Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом



Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом
Способ определения параметров воздушной ударной волны при разгерметизации трубопроводов со сжатым газом

 


Владельцы патента RU 2551262:

Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-Газпром ВНИИГАЗ" (RU)

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека. Способ заключается в следующем. Предварительно определяют атмосферное давление, характеристики трубопровода со сжатым газом и расстояние от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва. Полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей. По параметрам трубопровода и окружающей среды определяют радиус круговой зоны разрушения (м) промышленного здания. Технический результат заключается в расширение функциональных возможностей. 1 ил.

 

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека, и степеней возможных разрушений или повреждений зданий и сооружений воздушной ударной волной (ВУВ) при аварийной разгерметизации трубопроводов со сжатым газом.

Известен способ определения устойчивости зданий и сооружений и система для определения устойчивости зданий и сооружений (патент RU 2245531 C2, G01M 7/00, 27.01.2005), с помощью которых можно определять устойчивости зданий и сооружений при возникновении природных или/и техногенных опасностей, а также возможно осуществлять выработку комплекса мероприятий по устранению выявленных изъянов и недостатков конструкций и материалов. Известный способ позволяет определять устойчивость с заданной точностью за счет учета факторов, влияющих на определяемый параметр. Известный способ предусматривает учет экспериментальных и/или расчетных данных по уровню вибронагрузки от транспортных потоков, и/или от строительно-монтажных работ, и/или от промышленных сооружений, и/или степень агрессивности окружающей среды для строительных конструкций и данные прогноза природных или/и техногенных опасностей, направление их воздействия и уязвимые места объекта. Однако известный способ не позволяет определить степень поражения человека при воздействии ВУВ при разгерметизации оборудования со сжатым газом, например, при разгерметизации трубопровода.

Задача, на решение которой направлено предлагаемое изобретение, заключается в создании способа определения параметров ВУВ (избыточного давления и импульса во фронте) при разгерметизации трубопроводов со сжатым газом, позволяющего установить пространственное распределение параметров барического воздействия от разгерметизации трубопроводов со сжатым газом

Технический результат, достигаемый предлагаемым изобретением, - расширение функциональных возможностей, заключающихся в установлении пространственной картины распределения параметров ВУВ, образующейся при аварийной разгерметизации трубопроводов, содержащих природный газ, метан, под высоким начальным давлением, и обеспечение возможности защиты материальных ценностей и здоровья человека от воздействия ударной волны.

Технический результат способа определения параметров ВУВ при разгерметизации трубопроводов со сжатым газом достигается за счет того, что сначала определяют атмосферное давление P0 и характеристики трубопровода со сжатым газом: исходное давление газа в трубопроводе Pg0, внутренний диаметр d0 трубопровода, расстояние Y от места разрыва до ближайшего места завершения трубопровода. Затем определяют коэффициент эффективности ВУВ k0 по месту разгерметизации трубопровода,

;

определяют значение тротилового эквивалента взрыва mTNT (кг) трубопровода в случае гильотинного разрыва из условия:

;

определяют пространственное распределение барических параметров адиабатического взрыва (м/кг1/3) по соотношениям:

,

где R (м) - расстояние от места разгерметизации;

определяют избыточное давление ΔP (кПа) во фронте ВУВ:

;

определяют импульс на фронте ВУВ i (кПа·с):

;

полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» (P-i-диаграмму) поражения людей в виде точки с координатами (ΔP(R); i(R)), анализируют положение данной точки на диаграмме «давление-импульс» относительно линий равновероятного поражения, по результатам проведенного анализа составляют заключение о степенях поражения людей, находящихся в зоне воздействия ВУВ с избыточным давлением ΔP и импульсом i во фронте ВУВ, на заданном расстоянии от места разгерметизации.

По параметрам трубопровода и окружающей среды, а именно по исходному давлению газа в трубопроводе Pg0, внутреннему диаметру трубопровода d0 и атмосферному давлению P0, определяют радиус круговой зоны разрушения промышленных зданий (м) для трех различных степеней их повреждения: 0,15, или 0,4 или 0,8 как: 1.23 10 1 ( d 0 P g 0 P 0 ) 2.093 , 4.39 10 2 ( d 0 P g 0 P 0 ) 2.093 или 2.51 10 2 ( d 0 P g 0 P 0 ) 2.093 соответственно.

Изобретение поясняется чертежом, на котором представлена диаграмма зависимости значений импульса i от избыточного давления ΔP во фронте ВУВ, по которой можно определить степень поражения человека.

Представленная на чертеже диаграмма иллюстрирует усредненные степени поражения человека при взрывах. На приведенной диаграмме цифрами 1, 2, 3 обозначены границы областей (линии равновероятного поражения), соответствующих различным степеням поражения людей с вероятностью 99,9%. При этом линия, обозначенная цифрой 1, соответствует нижней границе области смертельной степени поражения человека, линия 2 - нижней границе области тяжелых поражений человека, линия 3 - нижней границе области, соответствующей легким поражениям человека.

Для трех различных линий равной степени поражения, представленных на чертеже, можно выделить участки, соответствующие режимам квазистатического (вертикальные асимптоты) и импульсного (горизонтальные асимптоты) приложения барической нагрузки. Степень поражения человека увеличивается с ростом давления и импульса. Построенная в (P-i) координатах диаграмма поражения человека позволяет с высокой вероятностью определить степень поражения человека без конкретизации типа источника взрыва и особенностей распространения ВУВ.

В условиях компактного расположения оборудования на площадных объектах важным является определение характеристик ВУВ в ближайшей к месту аварии зоне. Причем по расчетам избыточного давления и импульса во фронте ВУВ можно осуществить оценку устойчивости конструкций к воздействию ВУВ с полученными параметрами. Настоящее изобретение позволяет определить параметры барического скачка давления во всем диапазоне расстояний от источника взрыва при разгерметизации трубопровода.

На первом шаге по характеристикам трубопровода, а именно исходному давлению газа в трубопроводе Pg0 и внутреннему диаметру d0 трубопровода, месту разгерметизации и характеристикам окружающего пространства, наличию в непосредственной близости от места разгерметизации устойчивых плоских конструкций, атмосферному давлению P0, необходимо определить коэффициент эффективности ВУВ k0.

Коэффициент k0 характеризует место разрыва трубопровода и может быть вычислен по полученной эмпирическим путем формуле (1):

,

где Y - расстояние от места разрыва до ближайшего места завершения трубопровода (заглушки, отвода, закрытой запорной арматуры).

На втором шаге при известных параметрах Pg0, P0, k0, d0 для трубопровода вычисляют значение массового тротилового эквивалента взрыва, mTNT, (кг) по формулам (2):

,

с параметром P g 0 ¯ = P g 0 P 0 .

На третьем шаге определяют пространственное распределение барических параметров адиабатического взрыва (параметров ВУВ), т.е. зависимости избыточного давления ΔP (кПа) и импульса i (кПа·с) во фронте ВУВ от расстояния от места разгерметизации R (м) по соотношениям (5), (4) и (3).

По полученным значениям избыточного давления ΔP(R) и импульса i(R) во фронте ВУВ на расстоянии R от места разгерметизации трубопровода, где предполагается нахождение человека, на P-i-диаграмму поражения людей (см. чертеж) наносят точку с координатами (ΔP(R); i(R)). В зависимости от того, в какую область (1, 2 или 3) попадает указанная точка, определяют степень поражения человека на расстоянии R от места разгерметизации трубопровода. Таким образом, анализ приведенной на чертеже диаграммы позволяет сделать вывод о воздействии ВУВ с полученными параметрами на человека и определить степень его поражения.

По параметрам трубопровода и окружающей среды, а именно по значениям Pg0, d0 и P0, определяют радиусы круговых зон разрушения промышленных зданий (м), соответствующих трем различным степеням повреждения зданий 0,15, или 0,4 или 0,8 как 1.23 10 1 ( d 0 P g 0 P 0 ) 2.093 , 4.39 10 2 ( d 0 P g 0 P 0 ) 2.093 или 2.51 10 2 ( d 0 P g 0 P 0 ) 2.093 соответственно.

В качестве примера осуществления изобретения предлагается рассмотреть сценарий аварии - «Гильотинный разрыв подземного нагнетательного коллектора компрессорного цеха (КЦ) в сечении, находящемся на кратчайшем расстоянии от главного щита управления (ГЩУ) КЦ, с образованием ВУВ и пожаром».

При определении параметров не учитываем, что трубопровод находится под землей; учитываем, что в создании поражающего фактора ВУВ участвует газ, вытекающий из обоих концов трубы:

- расстояние от нагнетательного коллектора до стены ГЩУ R=26 м;

- наружный диаметр аварийного трубопровода D=1020 мм;

- толщина стенки аварийного трубопровода s=19,5 мм;

- исходное давление в трубопроводе Pg0=1,5 МПа.

Исходные параметры трубопровода и окружающей среды преобразуем в требуемые для расчетов (в части единиц измерения и необходимых промежуточных величин):

Pg0=7,5 МПа=7500 кПа; P0=101,3 кПа;

;

d0=1,020-2·0,0195=0,981 м.

Определяем вычисленный по формуле (6) коэффициент k0=1.

Тогда m T N T = 6,5 10 2 [ d k 0 P g 0 ¯ ] 3 = 6,5 10 2 [ 0,981 1 74,038 ] 3 = 39,093 ;

;

Полученные значения избыточного давления и импульса во фронте ВУВ в виде точки с координатами (11,9; 0,054) наносим на P-i диаграмму поражения людей (см. чертеж). По приведенной на чертеже P-i диаграмме получаем результат, согласно которому при воздействии ВУВ с параметрами ΔP=11,9 кПа и i=0,054 кПа·с возможно лишь легкое поражение человека.

Для определения радиусов круговых зон разрушения промышленных зданий, соответствующих определенным степеням повреждения (0,15, 0,4 или 0,8), и устойчивости зданий необходимо воспользоваться данными таблицы 1.

Таблица 1
Зависимости размеров зон разрушения зданий от параметров трубопровода со сжатым газом при его разгерметизации и выполнении условия: d 0 P g 0 P 0 38 .
№ п/п Степень разрушения здания Значение импульса, Па Зависимость радиуса круговой зоны разрушения от параметров трубопровода**, м
1 0,15 1,2·102
2 0,4 3·102
3 0,8 5·102

В соответствии с приведенными в таблице формулами возможно провести инженерные оценки устойчивости промышленных зданий и определить безопасные с точки зрения ударно-волновых нагрузок расстояния при адиабатических взрывах, сопровождающих аварии с разгерметизацией оборудования, содержащего сжатый газ.

Подставляя значения рабочего давления Pg0=7500 кПа и внутреннего диаметра трубопровода d0=0,981 м в формулы зависимости радиуса круговой зоны разрушения от параметров трубопровода (см.таблицу 1, последний столбец), получим результат, согласно которому при нахождении здания от места разгерметизации трубопровода в радиусе 2,18 м степень разрушения составит 0,8; в радиусе 3,8 м - степень разрушения 0,4; в радиусе 10,7 м степень разрушения составит 0,15.

Таким образом, барические параметры, определенные для заданных точек, позволяют определить степень поражения персонала и степень разрушения зданий, находящихся в зоне воздействия ВУВ.

Способ определения параметров воздушной ударной волны (ВУВ) при разгерметизации трубопроводов со сжатым газом, заключающийся в том, что определяют атмосферное давление P0 и характеристики трубопровода со сжатым газом: исходное давление в трубопроводе Pg0, внутренний диаметр d0 трубопровода, расстояние Y от места разрыва до ближайшего места завершения трубопровода,
определяют коэффициент эффективности ВУВ k0 по месту разгерметизации трубопровода,
;
определяют значение тротилового эквивалента взрыва mTNT (кг) трубопровода в случае гильотинного разрыва из условия:
;
определяют пространственное распределение барических параметров адиабатического взрыва по соотношениям:

где R (м) - расстояние от места разрыва;
определяют избыточное давление ΔР (кПа) во фронте ВУВ на расстоянии R от места разрыва:
;
определяют импульс i (кПа·с) во фронте ВУВ на расстоянии R от места разрыва:
;
полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей в виде точки с координатами (ΔP(R); i(R)), анализируют положение данной точки на диаграмме «давление-импульс» относительно линий равновероятного поражения, по результатам проведенного анализа составляют заключение о степенях поражения людей, находящихся в зоне воздействия ВУВ с избыточным давлением ΔP и импульсом i во фронте ВУВ,
по параметрам трубопровода и окружающей среды, а именно по значениям Pg0,P0, d0, определяют радиус круговой зоны разрушения (м) промышленного здания с заданной степенью разрушения 0,15, или 0,4 или 0,8 соответственно как: , или .



 

Похожие патенты:

Изобретение относится к испытательной технике и может быть применено в устройствах для испытания изделий на воздействие ударных ускорений в большом диапазоне параметров удара при единичном и циклическом ударах.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека.

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала.

Изобретение относится к средствам испытания устройств на ударные нагрузки и может быть использовано для проведения испытаний защитных устройств, в том числе бамперов, транспортного средства.

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы.

Изобретение относится к способам и устройствам для исследования работоспособности и надежности устройств ударного действия. Сущность: сваебойный молот располагают на стенде с возможностью перемещения вдоль вертикальной оси, а энергопоглотитель располагают под шаботом молота соосно с последним.

Изобретение относится к испытательной технике, в частности к ударным испытательным стендам. Устройство содержит корпус, выполненный в виде двух соединенных между собой щек, поворотный захват, закрепленный на корпусе, фиксатор, предназначенный для удержания захвата в рабочем положении, приспособление для изменения положения фиксатора, содержащее реверсивный электродвигатель, установленный на одной из щек, шестерню, закрепленную на валу электродвигателя, ходовой винт, размещенный между щеками с возможностью вращения вокруг собственной оси, зубчатое колесо, жестко закрепленное на ходовом винте и находящееся в зубчатом зацеплении с шестерней, каретку, образующую с ходовым винтом резьбовую передачу.

Изобретение относится к области испытательной техники и, в частности, к технологии восстановления несущей способности трубопровода. Способ включает в себя лабораторные испытания на удар и растяжение-сжатие по схеме «стресс-теста» цилиндрических образцов с трещиноподобными дефектами, моделирование условий деформирования металла труб под действием внутреннего давления в направлении действия главного напряжения.

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для подбора толщины ограждения, предназначенного для защиты от осколков взрывного характера технологического оборудования.

Изобретение относится к испытательной технике и может быть использовано для создания цуга воздушных ударных волн (ВУВ), подобных возникающим в атмосфере при взрыве сосредоточенных зарядов ВВ, профиль каждой из которых характеризуется крутым ударным фронтом, положительной фазой, в которой давление больше атмосферного, и отрицательной фазой, в которой давление меньше атмосферного.
Изобретение относится к области авиастроения и может быть использовано при проведении испытаний летательных аппаратов на попадание посторонних предметов в газотурбинный двигатель и проведении исследований динамической прочности элементов конструкции летательного аппарата при столкновении с птицей. Устройство содержит ресивер, закрепленный на лафете, и установленный внутри ресивера ствол с возможностью пневматического соединения его входной части с ресивером. Затвор, установленный со стороны казенной части ствола, содержит накидную гайку и клапан в виде поршня, а также упорный диск и переходник с центральными отверстиями, установленные между накидной гайкой и клапаном затвора и фиксирующие последний от осевого перемещения в положении, пневматически разъединяющем ствол и ресивер. Узел, обеспечивающий пневматическое соединение ресивера со стволом, выполнен в виде управляемого клапана, патрубка с фланцем и мерной шайбы, причем вход управляемого клапана пневматически связан с ресивером, выход управляемого клапана соединен с патрубком, фланец которого прикреплен к переходнику с образованием пневматического канала, соединяющего выход управляемого клапана с входной частью ствола, а мерная шайба размещена в указанном пневматическом канале. Технический результат заключается в обеспечении стабильной скорости заброса имитатора вне зависимости от веса имитатора. 4 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике и может быть использовано для вибрационных испытаний различных изделий, включая комплексные испытания на металлорежущих станках. Сущность: ударное устройство содержит быстросменный ударный элемент (1), расположенный соосно корпусу (3), выполненный из эластомера. Ударный элемент (1) посредством втулки (18) крепится к мембранному передающему элементу (2). Мембранный передающий элемент (2) соединен резьбовой частью (14) шпильки (13) с основной массой (5). Основная масса (5) контактирует с пьезоэлектрическим динамометром (4), помещенным в диэлектрическую защитную оболочку (22). Напряжение, возникающее при ударном или случайном воздействиях, отводится от пьезоэлектрического динамометра (4) через контактный элемент (21). Контактный элемент (21) связан проводом (24) с контактным элементом (19), закрепленным в полой цилиндрической рукоятке (9). Провод (24) закреплен в хомуте (20), жестко связанном с внешней поверхностью рукоятки (9). Рукоятка (9) посредством резьбовой части (10) жестко фиксируется в резьбовом отверстии (11) основной массы (5). Над основной массой (5) расположена дополнительная масса (6). Дополнительная масса (6) выполнена в виде цилиндра и имеет осесимметричное резьбовое отверстие (7), в которое входит резьбовая часть выступа (8) основной массы (5). В верхней части дополнительной массы (6) выполнена полость (26), герметично закрытая крышкой (27) посредством винтов (28). Внутри полости (26) размещены элементы (29), создающие имитацию случайного воздействия, выполненные, например, в виде стальных шариков. Технический результат: расширение частотного спектра вибровозбуждения. 1 ил.

Изобретение относится к испытательному оборудованию и может быть использовано для исследования систем виброизоляции. Стенд содержит основание, на котором расположены дополнительные плиты с закрепленными на них виброизолируемыми аппаратами, и регистрирующая аппаратура. На основании установлена аппаратура летательных аппаратов, например два одинаковых бортовых компрессора для получения сжатого воздуха на борту летательного аппарата, при этом один компрессор установлен на штатных резиновых виброизоляторах, а другой компрессор установлен на исследуемой двухмассовой системе виброизоляции. Данная система включает в себя резиновые виброизоляторы и упругодемпфирующую промежуточную плиту с виброизоляторами, например, в виде пластин из полиуретана, которые так же, как и штатные резиновые виброизоляторы компрессора установлены на жесткой переборке, которая через вибродемпфирующую прокладку установлена на основании. На жесткой переборке, между компрессорами, закреплен вибродатчик, сигнал с которого поступает на усилитель и регистрирующую аппаратуру, например октавный спектрометр, работающий в полосе частот. При этом сравнивают полученные амплитудно-частотные характеристики от работы каждого из компрессоров и делают выводы об эффективности виброизоляции каждой системы, на которой они установлены. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 1 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Способ заключается в установке двух одинаковых исследуемых объектов на различных системах их виброизоляции и проведении измерений их амплитудно-частотных характеристик. Затем сравнивают полученные характеристики и делают выводы об эффективности виброизоляции каждой из исследуемых систем. При этом для определения собственных частот каждой из исследуемых систем виброизоляции производят имитацию ударных импульсных нагрузок на каждую из систем и записывают осциллограммы свободных колебаний. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями летательного объекта. 5 ил.

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции летательных аппаратов. Устройство содержит источник текучей среды под давлением и установленный на основании направляющий элемент. Направляющий элемент выполнен с направляющими пазами для каретки и снабжен баком для приема текучей среды. На направляющем элементе размещены пневматический бесконтактный спусковой механизм и тормозной инерционный узел. Устройство снабжено исполнительным пневмогидравлическим механизмом с выходным насадком, причем пневмогидравлический механизм связан с источником текучей среды и пневматическим бесконтактным спусковым механизмом для обеспечения подачи текучей среды посредством выходного насадка в направляющий элемент для разгона гильзы. Гильза размещена в направляющем элементе и выполнена в виде каретки с полостью с возможностью размещения в последней имитатора, а бесконтактный спусковой механизм пневматически связан с исполнительным пневмогидравлическим механизмом. Технический результат заключается в обеспечении стабильности параметров стрельбы устройства для заброса различных объектов. 10 з.п. ф-лы, 5 ил.

Изобретение относится к испытательному оборудованию, предназначенному для проведения заводских испытаний большегрузного и габаритного изделия на заключительном этапе его изготовления, и может быть использовано для имитации экстремальных ситуаций, появление которых возможно в процессе эксплуатации изделия. Комплект содержит траверсу для вертикального вывешивания и сброса изделия. Комплект дополнительно содержит траверсу для горизонтального вывешивания и сброса изделия, опору с ложементом для проведения транспортных испытаний и перевозок изделия в горизонтальном положении, при этом каждая траверса оснащена серьгой под устройство расстыковки для установки механических испытаний. Устройство для проведения транспортных испытаний и перевозок изделия в горизонтальном положении используется одновременно для перевода изделия из вертикального положения в горизонтальное и обратно, при этом опора и ложемент устанавливаются на катки. Напряжение термомеханического возврата определяют из соотношения. Технический результат: возможность осуществить различные виды испытаний на подтверждение ударопрочных характеристик изделия. 3 з.п. ф-лы, 6 ил

Изобретение относится к области транспортного машиностроения. Способ краш-испытаний автомобиля на боковой удар состоит в том, что краш-испытания проводят в два этапа. На первом этапе на автомобиль устанавливают только корпуса бокового защитного устройства с закрепленными датчиками ускорений и перемещений. В креслах водителя и переднего пассажира устанавливают имитаторы их масс и проводят краш-тест. По показаниям датчиков и киносъемки строят опорную характеристику автомобиля в виде зависимости Р(у), где Р - текущее значение ударной силы; у - осредненное текущее значение деформации автомобиля. Проводят второй этап краш-испытания, для чего на другом автомобиле этой же марки и такой же комплектации устанавливают полностью смонтированное боковое защитное устройство, полностью подготавливают автомобиль к краш-испытаниям по стандарту EURO-NCAP. Закрепляют в креслах манекены и все требуемые датчики ускорений. Проводят краш-испытания и оценивают в баллах или количестве звезд безопасность автомобиля. Достигается повышение точности расчетов параметров защитного устройства автомобиля. 2 з.п. ф-лы, 6 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное перемещение в полости ствола. В ходе перемещения контейнера в полости ствола в заданные моменты времени начинают и останавливают вращение стола относительно оси, перпендикулярной продольной оси ствола. Стенд содержит источник газов высокого давления, сообщающийся с камерой высокого давления, соединенной с полостью ствола, установленный в стволе контейнер в виде полого поршня, связанный с контейнером стол, предназначенный для закрепления ОИ, тормозное устройство. В контейнере дополнительно размещено по крайней мере одно устройство вращения и по крайней мере один ограничитель вращения стола. Стол закреплен с возможностью вращения относительно оси, перпендикулярной продольной оси ствола, на кронштейне, жестко закрепленном в контейнере. Предусмотрены различные варианты расположения в контейнере центров масс сборки стола с ОИ и центра масс ОИ. Технический результат - обеспечение возможности оценки стойкости ОИ к динамическим нагрузкам, близким к реализующимся в натурных условиях, и широкий спектр вариантов нагружения, из которых можно выбрать необходимый для обеспечения заданного изменения амплитуды и направления ускорения относительно геометрических осей ОИ. 2 н. и 8 з.п. ф-лы, 9 ил.

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню, установленную внизу силовой рамы. Устройство подъема выполнено в виде лебедки, связанной тросом, огибающим блоки, размещенные на силовой раме, с подвеской, снабженной крюком для подвешивания устройства удержания и сброса и соединенной реактивными оттяжками с вертикальными стойками силовой рамы. Приспособление для закрепления ОИ выполнено в виде траверсы с регулируемой точкой подвеса и снабжено четырьмя соединяющими элементами и уловителем, первый конец каждого соединяющего элемента шарнирно соединен с траверсой, а второй предназначен для соединения с ОИ. Уловитель выполнен содержащим по крайней мере два гибких элемента, один конец каждого из которых связан с траверсой, а другой конец через демпферы закреплен на вертикальных стойках силовой рамы. Соединяющие элементы могут содержать талрепы. Второй конец каждого соединяющего элемента, при его выполнении жестким, снабжен расцепной серьгой, предназначенной для соединения с крюками-отбойниками, установленными на ОИ или на корпусе, в котором он размещен, или выполнены гибкими, второй конец каждого из которых предназначен для шарнирного соединения с ОИ или с корпусом, в котором он размещен. Технический результат заключается в устранении искажающего воздействие приспособления для закрепления объекта испытаний при испытаниях на удар крупногабаритных объектов. 2 з.п. ф-лы, 8 ил.

Изобретение относится к испытательной технике, в частности к ротационным испытательным стендам для воспроизведения сложных пространственных нагрузок. Стенд содержит установленную на основании платформу с приводом ее вращения, установленную на платформе с возможностью вращения относительно оси, параллельной оси вращения платформы, планшайбу, снабженную приводом, размещенным на платформе и связанным с планшайбой посредством углового редуктора. Платформа уравновешена противовесом (на чертежах не показан). Изделие закрепляется на столе, связанном с планшайбой посредством механизма, состоящего из рычага, шарового подвеса, привода вращения стола и двухстепенного карданова подвеса, закрепленного на основании. Стол закреплен на одном конце рычага, на другом конце рычага выполнен соединительный элемент в виде пары возвратно-поступательного перемещения, одной частью которого является осевое отверстие в торце рычага, а другой частью - вал шарового подвеса, при этом опора шарового подвеса выполнена на планшайбе на расстоянии от ее оси вращения, а вал шарового подвеса вставлен в отверстие рычага. Двигатель установлен в двухстепенном кардановом подвесе, оси которого перпендикулярны оси вращения платформы, а точка пересечения этих осей лежит на оси вращения платформы, а ротор двигателя неподвижно закреплен на рычаге соосно ему. Технический результат заключается в возможности воспроизведения периодических ускорений, возникающих при вращении изделия вокруг трех осей, сходящихся в одном полюсе. 2 ил.
Наверх