Способ определения состояния поверхности дороги



Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги
Способ определения состояния поверхности дороги

 


Владельцы патента RU 2550778:

Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН (RU)

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны. Зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги. 2 ил.

 

Изобретение относится к измерительной технике и может быть применено для бесконтактного определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Известны различные способы определения состояния дорожных покрытий, основанные на различных принципах и связанные с измерением электрической емкости (US 5398547, 21.03.1995), электрической проводимости и сопротивления (US 4745803, 24.05.1988; US 4287472, 01.09.1981), с применением ультразвуковых волн (US 5095754, 17.03.1992), световых волн, в частности, инфракрасного излучения и др. (Winter В. Sensoren warnen vor Wasser oder Eis auf der Strasse // Sensor magazine. 1998. N.2. P.8). Однако они имеют определенные недостатки: некоторые из них являются контактными способами и характеризуются износом компонент применяемых измерительных устройств, связаны с применением линий связи между датчиками и электронными блоками; другие способы, являясь бесконтактными, чувствительны к погодным условиям и не могут определять толщину водного слоя.

Известны также микроволновые способы определения состояния дорожного покрытия (US 4690553, 01.09.1987; US 5686841, 11.11.1997; Hertl S., Schaffar G., Stori H. Contactless determination of the properties of water films on road // Journal of Physics E.: Scientific Instruments. 1988. Vol.21. N.10. P.955-958). Эти способы и реализующие их устройства позволяют производить бесконтактные измерения, определять и идентифицировать наличие воды, снега или льда на поверхности дорожного полотна и измерять их толщину. Однако известные способы имеют существенный недостаток: они не обеспечивают высокую точность измерения толщины слоя вещества (воды, снега или льда), который может быть очень тонким. Кроме того, эти способы достаточно сложны и имеют высокую стоимость реализации.

Известен также способ (US 5497100, 05.03.1996), который заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, получении множества значений амплитуд разностных сигналов, соответствующих принимаемым и излучаемых волнам, сравнении данного множества с множеством известных моделей поверхности и определении состояния дороги по результатам этого сравнения. Данный способ характеризуется невысокой точностью и сложен в реализации: процесс получения полезной информации связан со сложной функциональной обработкой принимаемых сигналов.

Известно также техническое решение (RU 2473888 C1, 27.01.2013), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, встраивании в поверхностный слой контролируемого участка дороги резонатора с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измерении мощности отраженных от резонатора и принимаемых электромагнитных волн и по суждении о состоянии поверхности дороги по величине частоты, соответствующей минимуму принимаемой мощности. При этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.

Данный способ, как и вышеупомянутые способы, сложен в реализации: процесс получения полезной информации связан с применением генератора частотно-модулированных колебаний, со сложной функциональной обработкой принимаемых сигналов. Также необходимо применение пассивного резонатора - отражателя электромагнитных волн, встраиваемого в полотно дороги на его измерительном участке, что также усложняет реализацию данного способа.

Поэтому существует необходимость нахождения технического решения, свободного от указанных недостатков и обеспечивающего возможность проведения измерений более простыми средствами.

Техническим результатом настоящего изобретения является упрощение процесса определения состояния покрытия дороги.

Технический результат в предлагаемом способе определения состояния поверхности дороги достигается тем, что контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, при этом зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

Предлагаемый способ поясняется чертежами.

На фиг.1 приведена схема размещения устройства для реализации способа.

На фиг.2 изображена структурная схема устройства для реализации способа.

На чертежах показаны СВЧ-устройство 1, штанга 2, дорожное покрытие 3, слой воды, льда или снега 4, генератор 5, детектор 6, антенна 7.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу контролируемый участок поверхности дороги зондируют по нормали к ней электромагнитными волнами фиксированной частоты, принимают отраженные от этого участка поверхности электромагнитные волны, производят смешение зондирующих и принимаемых электромагнитных волн. Производят измерение фазового сдвига зондирующих и отраженных волн с применением гомодинной интерференционной измерительной системы на выходе ее смесителя. При этом предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.

В отсутствие какого-либо покрывающего слоя на поверхности дороги этот основной фазовый сдвиг определяется изменением фазы в воздушном пространстве между измерительным устройством и поверхностью дороги. При наличии же какого-либо слоя на поверхности дороги, а именно присутствием на ней слоя воды, льда или снега, появляется дополнительный фазовый сдвиг по отношению к указанному основному фазовому сдвигу. Напряжение на выходе смесителя данного измерительного устройства зависит от величины суммарного фазового сдвига. Этот фазовый сдвиг изменяется в зависимости от толщины покрывающего поверхность дороги слоя. Он также зависит и от электрофизических параметров, в частности диэлектрической проницаемости покрывающего слоя (воды, льда или снега).

В отсутствие какого-либо слоя на поверхности дороги амплитуда I0 принимаемого сигнала, соответствующего интерференции зондирующих и отраженных волн, есть:

где m - волновое число, φ - основной фазовый сдвиг волн в воздушном пространстве, K - постоянный коэффициент.

Если на поверхности дороги имеется слой воды, льда или снега, то амплитуда I принимаемого сигнала есть:

Здесь Δφ - дополнительный фазовый сдвиг, вызванный присутствием покрывающего слоя (воды, льда или снега) на поверхности дороги.

Как следует из (1) и (2), разность между I0 и I выражается так:

Если Δφ<φ≈π/2, то

Дополнительный фазовый сдвиг Δφ выражается через параметры поверхностного слоя дороги:

где β=2πf√ε/c - волновое число для слоя, f - частота, c - скорость света в свободном пространстве, ε - диэлектрическая проницаемость контролируемого поверхностного слоя.

Величина дополнительного фазового сдвига Δφ изменяется с изменением параметров (толщины, фазового состояния вещества, примесей в нем, температуры) покрывающего дорогу слоя. Поэтому данные параметры возможно определить по характеристикам интерференционной картины зондирующих и отраженных волн.

Используя соотношение (5), можно найти величину фазового сдвига Δφ для различных состояний поверхности дороги, характеризуемых присутствием слоя воды или льда. В частности, можно зафиксировать переход слоя воды в ледяной слой, что является важным информативным параметром.

Для слоя льда (ε=3,1) и при f=10,525 ГГц из формулы (5) следует

где d выражается в метрах (м). If d=1 мкм, то Δφ=0,02°; если d=1 мм, то Δφ=20°.

Для водного слоя (ε≈80) и f=10,525 GHz получим

где d выражается в метрах (м). Если d=1 мкм, то Δφ=0.11°; если d=1 мм, то Δφ=110°.

Эти оценки показывают, что слои вода и льда на поверхности дороги могут быть обнаружены и идентифицированы, производя измерения фазового сдвига Δφ.

На фиг.1 приведено СВЧ-устройство 1 для реализации данного способа. Устройство может быть закреплено на конце штанги 2 и размещено над измерительным участком поверхности дороги 3, обеспечивая зондирование этого участка по нормали к нему. Для размещения устройства могут быть также использованы, при наличии и такой возможности, существующие мосты над дорогами.

СВЧ-устройство 1 может быть применено для определения состояния поверхности дороги 3 (например, асфальта) с возможным слоем 4 воды, льда или снега посредством определения фазового сдвига зондирующих и отраженных электромагнитных волн. Устройство 1 содержит генератор 5 на диоде Ганна и смесительный диод в качестве детектора 6 (фиг.2). С помощью антенны 7 (в простейшем случае - это открытый конец волновода) излучаются электромагнитные волны, которые направляются в сторону поверхности дороги 3 по нормали к ней. Отраженные волны поступают на детектор 6. Их частота остается равной частоте излучаемых волн; интерференция зондирующих и отраженных волн образует соответствующую картину стоячих (точнее, смешанных) волн в пространстве распространения этих волн, что регистрируется детектором 6.

Согласно данному способу предварительно определяют основной фазовый сдвиг φ зондирующих и отраженных волн в воздушном пространстве в отсутствие покрывающего слоя на поверхности дороги, затем определяют дополнительный фазовый сдвиг Δφ этих волн при наличии этого слоя и по величине дополнительного фазового сдвига Δφ по отношению к основному фазовому сдвигу φ судят о состоянии поверхности дороги.

Разностный сигнал на выходе детектора 6 соответствует указанной интерференции зондирующих и отраженных волн. Амплитуда этого выходного сигнала фиксируется с применением смесительного диода; его выходной сигнал есть напряжение постоянного тока, зависящее от измеряемой толщины воды или льда на поверхности дороги (или соответствующее их отсутствию). Параметры генератора могут быть, в частности, следующими: частота 10,525 ГГц, выходная мощность 8 мВ, напряжение источника питания +8 В.

Для определения состояния поверхности дороги, обусловленного наличием на ее поверхности слоя осадков или его отсутствием, необходимо знать электрофизические параметры возможных веществ на его поверхности - воды, снега и льда в СВЧ-диапазоне частот электромагнитных волн. Поскольку электрофизические параметры воды, снега и льда существенно отличаются от единицы (что соответствует отсутствию такого слоя на дороге) и друг от друга (Nyfors E.G., Vainikainen P. Industrial microwave sensors. Artech House, Inc. 1989. 351 p.), то значения фазового сдвига Δφ и диапазон его изменения существенно отличаются при наличии того или иного слоя на поверхности дороги или при его отсутствии. Это позволяет как определить, какой вид слоя осадков (вода, снег или лед) присутствует на дороге (или отсутствует), а также, по величине изменения Δφ, найти его толщину.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью определять состояние поверхности дороги. Он дает возможность фиксировать наличие или отсутствие на поверхности дороги слоя воды, снега или льда и производить их идентификацию.

Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что зондирование осуществляют электромагнитными волнами фиксированной частоты, производят смешение зондирующих и принимаемых электромагнитных волн, предварительно определяют основной фазовый сдвиг этих волн в отсутствие покрывающего слоя на поверхности дороги, затем определяют фазовый сдвиг этих волн при наличии этого слоя и по величине дополнительного фазового сдвига по отношению к основному фазовому сдвигу судят о состоянии поверхности дороги.



 

Похожие патенты:

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности до поверхности земли, использующих принцип отражения радиоволн (радиодальномеры или дальномеры).
Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных помех. Достигаемый технический результат - формирование признаков импульсной и, в частности, синхронной ответной помехи и ее распознавание на любой дальности.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения.

Изобретение относится к радиотехническим средствам приема и передачи сигналов, в частности к RFID-считывателям систем распознавания объектов. Техническим результатом является повышение чувствительности приемного канала приемно-передающего тракта считывателя за счет введенного устройства компенсации, осуществляющего компенсацию паразитного отраженного излучения в приемном канале считывателя.

Изобретение относится к области радиолокации. Достигаемый технический результат - повышение качества обнаружения и сопровождения воздушных объектов.

Изобретения относятся к области радиолокации. Достигаемый технический результат - распознавание импульсов помехи, в том числе импульсов ответной помехи в потоке принимаемых сигналов от источников радиоизлучений.

Изобретение относится к области радиолокации. Достигаемый технический результат - увеличение дальности обнаружения целей и снижение вероятности ложных тревог за счет использования совместной обработки сигналов на нескольких несущих частотах.

Настоящее изобретение относится в целом к погрузочно-разгрузочным устройствам и в частности к системам и способам, объединяющим данные по зонам обнаружения в дополнительные беспроводные средства дистанционного управления погрузочно-разгрузочными устройствами.

Изобретение относится к радиолокации и предназначено для измерения радиолокационных характеристик целей. Технический результат изобретения - устранение погрешностей измерения элементов матрицы рассеяния, вызванных условиями двухпозиционного приема, за счет применения волноводного направленного разделителя поляризаций и приемно-передающей антенны с вертикальной и горизонтальной поляризациями излучения, которые обеспечивают однопозиционные условия измерения матрицы рассеяния с абсолютной фазой цели.

Изобретение относится к СВЧ технике, а именно к РЛС с программируемой временной диаграммой и способам их функционирования. Техническим результатом изобретения является создание РЛС с программируемой в реальном времени временной диаграммой и программируемым в реальном времени зондирующим сигналом и способа ее функционирования с увеличенной универсальностью в смысле выполняемых ими задач, которые позволяют снять многие ограничения системы обработки сигнала, при этом обеспечив выполнение ряда новых задач, к которым относятся: увеличение дальности действия РЛС при ограниченной пиковой мощности передатчика; повышение вероятности обнаружения малоразмерных объектов на фоне неоднородной подстилающей поверхности за счет улучшения селекции по доплеровской скорости с использованием сложных сигналов разной базы; уменьшение мертвой зоны для обнаружения близко расположенных объектов.

Изобретение относится к медицине, а именно к терапевтической стоматологии, и может быть использовано для контроля эндодонтического лечения постоянных зубов. Проводят исследование кривизны корневого канала зуба на конусно-лучевом компьютерном томографе «Picasso Trio» с программой Ezlmplant.

Изобретение относится к области противодействия терроризму и может быть использовано в системах защиты объектов. Устройство обнаружения носимых осколочных взрывных устройств содержит СВЧ передающее устройство с частотой f1, СВЧ передающее устройство с частотой f2, СВЧ приемное устройство комбинационных частот второго порядка, СВЧ приемное устройство комбинационных частот третьего порядка.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам.

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии, заполняемого контролируемой жидкостью, между полым внутренним и наружным проводниками которого размещена совокупность одного или более соосных с ними и вложенных один в другой металлических цилиндров, поочередно короткозамкнутых и разомкнутых на одном из их концов, и эталонный чувствительный элемент в виде второго резонатора, заполняемого эталонной жидкостью, являющегося полостью внутреннего проводника первого резонатора, при этом оба резонатора подключены через соответствующие элементы возбуждения и съема колебаний и линии связи этих резонаторов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя, подсоединенного выходом к индикатору.

Изобретение относится к измерительной технике и может быть использовано для исследования биологических объектов. Приемное устройство радиометра включает в себя по меньшей мере один радиометр (83) и установочный модуль (824) для фиксации радиометра (83).

Предложенное изобретение относится к способу обнаружения минерала в целевом материале, способу сортировки сырьевого потока материла и устройству для определения присутствия целевого минерала в материале.

Настоящее изобретение относится к детектору микроволнового излучения для измерения внутренней температуры образца белковосодержащего вещества, например мяса. Заявлено устройство тепловой обработки, предназначенное для тепловой обработки белковосодержащих пищевых продуктов (3) и включающее детектор (1) микроволнового излучения для измерения внутренней температуры белковосодержащего пищевого продукта (3), средство перемещения для транспортировки продуктов (3) через устройство в направлении перемещения (y-направление), так что продукты (3) проходят под неподвижным детектором (1), и средства воздействия на тепловую обработку, управляемые по сигналу детектора (1).

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2 Oм-1·м-1÷107 Ом-1·м-1.Заявленное устройство содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε 〈 〈 λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины.

Использование: для контроля человеческого тела посредством волн миллиметрового диапазона. Сущность изобретения заключается в том, что устройство обнаружения миллиметровых волн включает в себя оптические устройства (30, 50, 60), используемые для приема излучения миллиметровых волн от обнаруживаемого объекта и сбора принимаемых миллиметровых волн; радиометрическое приемное устройство (80), используемое для приема энергии собранных миллиметровых волн и преобразования энергии миллиметровых волн в электрический сигнал; и устройство формирования изображения, используемое для формирования температурного изображения обнаруживаемого объекта в соответствии с электрическим сигналом.

Изобретение относится к системе для определения объема фрезерованного материала или площади поверхности, фрезерованной строительной машиной, имеющей фрезерный барабан.
Наверх