непосредственно формируется готовый микромостик или микромостики в той области, где необходимо исследовать свойства сверхпроводящей пленки или изготовить джозефсоновский переход. Над подложкой в требуемом месте, на которую напыляется сверхпроводящая пленка, с помощью специального нихромового держателя закрепляются затеняющие заостренные тонкие пластинки из плавленого кварца или оксида алюминия, как показано на фиг.1. Между остриями пластин выставляется микрозазор, такой что при температуре напыления 800-840°C с учетом термического расширения материала он будет соответствовать требуемому размеру формируемого сверхпроводящего мостика (фиг.2). Чтобы свести к минимуму уход толщины и размера мостика, тонкие пластинки плавленого кварца или оксида алюминия шлифуются тонким абразивом как ножи под углом 15-30 градусов в месте образования микромостика. Шлифовка осуществляется только с одной стороны плоскопараллельной пластинки. При такой подготовке их очень легко выставлять на подложку под измерительным микроскопом.

Способ позволяет формировать микромостики различной ширины от 2 мкм до 1 мм. Для примера на фиг.3-5 показаны фотографии микромостиков шириной 130, 40 и 15 мкм соответственно без ножевых шлифов.

Экспериментально обнаружено, что первичный зазор, выставленный между остриями пластин, оказывается больше, чем ширина сформированного микромостика, что связано с расширением материала экранирующих пластин при нагреве в печи вакуумной напылительной камеры, в результате чего зазор уменьшается. Такое термическое расширение пластин позволяет выращивать более узкие микромостики шириной порядка единиц микрометров.

Дополнительное расширение можно рассчитать по формуле

где α - температурный коэффициент теплового расширения; x0 - межатомное расстояние в положении равновесия; <x> - среднее межатомное расстояние при температуре T; g - коэффициент ангармоничности; β - коэффициент квазиупругой силы; kb - постоянная Больцмана.

В таблице 1 представлены коэффициенты линейного теплового расширения пластин монокристаллического и поликристаллического оксида алюминия.

Таблица 1.
Кристалл Диапазон температур, °C Коэффициенты линейного расширения
α1, град-1 α2, град-1 α3, град-1
Al2O3 - анизотропный кристалл 20÷50 6,66·10-6 5,0·10-6 5,0·10-6
52÷677 6,58·10-6 5,42·10-6 5,42·10-6
20÷1000 9,03·10-6 - -
Al2O3 - изотропный материал 20÷1000 8,4·10-6 - -

α1 - коэффициент расширения вдоль главной оси симметрии кристалла;

α2 и α3 - коэффициенты расширения перпендикулярно главной оси.

Для исключения влияния анизотропии коэффициента линейного расширения целесообразно использовать изотропные платины Al2O3. Тогда для пластины длиной L0=1 мм при температуре в напылительной камере T=840°C и соответствующем коэффициенте линейного расширения α=8,4·10-6 град-1 дополнительное приращение длины пластины из поликристаллического оксида алюминия дает значение ΔL=αL0ΔT=6,9 мкм.

На фиг.6 показана микрофотография и разъясняющая схема, экспериментально подтверждающая уширение затеняющей пластиной. В эксперименте использовались изотропные пластинки оксида алюминия длиной 6 мм. Сначала производилось напыление тонкой пленки при температуре 20°C, а затем при температуре 840°C производилось дополнительное напыление толстой пленки. Различная толщина пленок позволяет визуализировать смещение границы затеняющей пластины в результате теплового расширения. На фиг.6 слева, между метками 1 и 2, находится тонкая пленка, напыленная при температуре 20°C, а справа от метки 2 находится толстая пленка, напыленная при температуре 840°C. Ширина полосы тонкой пленки, определяемая уширением затеняющей пластины из оксида алюминия, составляет около 40 мкм, что хорошо согласуется с расчетными данными.

Таким образом решается задача изобретения - улучшение: технологичности, воспроизводимости, точности - получения заданных размеров и параметров сверхпроводящих тонкопленочных микромостиков.

1. Способ формирования тонкопленочных микромостиков, в котором наносят сверхпроводящий материал на подложку через маску, отличающийся тем, что в качестве маски используют пластины из тугоплавких материалов заданной геометрии, между остриями пластин при начальной фиксированной температуре T1 формируют величину первичного фиксированного зазора d1 и его геометрию, рассчитывают величину вторичного зазора, получаемой ширины микромостика d2 в зависимости от конечной фиксированной температуры T2 по формуле
d2=d1-{α1L1(T2-T1)+α2L2(T2-T1)}-α3{(L1+L2+d1)(T2-T1)},
где:
L1 - расстояние от линии фиксации первой пластины до зазора,
L2 - расстояние от линии фиксации второй пластины до зазора,
T1 - начальная фиксированная температура,
T2 - конечная фиксированная температура,
α1 - температурный коэффициент теплового расширения первой тугоплавкой пластины,
α2 - температурный коэффициент теплового расширения второй тугоплавкой пластины,
α3 - температурный коэффициент теплового расширения подложки,
затем производят: нагрев, напыление или лазерную абляцию сверхпроводящего материала фиксированной длительности t и фиксированной энергии E, определяющих конечную фиксированную температуру T2.

2. Способ по п.1, отличающийся тем, что пластины из тугоплавких материалов шлифуются под углом 15-30 градусов в месте образования микромостика, при этом шлифовка осуществляется только с одной стороны плоскопараллельной пластины.



 

Похожие патенты:

Изобретение направлено на повышение линейности усиления в гигагерцовом диапазоне частот без использования цепей обратной связи. СВЧ-усилитель на основе высокотемпературного СКВИДа включает идентичные и параллельно соединенные первый и второй джозефсоновские контакты, образованные в слое высокотемпературного сверхпроводника (ВТСП) и размещенные вдоль бикристаллической границы подложки, и входной индуктивный элемент, включенный между смежными токоподводами джозефсоновских контактов.

Использование: при производстве сверхпроводниковых интегральных схем (СПИС) различного назначения. Сущность изобретения: СПД на основе многослойной тонкопленочной гетероструктуры содержит два слоя сверхпроводника, образующих электроды, и прослойку с металлической проводимостью между ними из легированного металлом полупроводника.

Изобретение относится к криоэлектронным приборам и может быть использовано в измерительной технике. .

Изобретение относится к сверхпроводниковым устройствам и может быть использовано в радиотехнических информационных системах и вычислительной технике. .

Изобретение относится к криоэлектронным приборам и может быть использовано в измерительной технике, радиотехнических и информационных системах, работающих при низких температурах.

Изобретение относится к измерительной технике и может быть использовано в приемных системах для целей радиоастрономии, интроскопии и спектроскопии. .

Изобретение относится к области коммутационной электронной техники и энергетики и может быть использовано для переключения и ограничения токов в бытовых электронных устройствах, бытовых и промышленных электрических сетях, устройствах защитного отключения.

Изобретение относится к криоэлектронным приборам и может быть использовано в измерительной технике, радиотехнических и информационных системах, работающих при низких температурах.

Изобретение относится к криогенным приборам и может быть использовано в измерительной технике, радиотехнических и информационных системах, работающих при низких температурах.

Изобретение относится к криогенной радиотехнике и может быть использовано для усиления электрических сигналов в гигагерцовом диапазоне частот. .

Технический результат изобретения состоит в увеличении изменения амплитуды критического тока перехода под действием малого магнитного потока по сравнению с предыдущими геометриями, что открывает возможности для миниатюризации сверхпроводящих элементов памяти. Дополнительный технический результат изобретения состоит в возможности обеспечить достаточно высокую характерную частоту джозефсоновской гетероструктуры, и, как следствие, достаточно высокое быстродействие элемента памяти на ее основе. Высокочастотный сверхпроводящий элемент памяти, выполненный в планарной, торцевой или мостиковой геометрии, состоит из двух сверхпроводящих электродов и области слабой связи, включающей магнитные слои с непосредственной, туннельной или резонансной проводимостью и сверхпроводящий слой между ними. Отличие от известных ранее джозефсоновских SFS структур состоит в том, что при изменении направления намагниченности одного из магнитных слоев в сверхпроводящей пленке, локализованной в области слабой связи между магнитными слоями, происходит фазовый переход из нормального состояния в сверхпроводящее или из сверхпроводящего в нормальное. 15 з.п. ф-лы, 6 ил.

Изобретение относится к криогенной электронике, представляет собой джозефсоновский 0-π переключатель и может быть использовано в измерительной технике, радиотехнических и информационных системах, работающих при низких температурах, в устройствах сверхпроводниковой электроники. Устройство выполнено по планарной технологии и состоит из двух сверхпроводящих электродов и области слабой связи, включающей магнитный слой с непосредственной или резонансной проводимостью, слой изолятора и сверхпроводящий слой между ними, а также два вспомогательных сверхпроводящих подвода для задания тока через магнитный слой. Техническим результатом является изменение величины критического тока джозефсоновской гетероструктуры под действием малого токового сигнала по сравнению с предыдущими геометриями, а также возможность переключения между состояниями с разными знаками критического тока, возможность обеспечить достаточно высокую характерную частоту джозефсоновской гетероструктуры и, как следствие, достаточно высокое быстродействие элемента памяти на ее основе. 8 з.п. ф-лы, 4 ил.

Использование: для измерения слабых магнитных потоков. Сущность изобретения заключается в том, что флаксонный баллистический детектор включает генератор одноквантовых импульсов, приемник одноквантовых импульсов со схемой сравнения, две джозефсоновские передающие линии, соединяющие генератор и приемник, соединенные сверхпроводящей перемычкой, связанной магнитным образом с объектом исследования. Технический результат: обеспечение возможности реализации измерения сверхслабых сигналов. 6 з.п. ф-лы, 6 ил.

Использование: для создания сверхпроводникового джозефсоновского прибора. Сущность изобретения заключается в том, что сверхпроводниковый джозефсоновский прибор с композитной магнитоактивной прослойкой на основе тонкопленочной структуры имеет планарную геометрию из тонких пленок в виде гетероструктуры Sd-M-S (Sd - базовая пленка купратного сверхпроводника, М - композитная магнитоактивная прослойка, S - верхний сверхпроводящий электрод), сформированный на подложке из кристалла NdGaO3 с ориентацией (110), в качестве базовой пленки Sd используется эпитаксиально выращенная пленка сверхпроводящего купрата YBa2Cu3O7-δ, в качестве композитного магнитоактивного слоя М используются последовательно осаждаемые пленки рутената стронция SrRuO3 (SRO) толщиной dSRO и оптимально допированного манганита La0.7Sr0.3MnO3 (LSMO) толщиной dLSMO, а в качестве верхнего электрода S используется сверхпроводящая тонкопленочная двуслойка AuNb, толщины SRO и LSMO пленок определяются числом импульсов лазерной абляции, обеспечивая расчетное соотношение dSRO и dLSMO относительно соответствующих длин когерентности ξF в SRO и LSMO, толщина композитной пленки dM=dSRO+dLSMO может варьироваться от единиц до десятков нанометров, толщина Au в верхнем электроде AuNb должна обеспечивать сверхпроводящий эффект близости и составляет величину порядка нескольких единиц нанометров, при этом тонкопленочная топология прибора формируется вместе со сверхпроводниковой тонкопленочной антенной из пленок Sd и S, расположенных на той же подложке, а планарный размер L Sd-M-S структуры (в плоскости слоев) варьируется от долей до десятков микрометров. Технический результат: обеспечение возможности создания сверхпроводникового джозефсоновского прибора. 4 ил.

Использование: для изготовления устройства с субмикронным джозефсоновским π-контактом. Сущность изобретения заключается в том, что способ изготовления устройства с субмикронным джозефсоновским π-контактом заключается в том, что в качестве слабой связи джозефсоновского перехода используют единичный нанопровод, сформированный из последовательно чередующихся магнитных и немагнитных участков таким образом, что магнитный участок имеет субмикронные размеры во всех направлениях X, Y, Z, где Z - направлен вдоль нанопровода, а немагнитные участки выполнены из сверхпроводящего материала или из нормального металла с большими длинами когерентности ξN, который помещают горизонтально на подложку и подводят к немагнитным участкам сверхпроводящие контакты. Технический результат: обеспечение возможности достижения более высоких значений электрофизических параметров. 9 з.п. ф-лы, 2 ил.

Использование: для создания джозефсоновского магнитного поворотного вентиля. Сущность изобретения заключается в том, что джозефсоновский магнитный поворотный вентиль включает два сверхпроводящих электрода с токоподводами и область слабой связи между ними в виде тонкопленочной слоистой структуры, содержащей: промежуточный сверхпроводящий слой, отделенный от нижнего сверхпроводящего электрода слоем изолятора; нанесенный на часть промежуточного сверхпроводящего слоя слой нормального металла; слой магнитного материала, нанесенный как на слой нормального металла, так и на оставшуюся не закрытой последним поверхность промежуточного сверхпроводящего слоя с образованием границы между слоем нормального металла и слоем магнитного материала. Технический результат: обеспечение возможности увеличения изменения амплитуды критического тока перехода под действием малого магнитного потока. 2 н. и 22 з.п. ф-лы, 5 ил.

Использование: для создания элементов быстрой криогенной памяти. Сущность изобретения заключается в том, что джозефсоновский фазовый доменный вентиль включает два расположенных на подложке друг под другом сверхпроводящих электрода с токоподводами и область слабой связи между ними в виде тонкопленочной слоистой структуры, содержащей: промежуточный слой сверхпроводящего материала с токоподводами, толщина которого лежит в диапазоне от 20 до 60 нм, отделенный от нижнего сверхпроводящего электрода слоем изолятора; нанесенный на часть тонкого промежуточного слоя сверхпроводящего материала слой нормального металла, толщина которого лежит в диапазоне от 1 до 20 нм; слой магнитного материала, нанесенный на оставшуюся не закрытой слоем нормального металла поверхность тонкого промежуточного слоя сверхпроводящего материала, толщина которого лежит в диапазоне от 1 до 20 нм. Технический результат: обеспечение возможности переключения между устойчивыми состояниями вентиля без изменения намагниченности в слое магнитного материала, что обеспечивает достаточно малое время на реализацию операции записи. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к криогенной радиоэлектронике, в том числе к активным широкополосным устройствам, и может быть использовано для приема и усиления электромагнитных сигналов в диапазоне частот от единиц герц до 10 ГГц. Сверхпроводящая квантовая решетка на основе СКИФ-структур содержит две соединенные дифференциально последовательные цепочки СКИФ-структур, состоящих из параллельно соединенных джозефсоновских контактов, средство задания магнитного поля смещения, подключенное индуктивным образом к каждой СКИФ-структуре, сверхпроводящий трансформатор и средства задания постоянного тока питания и измерения напряжения. Технический результат изобретения состоит в повышении уровня выходного сигнала и линейности преобразования магнитного сигнала в отклик напряжения за счет использования многоэлементных джозефсоновских структур, состоящих из двух дифференциально соединенных последовательных цепочек СКИФ-структур, конструкция, рабочие режимы и характеристики которых подобраны определенным образом, описанным в изобретении. 9 з.п. ф-лы, 4 ил.

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из кристаллического изолирующего материала, обратная сторона которой выполнена шероховатой с размерами неоднородностей, соизмеримыми с длиной звуковой волны субтерагерцового диапазона в кристаллической подложке, согласно изобретению введены поглощающие резисторы, изготовленные из материала с удельным сопротивлением в диапазоне 2-50 мкОм⋅см, расположенные в микрополосковой линии вокруг генератора, позволяющие увеличить параметр затухания α в РДП, что обеспечивает дополнительное поглощение и тем самым подавление ступеней Фиске в резонансном режиме работы. Технический результат: обеспечение возможности плавной перестройки генератора и сохранения оптимальной ширины линии генерации во всем диапазоне частот для реализации системы ФАПЧ. 5 з.п. ф-лы, 8 ил.
Наверх