Способ получения водорастворимого стекла


 


Владельцы патента RU 2550884:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") (RU)

Изобретение может быть использовано для производства жидкого стекла, применяемого в качестве вяжущего, добавки или реагента в строительной, химической, машиностроительной, текстильной и бумажной отраслях промышленности. Водорастворимое стекло получают путём взаимодействия шихты из кремнезёма и природного сульфата натрия или сульфатных отходов химических производств при варке их шихты в кольцевой циклонной камере с варочным бассейном. Двухкомпонентную сульфатную шихту подают в кольцевую циклонную камеру через тангенциально установленные фурмы, а процесс варки растворимого стекла осуществляют при температуре 1450÷1550 °C. Изобретение позволяет упростить и удешевить производство растворимого стекла. 1 ил., 3 табл.

 

Изобретение относится к области производственных технологий получения растворимых стекол, используемых для производства жидкого стекла, применяемого в качестве вяжущего, добавки или реагента в строительной, химической, машиностроительной, текстильной, бумажной промышленности и других отраслях производственной деятельности.

Наиболее распространенным способом производства растворимых стекол является варка силикат-глыбы их двухкомпонентной содовой шихты в ванных стекловаренных печах непрерывного действия, имеющих ряд недостатков: значительный расход огнеупоров, низкая энергетическая эффективность, большие капитальные затраты, эксплуатационные расходы и др. Полученная из печи стекломасса охлаждается проточной водой. Далее силикат-глыбу подвергают растворению в воде в автоклавах для производства жидкого стекла. Стоимость соды в 2-3 раза больше стоимости сульфата натрия. Наряду с этим ежегодно в ряде отраслей (химической, металлургической и др.) существует проблема утилизации накоплений сульфатсодержащих отходов, исчисляемых суммарно десятками млн т.

Известен способ получения растворимого стекла (патент РФ №2151100, 1997) из отходов химического производства моющих средств, содержащих сульфат натрия, и кремнезема, путем нагревания их смеси факелом природного газа до температуры плавления в ванной стекловаренной печи или печи вращающегося типа. Содержание в отходах производства моющих средств углеводородных примесей позволяет создавать восстановительную среду, в которой протекает реакция восстановления сульфата натрия (Na2SO4) до оксида натрия (Na2O) и диоксида серы (SO2), интенсифицирующий процесс синтеза без дополнительного ввода углеродного топлива. Образующиеся оксиды натрия в процессе плавки взаимодействуют с кремнеземом, образуя растворимое стекло. Выделяющийся сернистый газ утилизируется путем получения из него, например, строительного гипса (в данном процессе не рассматривается).

Недостатком данного способа является использование только отходов химических производств моющих средств, содержащие углеродные примеси, при этом используются варочные технологии, обладающие низкой энергетической эффективностью.

Наиболее близким к предлагаемому техническому решению является способ производства растворимого стекла из сульфатной шихты, подаваемой через вертикальные фурмы, число которых равно числу горелок, в кольцевую циклонную камеру, где нагрев шихты происходит в газовой взвеси вихрем высокотемпературных продуктов горения природного газа. Под действием центробежных сил расплав оседает на стенках циклонной камеры, по которым стекает в бассейн в виде пленки с зернами песка. Реакция восстановления сульфата натрия до оксида натрия и диоксида серы проходит с газовым восстановителем, полученным при неполном сжигании природного газа. Одновременно идет реакция образования силикат-глыбы. Провар шихты завершается в интенсивно перемешиваемом вихрем бассейне. Полученная из печи стекломасса сливается и гранулируется в потоке стекающей по лотку воды. (Ю.В. Троянкин, О.В. Филькова, В.М. Смирнов. Конструирование проточной части кольцевых циклонных камер для получения силикатных расплавов. // Стекло и керамика. 2002. №7. С.9-10.).

Недостатками этого способа является использования газового восстановителя, полученного при неполном сжигании природного газа, что усложняет технологический процесс производства силикат-глыбы из-за необходимости дожигания отходящих горючих газов из кольцевой циклонной камеры, что в результате приводит к увеличению стоимости и снижению энергетической эффективности производства конечной продукции.

Техническая задача заключается в упрощении и удешевлении производства растворимого стекла.

Технический эффект, получаемый при решении технической задачи, состоит в повышении энергетической эффективности при производстве водорастворимого стекла путем исключения необходимости использования каких-либо восстановителей в процессе варки шихты, и достигается тем, что в известном способе получения водорастворимого стекла, основанном на взаимодействии кремнезема и природного сульфата натрия или сульфатных отходов химических производств при варке их шихты в кольцевой циклонной камере с варочным бассейном, согласно изобретению, шихту из кремнезема и природного сульфата натрия или сульфатных отходов химических производств подают через тангенциально установленные фурмы в кольцевую циклонную камеру, процесс варки растворимого стекла осуществляют при температуре 1450-1550°C. При этом процесс не нуждается в использовании восстановителей.

Поставленная задача решается путем тангенциальной подачи двухкомпонентной сульфатной шихты в объем кольцевой циклонной камеры через тангенциально установленные фурмы, число которых равно числу горелок, также расположенных тангенциально внутренней стенке кольцевой циклонной камеры, и осуществлении варки шихты при температуре 1450-1550°C высокотемпературными продуктами горения природного газа.

На чертеже представлен ИК-спектр сваренного силиката натрия из сульфатной шихты.

В настоящее время затруднительно проведение опытных исследований и сбора экспериментальных данных по предлагаемому способу получения растворимого стекла. Результаты процесса варки силикат-глыбы из двухкомпонентной сульфатной шихты без использования восстановителя были получены путем выполнения термодинамического анализа реакций варки трехмодульной силикат-глыбы в интервале температур от 1300°C до 1600°C, а также экспериментальных исследований варки трехмодульной силикат-глыбы на двух установках в интервале температур от 20 до 1650°C: синхронный термический анализатор STA 449 Jupiter F1 фирмы NETZSCH (Германия) и электрическая печь Nabertherm HT08/17 (Германия). В работе для варки силикат-глыбы использовался песок кварцевый марки ВС-040-1 по ГОСТ 22551-77, натрий сернокислый х/ч по ГОСТ 4166-76. Для анализа завершенности формирования силикат-глыбы и ее однородности использовались: рентген микроанализатор JCXA-733 JEOL «Superprobe» INCA Energy SEM 300 фирмы Microanalysis System (Япония) и Фурье-ИК спектрометр серии TENSOR фирмы Bruker Optik (Германия). Проведенные расчетно-экспериментальные исследования показали, возможность получения силикат-глыбы при температурах варки 1450-1550°C, отвечающей требования ГОСТ-13079 «Силикат натрия растворимый».

Примеры химических составов исходных сырьевых материалов для производства растворимого стекла из двухкомпонентной стекольной шихты представлены в табл.1 и 2. В табл.3 приведен состав шихты для получения растворимого стекла с силикатным модулем 3,2.

Таблица 1
Химический состав исходных сырьевых материалов
№ п/п Наименование сырьевого материала Содержание оксида, % (масс.)
SiO2 Al2O3 Fe2O3 CaO+MgO Na2SO4 Прочие
1 Натрий сернокислый ГОСТ 4166-76 - - - - 99,5 0,5
2 Песок марки ВС-040-1 ГОСТ 22551-77 98,5 0,6 0,04 - - 0,86
Таблица 2
Химический состав исходных сырьевых материалов
№ п/п Наименование сырьевого материала Содержание оксида, % (масс.)
SiO2 Al2O3 Fe2O3 FeO Na2CO3 Na2SO4 NaCl Прочие
1 Сульфатные отходы Волгоградского алюминиевого завода 0,28 0,17 - 0,02 5,9 92,4 1,2 0,03
2 Песок марки ВС-040-1 ГОСТ 22551-77 98,5 0,6 0,04 - - - 0,86
Таблица 3
Состав шихты для получения растворимого стекла
№ п/п Компонент шихты Содержание компонента, %
1 Натрий сернокислый 42
2 Песок 58

Способ получения водорастворимого стекла, основанный на взаимодействии шихты из кремнезема и природного сульфата натрия или сульфатных отходов химических производств при варке их шихты в кольцевой циклонной камере с варочным бассейном, отличающийся тем, что шихту из кремнезема и природного сульфата натрия или сульфатных отходов химических производств подают через тангенциально установленные фурмы в кольцевую циклонную камеру, процесс варки растворимого стекла осуществляют при температуре 1450÷1550°C.



 

Похожие патенты:
Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов. Способ получения высокомодульного жидкого стекла включает приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении.
Изобретение относится к технологии изготовления жидкого стекла. Кремнеземсодержащее вещество смешивают с раствором гидроксида натрия.
Изобретение относится к технологии получения жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных и других изделий.

Изобретение относится к покрытиям для антикоррозионной защиты металлических конструкций и может быть использовано для всех металлических конструкций, подвергающихся воздействию агрессивных сред, в частности к системе для антикоррозионного покрытия морских судов и плавающих платформ в условиях высокоминерализованной морской воды и ультрафиолетового облучения солнечного спектра.

Изобретение может быть использовано в химической и нефтехимической промышленности, в сельском хозяйстве, строительстве, энергетике, добыче полезных ископаемых, а также в объектах военного и космического назначения.

Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных изделий и в производстве цинк-силикатных антикоррозионных покрытий.

Изобретение относится к получению композиций гидратированных силикатов щелочных металлов для изготовления разбухающих слоев огнестойкого остекления. Предложен способ получения композиций гидратированных силикатов щелочных металлов, содержащих SiO2/M2O в мольном отношении в интервале между 3 и 7, в котором они превращаются в твердый гель без сушки, из стабильного и жидкого раствора дегидратацией, снижающей содержание воды по весу на 14% максимум, проводимой при температуре не выше 60ºС при давлении от 1 до 100 гПа.
Изобретение может быть использовано в химической промышленности. Жидкое стекло получают взаимодействием в замкнутом контуре водосодержащего потока с потоком расплава силиката натрия с силикатным модулем 2,0-3,5.
Изобретение относится к технологии получения жидкого натриевого стекла, применяемого в строительстве, металлургии, в производстве бумаги, синтетических моющих средств, клеев, пропиток, замазок, катализаторов, электродов, адсорбентов, в процессах флотации, а также, для получения кремнекислотных наполнителей и высокодисперсного диоксида кремния.

Изобретение относится к области открытия способа (технологического процесса) получения твердых кристаллов/гранул вещества динатриевой соли кремниевой кислоты пятиводной, шестиводной, девятиводной (натрия метасиликата, торговое название) из такого сырья, как диоксид кремния (кварц, а также любое кремнесодержащее сырье, кремневые отходы иных производств) и карбоната натрия (соды кальцинированной - торговое название).

Изобретение может быть использовано для получения носителей катализаторов, ионообменных материалов, сорбентов, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления пигментов, для получения пищевых добавок. Способ включает взаимодействие раствора силиката натрия или калия с раствором соли алюминия, отделение образовавшегося осадка, промывание его водой и термообработку. Раствор силиката натрия или калия получают путем обработки рисовой шелухи или соломы 4-10% раствором гидроксида натрия или калия при температуре 70-90°C в течение 40-60 мин с последующим отделением нерастворившегося остатка растительного сырья. В качестве раствора соли алюминия используют насыщенный водный раствор сернокислого алюминия Al2(SO4)3·18H2O в количестве, обеспечивающем нейтральное значение pH реакционной смеси. Образовавшийся осадок целевого продукта после отстаивания промывают водой до полного удаления сульфат-ионов и подвергают термической обработке при температуре 150-600°C. При использовании гидроксида натрия осадок отстаивают в течение не менее 5 часов, а при использовании гидроксида калия осадок отстаивают в течение не менее 1 часа. Технический результат - упрощение способа и повышение его безопасности для здоровья человека и окружающей среды при одновременном расширении сырьевой базы. 2 з.п. ф-лы, 6 ил., 3 пр.
Изобретение может быть использовано в химической, металлургической, текстильной, бумажной и лакокрасочной промышленности. Сначала в измельченный до крупности менее 50 мкм кварц добавляют нерастворимый кварцевый песок крупностью -0,15+0,05 мм в количестве 5-20% от массы кварца и растворяют в растворах щелочей при температуре 120-170°C и давлении до 0,8 МПа. Полученную суспензию охлаждают и фильтруют. Растворы щелочей можно готовить непосредственно перед получением растворов силикатов щелочных металлов и силиката аммония. В фильтрат можно добавить аморфный кремнезем для повышения модуля. Получают чистые растворы силикатов щелочных металлов и силиката аммония, а также их смесей, с модулем 1-4,5, плотностью 1100-1500 кг/м3 и вязкостью 50-10000 мПа·с. 2 з.п. ф-лы, 1 пр.

Изобретение относится к способу преобразования углерода в оксид углерода. Данный способ включает приведение углерода в контакт с паром в присутствии материала со структурой типа карнегиита, имеющего формулу (Na2O)xNa2[Al2Si2O8], где 0<х≤1. Предлагаемый способ позволяет эффективно снизить количество коксовых отложений. Изобретение также относится к способу крекинга углеводородов, а также устройству для крекинга углеводородов. 3 н. и 17 з.п. ф-лы, 4 ил., 2 табл., 4 пр.
Наверх