Способ получения кальциевого баббита


 


Владельцы патента RU 2550976:

Дьяков Виталий Евгеньевич (RU)

Изобретение относится к металлургии, а именно к способам получения сплавов баббита. Способ получения кальциевого баббита включает плавление смеси свинца с восстановителем и смесью солей. Свинец расплавляют при температуре 650-790°C с восстановителем в смеси солей, содержащей хлористый кальций, хлористый натрий, хлористый калий в соотношении 1:(0,3-0,6):(0,05-0,12) с получением расплава кальциевой лигатуры. Лигатуру затем охлаждают до температуры 550-640°C, добавляют натриево-свинцовую лигатуру и олово и осуществляют разливку полученного баббита. Техническим результатом является упрощение получения сплава баббита за одну операцию на одном оборудовании при более близкой температуре. Устраняются потери кальция и натрия. 3 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к металлургии, а именно к способам получения сплавов баббита.

Одним из антифрикционных сплавов кроме известных марок Б-83, Б-88, Б-16 для ремонта железнодорожного транспорта применяется кальциевый баббит БК-2 по ГОСТ 1209-90 с содержанием 1,5-2,1% олова; 0,3-0,55% кальция; 0,2-0,4% натрия.

Известен способ [1], который включает расплавление при 450-480°C вторичного баббита на основе свинца и добавление в заданном соотношении лигатуры, содержащей медь, сурьму, олово и разливку готового баббита.

Недостатком данного способа является недостаточность сведений о приемах использования для производства баббита, содержащего натрий и кальций.

Известен способ, включающий операции: сплавление свинца с натрием в лигатуру, плавление хлористого кальция при температуре 800-850°C, заливку полученной свинцово натриевой лигатуры в расплав хлористого кальция для получения свинцово-натриево-кальциевой лигатуры, с добавкой алюминия и последующую догрузку олова, свинца для корректировки состава и розлив баббита. Основная операция этого способа - это восстановление хлористого кальция растворенным натрием в свинце. Алюминий вмешивают в конце третьей операции для устранения гидролиза и окисления кальция [2]. Данный способ принят в качестве наиболее близкого аналога.

Недостатком способа [2] является многостадийность операций и переливов расплава при высокой температуре, снижение окисляемости за счет восстановления более легкоплавкой шихты солей вместо высокотемпературного хлористого кальция.

Недостатки известного способа устраняются тем, что свинец перемешивают при более низкой температуры 650-790°C под слоем легкоплавкой смеси кальция хлористого, натрия хлористого, калия хлористого в соотношении 1:(0,3-0,6):(0,05-0,12). Для образования кальциевой лигатуры в солевой расплав со свинцом в качестве восстановителя добавляют кремний с расходом 0,4-1,0% от веса свинца или алюминий с окисью кальция в соотношении 1:4 расходом 0,5-0,8% от веса свинца. Для устранения окисления натриево-свинцовой лигатуры ее добавляют после охлаждения до 550-640°C.

Сущность предлагаемого способа состоит в том, что свинец перемешивают при температуре 650-790°C с восстановителем и смесью кальция хлористого, натрия хлористого, калия хлористого в соотношении 1:(0,3-0,6):(0,05-0,12) с последующим охлаждением до 550-640°C и добавлением натриево-свинцовой лигатуры и олова. В качестве восстановителя в солевой расплав со свинцом добавляют кремний с расходом 0,4-1,0% от веса свинца или алюминий с окисью кальция в соотношении 1:4 расходом 0,5-0,8% от веса свинца.

Технический результат достигается тем, что свинец перемешивают при более низкой температуре 650-790°C под слоем легкоплавкой смеси кальция хлористого, натрия хлористого, калия хлористого в соотношении 1:(0,3-0,6):(0,05-0,12). Для образования кальциевой лигатуры в солевой расплав со свинцом в качестве восстановителя добавляют кремний с расходом 0,4-1,0% от веса свинца или алюминий с окисью кальция в соотношении 1:4 расходом 0,3-0,8% от веса свинца. Кальциевая лигатура получается перемешиванием расплава свинца с восстановителем под слоем легкоплавкой смеси и только потом в этот расплав добавляют натриево-свинцовую лигатуру после охлаждения до 550-640°C. Это позволяет устранить окисление натрия.

Солевой расплав может повторно использоваться в качестве оборотного солевого расплава.

При повышении расхода NaCl выше 1:0,6 или ниже 1:0,3 солевой расплав становится тугоплавким, при перемешивании становится кашеобразным и из металла выгорает кальций.

При превышении расхода кремния хлористый кальций расходуется больше допустимого, снижается содержание CaCl2, расплав становится тугоплавким, кашеобразным и на открытых поверхностях металла выгорает кальций. При снижении расхода восстановителей ниже указанных снижается степень восстановления кальция. При добавке в солевой расплав в качестве восстановителя смеси алюминия с окисью кальция проходит реакция восстановления окиси кальция до металлического кальция, растворяемого в свинце. Причем окись кальция, растворенная в хлоридах, более предпочтительней восстанавливается алюминием.

При превышении расхода CaO более 0,6% окись не растворяется в хлориде и расплав также становится кашеобразный, на открытых поверхностях металла выгорает кальций. При догрузке натриевой лигатуры на кашеобразную поверхность увеличивается выгорание натрия. При догрузке натриевой лигатуры при температуре выше 640°C увеличивается выгорание натрия.

Описанные признаки упрощают получение сплава баббита за одну операцию на одном оборудовании в щадящем температурном режиме с устранением потерь кальция и натрия.

Пример 1: В тигель загружают 500 г свинца, 68 г хлористого кальция, 27 г хлористого натрия, 5 г хлористого калия (т.е. соотношение 1:0,4:0,07), добавляют навеску восстановителя 3 г кремния (расход 0,6% от веса свинца). Шихту плавят при 700°C при перемешивании. После анализа полученного сплава на кальций (содержание 1,37%) расплав охлаждают до 580°C, в расплав добавляют 515 г 1% натриевой лигатуры и 14 г олова. Получают 1030 г баббита БК-2, содержащего 0,53% кальция, 0,39% натрия, 1,67% олова.

Пример 2: В тигель загружают 500 г свинца, 68 г хлористого кальция, 27 г хлористого натрия, 5 г хлористого калия (т.е. соотношение 1:0,4:0,07), добавляют навеску восстановителя - смесь 3 г алюминия с 12 г окиси кальция (соотношение (Al:CaO):1:4 с расходом 0,6% от веса свинца. Шихту плавят при 700°C при перемешивании. Получают кальциевую лигатуру с содержанием 1,19% кальция. Расплав охлаждают до 580°C и в расплав добавляют 446 г однопроцентной натриевой лигатуры, 27 г олова и 250 г свинца для корректировки излишнего кальция. Получают 1220 г готового баббита БК-2 с содержанием 0,49% кальция, 0,33% натрия, 2,14% олова.

В таблице приведены подобные опыты с различными параметрами.

Примеры показывают достаточность указанных параметров и их превышения.

Таким образом, описанные признаки и примеры показывают, что техническое решение соответствует критерию патентоспособности «новизна».

Предлагаемый способ упрощает получение сплава баббита за одну операцию на одном оборудовании в щадящем температурном режиме с устранением потерь кальция и натрия.

Литература

1. Патент России №2001963, М. кл C22c 1\03. Способ получения баббита, 1993 г.

2. Цыганов А.С. Производство вторичных цветных металлов и сплавов, 1961 г., стр. 263.

Таблица
Примеры плавок бабита БК-2
параметр \ № пл 1 2 3 4 5 6 7 8 9 10 11 12 13 14
температура 700 700 650 790 700 700 700 700 700 700 700 700 640 820
CaCl2, г 68 68 68 68 68 68 68 68 68 68 68 обор оп 68 68
NaCl, г 27 27 27 27 20 27 41 27 27 27 27 0 17 44
KCl,г 5 5 5 5 3 5 8 5 5 5 5 0 3 9
соотнош:Ca:Na:K 1:0,4:0,07 1:0,4:0,07 1:0,4:0,07 1:0,4:0,07 1:0,3:0,05 1:0,4:0,07 1:0,6:0,12 1:0,4:0,07 1:0,4:0,07 1:0,4:0,07 1:0,4:0,07 1:0,4:0,07 1:0,25:0,04 1:0,65:0,13
Кремний, г 3 0 2 5 2 3,5 5 2 3 5 0 0 1,5 0
Кремний, % к Pb 0,6 0 0,4 1 0,4 0,7 1 0,4 0,6 1 0 0 о,3 0
Al.,г 0 3 0 0 0 0 0 0 0 0 2,5 4 0 6
caO, г 0 12 0 0 0 0 0 0 0 0 10 16 0 23
Al:CaO=1:4 0 1:4 0 0 0 0 0 0 0 0 1:4 1:4 0 1:4,2
(AlCaO) % к Pb 0 0,6 0 0 0 0 0 0 0 0 0,5 0,8 0 1,1
Лигатур, Ca% 1,37 1,19 0,92 2,29 0,92 1,60 2,29 0,92 1,37 2,29 0,99 1,58 0,33 0,29
охлаждение оC 580 580 550 640 550 580 640 550 580 640 550 640 540 570
Na лигатура, г 515 445 340 1140 340 600 860 340 515 860 370 590 110 110
Sn, г 17 26 13 36 14 28 32 14 16 30 15 32 10 10
Pb, г 0 250 0 550 0 300 300 0 0 300 0 500 0 0
Баббит БК-2, г 1030 1220 850 2220 850 1430 1690 850 1030 1690 880 1620 620 620
Ca % 0,53 0,49 0,54 0,52 0,54 0,45 0,54 0,54 0,53 0,54 0,45 0,49 0,27 0,24
Na % 0,39 0,33 0,38 0,39 0,36 0,38 0,38 0,36 0,39 0,38 0,38 0,33 0,18 0,18
Sn % 1,67 2,14 1,58 1,63 1,66 1,93 1,88 1,64 1,58 1,76 1,68 2,00 1,57 1,57
Примечание:
Исходная навеска свинца - 500 г
Использована натриево-свинцовая лигатура с содержанием натрия 1%

1. Способ получения кальциевого баббита, включающий плавление смеси свинца с восстановителем и смесью солей, отличающийся тем, что свинец расплавляют при температуре 650-790°C с восстановителем в смеси солей, содержащей хлористый кальций, хлористый натрий, хлористый калий в соотношении 1:(0,3-0,6):(0,05-0,12) с получением расплава кальциевой лигатуры, которую затем охлаждают до температуры 550-640°C, добавляют натриево-свинцовую лигатуру и олово и осуществляют разливку полученного баббита.

2. Способ по п.1, отличающийся тем, что в качестве восстановителя используют кремний с расходом 0,4-1,0% от веса свинца.

3. Способ по п.1, отличающийся тем, что в качестве восстановителя используют смесь алюминия с окисью кальция при их соотношении 1:4 и с расходом 0,5-0,8% от веса свинца.

4. Способ по любому из пп.1-3, отличающийся тем, что в качестве смеси солей используют оборотный солевой расплав.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к получению свинцово-кальциевых сплавов, и может быть использовано при производстве свинцовых аккумуляторов.

Изобретение относится к технологиям, обеспечивающим повышение стойкости материалов изделий к механическим воздействиям и к воздействиям агрессивных рабочих сред.
Изобретение относится к области цветной металлургии, в частности к получению сплавов свинца, кальция, олова, алюминия, и может быть использовано в аккумуляторной, электрохимической и электротехнической промышленности.
Изобретение относится к материалу для кабелей на основе алюминиевого сплава и способу его получения. Сплав на основе алюминия содержит, мас.%: 0,3-1,2 Fe, 0,03-0,10 Si, 0,01-0,30 редкоземельных элементов Ce и La, неизбежные примеси - менее 0,3 и алюминий - остальное, причем содержание в примесях Ca составляет 0,02%, а содержание любого другого примесного элемента - 0,01%.

Изобретение относится к области металлургии, в частности к сплавам на основе магния, подходящим для применения при высокой температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава с получением жидкой фазы, добавление 0,5-4,0 мас.% СаО на поверхность расплава, поверхностное перемешивание с обеспечением по существу полного расходования СаО в магнии, образование соединения кальция (Са) с металлом или другими легирующими элементами в сплаве на магниевой основе и отверждение расплава.
Изобретение относится к области металлургии, а именно к получению литого композиционного материала (ЛКМ) на основе алюминиевого сплава для изготовления циклически и термически нагруженных до 230°С деталей авиационного назначения - лопаток вентилятора и ступеней компрессора низкого давления перспективных авиационных двигателей и газоперекачивающих аппаратов.

Изобретение относится к области металлургии, в частности к способам рафинирования и модифицирования алюминиевых сплавов. Способ включает расплавление металла, обработку расплава наносекундными электромагнитными импульсами (НЭМИ) в течение 15 минут и разливку по формам, при этом перед обработкой НЭМИ расплав обрабатывают рафинирующими солями, а во время обработки или после обработки НЭМИ расплав подвергают вакуумированию в течение 15 минут.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля для изготовления механических компонентов турбомашин. Суперсплав на основе никеля для механических компонентов турбомашин содержит, мас.%: хром - от 3 до 7, вольфрам - от 3 до 15, тантал - от 4 до 6, алюминий - от 4 до 8, углерод менее 0,8, никель и примеси - остальное.

Изобретение относится к области металлургии, в частности к магниевому сплаву, подходящему для применения при комнатной температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава, добавление от 0,05 мас.% до 1,2 мас.% оксида кальция (СаО) на поверхность расплава, перемешивание с обеспечением, по существу, полного расходования СаО, обеспечение взаимодействия кальция (Са), полученного в результате указанной реакции, с указанным расплавом, литье и отверждение сплава.
Изобретение относится к порошковой металлургии, в частности к спеченным композиционным материалам на основе порошковой легированной стали, содержащим антифрикционный наполнитель.

Изобретение относится к порошковой металлургии, в частности к получению порошков агломератов вентильных металлов и субоксидов вентильных металлов для изготовления конденсаторов с твердым электролитом.

Изобретение относится к производству лигатур цветных металлов, в частности к получению алюминиево-титановой лигатуры, и может быть использовано в авиационной, автомобильной и других отраслях промышленности, изготавливающих деформируемые и литейные алюминиевые сплавы.

Изобретение относится к области технологии производства прессованных полуфабрикатов из алюминиевого сплава системы Al-Mg-Si, с улучшенными эксплуатационными и технологическими свойствами в виде длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте, монорельсовом транспорте и в других транспортных системах.

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес. олова, формирование брикетов с пористостью 12-18%, их спекание в безокислительной атмосфере при температуре 585-615°С в течение 45-60 минут с последующим угловым прессованием спеченного сплава с сохранением ориентации плоскости течения материала во время пластической обработки при интенсивности деформации не менее 100%. Техническим результатом изобретения является обеспечение максимальной износостойкости сплава при сухом трении. 4 ил., 1 табл.
Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления состоит из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующего слоя толщиной 4-8 мкм из порошка алюминия, диффузионного слоя из интерметаллидов толщиной 0,6-1,2 мкм, образованных на границе сердцевины и плакирующего слоя при отжиге, и армированного поверхностного слоя, полученного при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%. Покрытия, изготовленные из предлагаемого композиционного наноструктурированного порошка, обладают высокой адгезионной и когезионной прочностью, равномерным распределением твердости по сечению покрытия. 2 пр.
Наверх