Способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л. Изобретение обеспечивает увеличение чувствительности и экспрессности способа определения липоевой кислоты в таблетированной форме БАД методом катодной вольтамперометрии. 1 табл., 1 пр., 3 ил.

 

Изобретение относится к области количественного определения липоевой кислоты с выраженными антиоксидантными свойствами в биологически активных добавках к пище. Метод определения - катодная вольтамперометрия.

Липоевая кислота (α-липоевая кислота, 3-(4-карбоксибутил)-1,2-дитиолан, тиоктовая кислота или липоиковая кислота) является коферментом, участвующим в каталитических реакциях переноса атомов водорода и ацильных групп, играет одну из основных ролей в метаболизме человека и животных, является мощным антиоксидантом.

Антиоксидантные свойства липоевой кислоты обусловлены наличием двух тиоловых групп в молекуле (фиг.1), а также способностью связывать молекулы радикалов и свободное тканевое железо, предотвращая его участие в перекисном окислении липидов. Известно, что липоевая кислота не только обладает самостоятельным антиоксидантным потенциалом, но и обеспечивает мощную поддержку работы других антиоксидантных звеньев в организме. В этом отношении ее протективное действие тесно связано с гомеостазом в системе глутатиона и убихинона.

Известно, что существует комплекс антиоксидантов, с которыми может взаимодействовать липоевая кислота и поддерживать как липидный, так и водный антиоксидантный статус, что важно для терапии или профилактики различных заболеваний, при которых отмечается дисбаланс окислительно-восстановительного клеточного статуса, таких как сахарный диабет, нарушения функции печени и др.

На основе липоевой кислоты создан целый ряд синтетических антиоксидантов для защиты клеток от окислительного стресса в виде биологически активных добавок к пище (БАД).

Эффективным и быстрым методом определения липоевой кислоты в фармацевтических препаратах считается капиллярный электрофорез со спектрофотометрическим способом детектирования (Sitton A., Schmid M.G., Gubitz G., Hassan Y. Aboul-Enein. Determination of lipoic acid in dietary supplement preparations by capillary electrophoresis // J. of Biochem. And Biophysic. Methods. - 2004. - V.61, №2. - P.119-124). В данном методе липоевую кислоту определяют в УФ-области при 208 нм. Время анализа не превышало 9 минут. Данный метод используют для определения липоевой кислоты в области от 0.8 до 2.5 мг/мл. Метод разработан для определения липоевой кислоты в биологически активных добавках диетического питания. Недостатком метода можно считать низкую чувствительность определения липоевой кислоты в БАД.

Для обеспечения контроля качества БАД, содержащих липоевую кислоту, необходимо разработать методику количественного определения ее в БАД. В настоящее время из методик количественного определения липоевой кислоты в разных объектах широко используются электрохимические методы.

Наиболее близким к теме изобретения является вольтамперометрическое определение липоевой кислоты в модельных растворах на стеклоуглеродном электроде (Г.К. Зиятдинова, Г.К. Будников, В.И. Погорельцев // Электрохимическое определение липоевой кислоты. Журнал аналитической химии. 2004. Т.59. №3. С.324-326). При вольтамперометрическом определении α-липоевой кислоты авторы использовали стационарный стеклоуглеродный электрод на фоне 0.05 моль/л H2SO4, при этом четко выраженный сигнал наблюдался при потенциале 0.72 В. Диапазон определяемых вольтамперометрически содержаний липоевой кислоты составил от 1.15·1-5 до 1.73·10-4 моль/л на стеклоуглеродном электроде.

Использование условий в способе-прототипе не обеспечивает чувствительности определения липоевой кислоты в реальных объектах БАД, что связано с внесением погрешности в суммарный сигнал определения липоевой кислоты через влияние сопутствующих компонентов БАД.

Новая техническая задача - увеличение чувствительности и экспрессности способа определения липоевой кислоты в таблетированной форме БАД методом катодной вольтамперометрии. Поставленная задача достигается тем, что липоевую кислоту переводят из таблетированной формы в раствор и проводят вольтамперометрическое определение, используя катодную вольтамперометрию. Для разработки методики определения липоевой кислоты использован аналитический сигнал восстановления липоевой кислоты при потенциале -0.373 В в боратном буферном растворе pН 9.18 на ртутно-пленочном электроде (РПЭ). Циклическая вольтамперограмма липоевой кислоты на РПЭ представлена на фиг.2. Зависимость прироста предельного тока восстановления липоевой кислоты от увеличения ее концентрации в модельном растворе линейна. Эта область находится между концентрациями от 4.5·10-6 моль/л до 1.1·10-3 моль/л (фиг.3). Скорость развертки потенциала составила 0.06 В/с.

Предел обнаружения липоевой кислоты 9.3·10-6 моль/л достаточен для применения ее в оценке количественного содержания в БАД.

Значения пределов повторяемости, воспроизводимости и критического диапазона измерений концентрации липоевой кислоты при доверительной вероятности Р=0,95 представлены в табл.1.

Пример 1. Определение липоевой кислота в таблетках БАД «Липоевая кислота».

Одну таблетку растирают в ступке до получения порошка. Порошок взвешивают и переносят в колбу 50 мл, добавляют 10-15 мл боратного буферного раствора pH 9.18 и нагревают на водяной бане при температуре 45-50°C в течение 10 минут. После этого раствор фильтруют через бумажный фильтр, который промывают буфером два раза по 5 мл. Затем в кварцевый стаканчик вместимостью 20 мл вносят 10.0 мл раствора фонового электролита боратного буферного раствора pH 9.18, помещают в электрохимическую ячейку вольтамперометрического анализатора (ТА-2, г.Томск). Опускают в раствор электроды: индикаторный - ртутно-пленочный электрод, вспомогательный и электрод сравнения - насыщенные хлорид-серебряные. Регистрацию фоновой линии проводят в постоянно токовом режиме съемки при линейной скорости развертки потенциала 60 мВ/с после удаления кислорода из электрохимичекой ячейки инертным азотом в течение 15 минут, в интервале потенциалов от 0 до -0.8 В. Отсутствие пиков на вольтамперограмме и воспроизводимые кривые свидетельствовали о чистоте фона. После получения удовлетворительных кривых фона вносят аликвоту фильтрата липоевой кислоты объемом 0,1 мл. Перемешивают раствор 10 с газом азотом, успокаивают 20 с и снимают вольтамперограмму в тех же условиях. Катодный пик регистрируют при потенциале -0.373 В. Концентрацию липоевой кислоты оценивали по высоте катодного пика методом добавок аттестованных смесей липоевой кислоты по общепринятой методике.

Предложенный способ количественного определения липоевой кислоты отличается простотой, не требует больших трудозатрат, значительного количества реактивов и отличается высокой экспрессностью и чувствительностью.

Предложенный способ может быть использован для количественного определения липоевой кислоты в БАД и лекарственных формах.

Таблица 1
Диапазон измерений, моль/л Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в одной лаборатории в условиях повторяемости), r, % Критический диапазон (относительное значение допускаемого расхождения между наибольшим и наименьшим из трех результатов измерений, полученных в одной лаборатории в условиях повторяемости), СR0,95 (3),% Предел Воспроизводимости (относительное значение допускаемого расхождения между двумя результатами
измерений, полученными в разных лабораториях), R, %
от 4.5·10-6 до 1.1·10-3 включ. 16 19 25

Способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, отличающийся тем, что проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства и может быть использовано при определении фунгицидной активности химических препаратов в отношении грибов рода Fusarium - возбудителей болезней растений.

Изобретение относится к экспериментальной фармакологии и представляет собой способ доклинических исследований кардиотропных антиаритмических средств, включающий определение биоэлектрических параметров в изолированных многоклеточных перфузируемых препаратах и оценку изменения длительности потенциалов действия, отличающийся тем, что в качестве изолированных многоклеточных перфузируемых препаратов используют миокард легочных вен крысы, причем изменения параметров получают в трех режимах работы многоклеточных препаратов, дополнительно оценивают потенциал покоя и по изменениям ДПД 90%, отношения ДПД 50%/ДПД 90%, скорости спонтанного сдвига потенциала покоя, наиболее положительного значения мембранного потенциала в покоящемся препарате, частоты следования пачек спонтанной активности, частоты и вариабельности следования спонтанных ПД в пачке, количества и интенсивности постдеполяризаций, а также по смещению мембранного потенциала, соответствующего началу пачечной активности, оценивают признаки антиаритмического или аритмогенного действия.

Изобретение относится к способу определения резистентности тромбоцитов к ацетилсалициловой кислоте (АСК) путем импедансного исследования агрегационной функции тромбоцитов in vitro, при котором исследуют агрегационную активность после инкубации образца биологического материала с АСК с использованием индуктора агрегации, причем агрегацию тромбоцитов индуцируют коллагеном в оптимальной концентрации 2 мг/мл и одновременно с измерением импеданса проводят определение динамики освобождения гранул тромбоцитов люминесцентным методом, где перед проведением агрегации пробы калибруются с помощью стандарта аденозинтрифосфата (АТФ), по полученным агрегатограммам определяют значения амплитуды агрегации в Омах и присваивают полученным значениям баллы: значения ≤6 соответствуют 0 баллов, значения 7-9 соответствуют 1 баллу, значения 10-12 соответствуют 2 баллам, значения >12 соответствуют 3 баллам; затем определяют интенсивность высвобождения АТФ из гранул тромбоцитов в нмолях и присваивают полученным значениям баллы: значения <0,5 соответствуют 0 баллам, значения 0,5-1,0 соответствуют 1 баллу, значения 1,0-1,5 соответствуют 2 баллам, значения >1,5 соответствуют 3 баллам, и далее рассчитывают индекс резистентности (ИР) по формуле, при этом значение показателя ИР более 4 указывает на наличие аспиринорезистентности тромбоцитов.

Изобретение относится к медицине, а именно к фармацевтической химии и фармакологии. Заявлено применение жировой эмульсии для парентерального питания в качестве растворителя для малорастворимых в воде соединений.

Изобретение относится к биологии, токсикологической и аналитической химии, а именно к способам определения прокаина в плазме крови. В плазму крови, содержащую прокаин, вводят фторид натрия для создания концентрации 10 мг/мл, полученную смесь обрабатывают ацетоном, извлечение отделяют от выпавшего осадка путем фильтрования, ацетон из фильтрата испаряют в токе воздуха при комнатной температуре, водный остаток разбавляют путем прибавления воды, образующийся раствор насыщают сульфатом аммония, подщелачивают аммонийным буферным раствором до pH 9,0-9,5, экстрагируют двукратно порциями органического экстрагента, в качестве которого используется 30% раствор камфоры в метилацетате, при соотношении водной и органической фаз 1:1 по объему, органические экстракты отделяют, объединяют, растворитель из объединенного экстракта испаряют в токе воздуха при комнатной температуре, остаток хроматографируют в тонком слое силикагеля СТХ-1А на пластинах «Сорбфил» ПТСХ-АФ-А-УФ, применяя подвижную фазу дихлорметан-этанол в соотношении 6:4 по объему, хроматограмму проявляют в УФ-свете, анализируемое вещество элюируют из сорбента смесью ацетонитрил-метанол-0,025 М раствор дигидрофосфата калия с pH 3,0 в соотношении 10:10:90 по объему, хроматографируют методом ВЭЖХ с применением обращеннофазового сорбента «Nucleosil C18», полярной подвижной фазы ацетонитрил-метанол-0,025 М раствор дигидрофосфата калия с pH 3,0 в соотношении 10:10:90 по объему и УФ-детектора, регистрируют оптическую плотность при длине волны 298 нм и вычисляют количество анализируемого соединения по площади хроматографического пика.

Изобретение относится к области аналитической химии. Способ характеризуется тем, что электрохимически концентрируют бензойную кислоту на поверхности графитового электрода в течение 90 с при потенциале электролиза (-0,500) В на фоне 0,1 моль/л натрия гидрофосфата, затем регистрируют поляризационные кривые при линейной скорости развертки потенциала 25 мВ/с и по высоте пика в диапазоне потенциалов 0,5-1,6 В относительно хлорсеребряного электрода определяют концентрацию бензойной кислоты.
Изобретение относится к медицине, в частности к лабораторным методам исследования, и заключается в проведении хроматографического анализа образца биопробы. Для этого образец наносят на бумажный фильтр и на этот же фильтр наносят радиально стандартные калибровочные растворы метронидазола в интервале концентраций 10-100 мкл.

Изобретение относится к медицине, а именно к исследованию и анализу медицинских препаратов, и может быть использовано при стандартизации лекарственного растительного сырья.

Изобретение относится к способам стандартизации лекарственных препаратов, биологически активных добавок, премиксов, лекарственного растительного сырья, растительных масел, масляных экстрактов, изделий пищевой, химической и косметологической отраслей промышленности по содержанию основных жирорастворимых витаминов и может быть использовано в фармацевтической, химической, косметологической и пищевой отраслях промышленности для определения подлинности и степени чистоты жирорастворимых витаминов A, D2, E и β-каротина при совместном присутствии в одно- и многокомпонентных препаратах.
Заявленное изобретение относится к области контроля качества лекарственных препаратов и представляет собой способ определения подлинности и количественного содержания бензэтония хлорида в лекарственных препаратах, включающий разделение компонентов препарата с помощью высокоэффективной жидкостной хроматографии, где в качестве элюента используют смесь ацетонитрила, гидрофосфата тетрабутиламмония, двузамещенного фосфата калия и воды, при содержании гидрофосфата тетрабутиламмония в количестве 2,5 мМ, двузамещенного фосфата калия в количестве 5 мМ, при этом разделение компонентов препарата проводят при длине колонки 125 мм.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения RhxIny заключается в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, при этом накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов индия (III) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления индия из интерметаллического соединения RhxIny при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 1,2 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика индия на вольтамперной кривой в диапазоне потенциалов от минус 0,2 до плюс 0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.
Изобретение относится к электроаналитической химии и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения фенола в воде и водных объектах с помощью трехэлектродной системы, включающий предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, проведение измерений концентрации фенола в воде, включающих электрохимическое осаждение фенола на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление фенола при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика фенола на вольтамперной кривой и определение концентрации фенола по величине пика фенола, характеризующийся тем, что предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,2 М сульфата аммония с добавлением ацетона в соотношении объемных частей 19:1, соответственно.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др.

Изобретение относится к области аналитической химии и может быть использовано для определения микроконцентраций ртути в водных растворах. Способ определения ртути катодно-анодной вольтамперометрией с использованием электрода и фоновых растворов включает в себя следующую последовательность действий.

Изобретение относится к области аналитической химии. Способ определения молибдена включает в себя определение комплексного соединения молибдена с диэтилдитиокарбаминатом катодной вольтамперометрией.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека.

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития.

Изобретение относится к области количественного определения аскорбата кальция в БАД с целью контроля качества выпускаемых на рынок биологически активных добавок.

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц Fe2O3 на угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц Fe2O3 на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм3 раствор трилон Б (рН 3 - 4) при потенциале электролиза (-0,12±0,01)В, относительно хлоридсеребряного электрода, с последующей регистрацией анодного пика в постояннотоковом режиме регистрации вольтамперограмм при скорости развертки потенциала 80 - 90 мВ/с, при этом концентрацию Fe2O3 определяют по высоте анодного пика в диапазоне потенциалов (-0,12±0,01)В.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность. Дополнительный технический результат - экономия материала мембраны. Сущность: согласно первому варианту исполнения (фиг. 1) барокомпенсированный электрохимический измерительный газоанализатор содержит корпус (1), герметичную камеру (12), которая имеет капилляр (13) и заполнена электролитом, катод (16) и анод (17), или анодную систему, контактирующие с электролитом и подключенные к регистратору (18) в виде преобразователя катодного тока в выходной сигнал. Катод (16) расположен на выходе капилляра (13) во внешнюю среду. Катод (16) и капилляр (13) отделены от внешней среды селективно-проницаемой мембраной (6) в форме круга. Мембрана (6) притянута к прикатодной поверхности газоанализатора и зафиксирована на ней по замкнутой линии крышкой (7), соединенной с накидной гайкой (10). Газоанализатор содержит барокомпенсатор (11) в виде эластичного элемента, отделяющего электролит в камере (12) от внешней среды. При этом капилляр (13) выполнен в проходном элементе (3). Один конец проходного элемента (3) с уплотнением (2) жестко или с возможностью перемещения установлен в корпусе (1). Другой конец проходного элемента (3) с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) по резьбе установлена в крышке (7), установленной с уплотнением (9) в накидной гайке (10). Накидная гайка (10) по резьбе установлена на проходном элементе (3). Краевая часть мембраны (6) зажата между заплечиком крышки (7) и торцевой поверхностью втулки (5). Анод (17) или анодная система расположены в капилляре (13) или в камере (12). Камерой (12) является пространство, образованное проходным элементом (3) и корпусом (1). Это пространство отделено от внешней среды барокомпенсатором (11) в виде эластичной стенки, например резинового чулка, закрепленного на корпусе (1) и проходном элементе (3). Пространство, образованное проходным элементом (3), втулкой (5), крышкой (7) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15), например маслом. Это пространство по резьбе накидная гайка (10) - проходной элемент (3) сообщается с пространством, которое образовано барокомпенсатором (11), корпусом (1) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15) и отделено от внешней среды дополнительным барокомпенсатором (14) в виде эластичной стенки, например, резинового чулка, закрепленного на корпусе (1) и накидной гайке (10). Второй вариант изобретения (фиг. 2) отличается от первого тем, что проходной элемент (3) с уплотнением (2) и с возможностью перемещения установлен в корпусе (1) и с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) имеет радиальные отверстия. Втулка (5) одним концом с уплотнением (6) установлена с возможностью перемещения на корпусе (1), а другим концом по резьбе установлена в крышке (8). Крышка (8) установлена с уплотнением (10) в накидной гайке (11), которая по резьбе установлена на корпусе (1). Краевая часть мембраны (7) зажата между заплечиком крышки (8) и торцевой поверхностью втулки (5). Анод (18) или анодная система расположены в капилляре (14) или в камере (13). Камерой (13) является пространство, образованное проходным элементом (3), втулкой (5) с ее радиальными отверстиями и корпусом (1). Камера (13) отделена от внешней среды барокомпенсатором (12) в виде эластичной стенки, герметизирующей радиальные отверстия втулки (5), например в виде резинового чулка, закрепленного на втулке (5). Накидная гайка (11) имеет радиальные отверстия, расположенные вблизи радиальных отверстий втулки (5). Пространство, образованное барокомпенсатором (12), втулкой (5), крышкой (8), накидной гайкой (11) с ее радиальными отверстиями и корпусом (1), заполнено электроизолирующей жидкостью (16), например маслом. Это пространство отделено от внешней среды дополнительным барокомпенсатором (15) в виде эластичной стенки, герметизирующей радиальные отверстия накидной гайки (11) и резьбовое соединение корпус (1) - накидная гайка (11), например, в виде резинового чулка, закрепленного на корпусе (1) и накидной гайке (11).
Наверх