Камера сгорания для турбомашины



Камера сгорания для турбомашины
Камера сгорания для турбомашины
Камера сгорания для турбомашины

 


Владельцы патента RU 2551471:

СНЕКМА (FR)

Камера сгорания для турбомашины, такой как турбореактивный или турбовинтовой авиационный двигатель, содержит внутреннюю и наружную кольцевые стенки в виде тел вращения, связанные кольцевой стенкой днища камеры. Внутренняя стенка камеры сгорания выполнена из одного слоя материала, толщина которого (e1, е2) и/или свойства изменяются вдоль продольной оси и в окружном направлении упомянутой стенки, а ее кольцевая наружная стенка имеет, по существу, постоянную величину. Изобретение позволяет увеличить сопротивление предельным температурам без использования тепловых барьеров и без увеличения массы. 2 н. и 5 з.п. ф-лы, 3 ил.

 

Изобретение касается камеры сгорания для турбомашины, такой как турбореактивный или турбовинтовой авиационный двигатель.

Такая камера сгорания содержит коаксиальные стенки в виде тел вращения, которые размещены одна внутри другой и которые соединены на входных краях кольцевой стенкой днища камеры, содержащей отверстия для подачи воздуха и средства подачи топлива, в частности инжекторы.

Наружная и внутренняя стенки камеры содержат отверстия для подачи первичного воздуха и разбавляющего воздуха и зоны с множественными перфорациями для прохода охлаждающего воздуха.

Для увеличения сопротивляемости предельным температурам известна установка тепловых барьеров на стенках камеры сгорания, эти барьеры выполнены в виде утолщений дополнительного материала, нанесенного на соответствующие стенки.

В документе JP 6167245 описана камера сгорания, внутренняя стенка которой имеет постоянную толщину и покрыта тепловым барьером переменной толщины.

Использование теплового барьера повышает сопротивляемость камеры высоким температурам, но увеличивает ее вес.

Для того чтобы соответствовать требованиям рынка, необходимо уменьшить вес камеры сгорания. Во всяком случае, срок службы камеры сгорания не должен быть уменьшен. В частности, стенки должны иметь такие габариты, чтобы противостоять разрушению вследствие текучести. Напомним, что текучесть является необратимой деформацией материала, подвергаемого постоянным нагрузкам в течение достаточного срока службы. Эта деформация усиливается повышенными температурами, которым подвергаются стенки камеры сгорания.

Задачей изобретения является простое, эффективное и экономичное решение этой проблемы.

Для решения этой задачи предлагается камера сгорания для турбомашины, такой как турбореактивный или турбовинтовой авиационный двигатель, содержащая внутреннюю и наружную кольцевые стенки в виде тел вращения, соединенные кольцевой стенкой днища, отличающаяся тем, что ее внутренняя стенка выполнена из одного слоя материала, свойства которого и/или толщина изменяются вдоль продольной оси в окружном направлении упомянутой стенки, а ее наружная стенка имеет, по существу, одинаковую толщину.

Изобретение позволяет увеличить сопротивление камеры сгорания предельным температурам без использования тепловых барьеров и без увеличения массы путем локального изменения толщины и/или свойств материала стенок камеры.

Внешняя кольцевая стенка обычно менее горячая, чем внутренняя кольцевая стенка, и не требует, таким образом, особой адаптации ее структуры.

В соответствии с вариантом воплощения изобретения внутренняя стенка камеры сгорания, выполненная из одного слоя материала, содержит, по меньшей мере, одну зону, называемую горячей, с большим термическим градиентом и большей толщины и, по меньшей мере, одну зону, называемую холодной, с меньшим термическим градиентом и меньшей толщины.

"Горячие" зоны являются зонами, подвергаемыми большим перепадам температур, и предпочтительно увеличить их толщину. В соответствии с другой характеристикой изобретения внутренняя стенка камеры сгорания, выполненная из одного слоя материала, содержит, по меньшей мере, две соседних зоны, выполненные из различных материалов.

Как указано выше, можно также локально использовать материал с большим сопротивлением в более горячих зонах, подвергаемых более высоким термическим градиентам, и материал с меньшим сопротивлением и более легкий в зонах, подверженных меньшим перепадам температур. Предпочтительно, чтобы внутренняя стенка камеры сгорания была изготовлена путем механической обработки.

Механическая обработка позволяет получить меньшие размерные допуски, чем допуски листовой штамповки, классически используемой для изготовления камер сгорания.

С другой стороны, механическая обработка позволяет изменять толщину внутренней стенки одновременно по продольной оси и в окружном направлении.

В качестве варианта, внутренняя стенка камеры сгорания изменяемой толщины выполнена путем растягивания и листовой штамповки. Такой способ является более простым и менее дорогостоящим, чем металлическая штамповка. Зоны толщины и/или изменяемых свойств внутренней стенки камеры сгорания содержат, по меньшей мере, одну из зон, являющуюся частью группы, включающей зоны, расположенные между инжекторами, содержащие отверстия для первичного воздуха и разбавляющего воздуха, зоны, содержащие кольцевые фланцы крепления, и зоны, содержащие множественные перфорации.

Изобретение касается, кроме того, турбомашины, такой как турбореактивный или турбовинтовой авиационный двигатель, содержащей камеру сгорания описанного выше типа.

В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылками на сопровождающие чертежи, на которых:

- фиг.1 схематично изображает в осевом разрезе половину вида кольцевой камеры сгорания турбомашины;

- фиг.2 изображает в изометрии вид сектора камеры сгорания по фиг.1;

- фиг.3 изображает детальный вид секции внутренней кольцевой стенки камеры сгорания по фиг.1 по изобретению.

Как изображено на фиг.1 и 2, кольцевая камера 1 сгорания размещена на выходе диффузора 2, который сам расположен на выходе из компрессора (не изображенного на чертеже), и содержит внутреннюю и наружную кольцевые стенки 3, 4 в виде тел вращения, соединенные на входе кольцевой стенкой днища 5 камеры и закрепленные на выходе внутренним и наружным фланцами 6, 7, соответственно, на внутренней перегородке 8 в форме усеченного конуса диффузора 2 и на крайней части наружного кожуха 9 камеры 1, при этом входная часть этого кожуха 9 связана перегородкой 10 в форме усеченного конуса с диффузором 2.

Кольцевая стенка днища 5 камеры содержит отверстия 11 (фиг.2), через которые проходит воздух, поступающий из диффузора 2, и служащие для монтажа топливных инжекторов 12, закрепленных на внешнем кожухе 9 и равномерно распределенных по окружности вокруг продольной оси камеры. Каждый инжектор 12 содержит топливную инжекторную головку 13, отцентрованную в отверстии 11 кольцевой стенки 5 и ориентированную по оси из этого отверстия 11.

Часть дебита воздуха, подаваемого компрессором и проходящего по диффузору 2, поступает через отверстия 11 и питает камеру сгорания, при этом другая часть дебита воздуха питает внутренние и наружные кольцевые каналы 14, 15, оконтуривающие камеру сгорания.

Внутренний канал 14 образован между внутренней перегородкой 8 диффузора 2 и наружной стенкой 3 камеры, и воздух, который поступает в этот канал, разделяется на дебит, который проникает в камеру через отверстия 16, 17 первичного воздуха и разбавляющего воздуха (фиг.2) внутренней стенки 3, и на дебит, который проходит через отверстия внутреннего фланца 6 для охлаждения не изображенных на чертеже компонентов, размещенных на выходе этой камеры 1.

Наружный канал 15 образован наружным кожухом 9 и наружной стенкой 4 камеры 1, и воздух, который проходит в этот канал, разделяется на дебит, который поступает в камеру через отверстия 18, 19 первичного воздуха и разбавляющего воздуха (фиг.2) наружной стенки 4, и на дебит, который проходит через отверстия наружного фланца 7 для охлаждения компонентов на выходе.

Отверстия 16, 18 для входа первичного воздуха равномерно распределены по окружностям внутренней и наружной стенок 3 и 4, соответственно, с центром на оси камеры 1, а отверстия 17, 19 для входа разбавляющего воздуха равномерно распределены по окружностям внутренней и наружной стенок 3, 4, соответственно, по оси камеры 1 за отверстиями 16, 18.

Внутренняя и наружная кольцевые стенки 3, 4 содержат, кроме того, не изображенные на чертеже микроперфорации для прохода охлаждающего воздуха.

При работе наружная и внутренняя кольцевые стенки 3, 4 имеют зоны с различными температурами, и эта разнородность температур схематично представлена на фиг.2 в форме зон 20, 21, 22, 23, отделенных одни от других.

Это явление касается в особенности внутренней кольцевой стенки 3. Температурные зоны пронумерованы увеличивающимися значениями температуры. Так, зоны 20 являются относительно "холодными", подвергающимися меньшим перепадам температур, а зона 23 является более "горячей" зоной, подвергающейся воздействию больших перепадов температур. Такое распределение зон представлено только в качестве примера и вытекает, в частности, из особой конструкции камеры 1 сгорания.

Наличие и локализация различных зон 20-23 становятся очевидными при расчетном моделировании или при использовании краски, реагирующей на температуру и цвет которой после работы камеры сгорания локально изменяется в зависимости от температуры.

В соответствии с изобретением внутренняя стенка 3 выполнена из одного слоя материала, свойства и/или толщина которого изменяются вдоль продольной оси и/или окружного направления упомянутой стенки. В варианте осуществления, изображенном на чертежах, локально изменяется толщина внутренней стенки, которая содержит зоны 20-23 с различными температурами.

Так, на фиг. 3 изображено, что кольцевая стенка 3 выполнена из одного слоя материала и содержит зоны большей толщины e1 (см. фиг. 3), например зоны 22 и 23, и зоны меньшей толщины е2, например зоны 20 и 21.

Зоны большей толщины являются зонами, которые при работе подвергаются повышенным температурам, например, порядка 1000°С. Эти зоны имеют толщину e1, составляющую от 1 до 2 мм, предпочтительно порядка 1,5 мм. Напротив, зоны меньшей толщины являются зонами, которые при работе подвергаются меньшим температурам. Эти зоны имеют толщину е2, составляющую от 0,5 до 1 мм, предпочтительно порядка 1 мм.

Собственно наружная кольцевая стенка 4 имеет, по существу, постоянную толщину, составляющую от 1 до 1,5 мм, предпочтительно порядка 1,2 мм.

Можно также, например, из известной камеры сгорания, стенки которой в виде тел вращения имеют постоянную толщину в 1,5 мм, изготовить более легкую камеру сгорания с внешней кольцевой стенкой 1,2 мм и внутренней кольцевой стенкой с толщиной 1,5 мм в горячих зонах и 1 мм в более холодных зонах, при этом масса этой камеры является массой камеры, стенки которой имеют постоянную толщину в 1,2 мм.

Можно также, например, из известной камеры сгорания, стенки которой в виде тел вращения имеют постоянную толщину в 1,5 мм, изготовить более легкую камеру сгорания с внешней кольцевой стенкой 1,2 мм и внутренней кольцевой стенкой с толщиной 1,5 мм в горячих зонах и 1 мм в более холодных зонах, при этом масса этой камеры является массой камеры, стенки которой имеют постоянную толщину в 1,2 мм.

Камера сгорания, в частности, по изобретению имеет переменную толщину внутренней стенки 3, выполненную путем механической обработки.

Альтернативно внутренняя стенка 3 переменной толщины выполнена путем растягивания и листовой штамповки.

В соответствии с не изображенным на чертежах вариантом зоны переменной толщины могли бы быть заменены или могли бы содержать зоны с различными свойствами так, чтобы содержать зоны, образованные материалом с высоким термическим сопротивлением в более горячих зонах, и зоны, образованные из материала с меньшим термическим сопротивлением, но более легкого, в наиболее холодных зонах.

Кроме того, зоны с различными свойствами дают возможность исключить образование трещин, при этом материал может быть локально заменен для того, чтобы первоначально подвергнутые растягиванию зоны, в которых могут образоваться трещины, были бы сдавлены вследствие свойств граничащих зон.

Каждый из этих вариантов воплощения позволяет уменьшить вес камеры сгорания при улучшении ее теплового сопротивления и, таким образом, срок ее службы.

Зоны с изменяемыми свойствами и/или толщиной внутренней стенки 3 являются, в частности, зонами, расположенными между инжекторами 12, зонами, содержащими отверстия первичного воздуха 16 и разбавляющего воздуха 17, зонами, содержащими фиксирующие кольцевые фланцы 6, и зонами, содержащими множественные перфорации.

1. Камера сгорания (1) для турбомашины, такой как турбореактивный или турбовинтовой авиационный двигатель, содержащая внутреннюю и наружную кольцевые стенки (3, 4) в виде тел вращения, связанные кольцевой стенкой днища (5) камеры, отличающаяся тем, что ее внутренняя стенка (3) выполнена из одного слоя материала, толщина которого (e1, е2) и/или свойства изменяются вдоль продольной оси и в окружном направлении упомянутой стенки (3), а ее кольцевая наружная стенка (4) имеет, по существу, постоянную величину.

2. Камера сгорания (1) по п. 1, отличающаяся тем, что ее внутренняя стенка, выполненная из одного слоя материала, содержит, по меньшей мере, зону (23, 22), называемую горячей, с большим температурным градиентом и большей толщины (e1), и, по меньшей мере, холодную зону (21, 20) с меньшим температурным градиентом и меньшей толщины (е2).

3. Камера сгорания (1) по п. 1, отличающаяся тем, что ее внутренняя стенка выполнена из одного слоя материала, имеющего, по меньшей мере, две соседних зоны, образованных из различных материалов.

4. Камера сгорания (1) по п. 1, отличающаяся тем, что ее внутренняя стенка переменной толщины выполнена механической обработкой.

5. Камера сгорания (1) по п. 1, отличающаяся тем, что ее внутренняя стенка переменной толщины выполнена растягиванием и листовой штамповкой.

6. Камера сгорания (1) по п. 1, отличающаяся тем, что зоны с переменными свойствами и/или толщиной (e1, е2) внутренней стенки содержат, по меньшей мере, одну из зон, являющуюся частью группы, включающей зоны, размещенные между инжекторами (12), зоны, содержащие отверстия для первичного воздуха (16, 18) и разбавляющего воздуха (17, 19), зоны, содержащие кольцевые фиксирующие фланцы (6, 7), и зоны, содержащие множественные перфорации.

7. Турбомашина, такая как турбореактивный или турбовинтовой авиационный двигатель, содержащая камеру сгорания (1) по п. 1.



 

Похожие патенты:

Изобретение относится к трубчато-кольцевым камерам сгорания газотурбинных двигателей авиационного и наземного применения. .

Изобретение относится к области двигателестроения, а именно к камерам сгорания, и может быть использовано в газотурбинных двигателях. .

Изобретение относится к области двигателестроения, в частности к камерам сгорания, и может быть использовано в газотурбинных двигателях. .

Изобретение относится к газотурбинным двигателям авиационного назначения и энергетическим установкам. .

Кольцевая камера сгорания газотурбинного двигателя содержит группу горелок, расположенных в одной плоскости на передней стенке камеры сгорания, по меньшей мере, двумя соосными кольцами. В пределах каждого кольца установлено одинаковое и четное число малоэмиссионных горелок. Горелки внутреннего кольца смещены в окружном направлении относительно горелок наружного кольца на их пол шага. Все горелки выполнены двухканальными. Внутренние каналы горелок служат для подачи в них только пилотного топлива, а наружные каналы горелок - для подачи в них сжатого воздуха из-за компрессора и основного топлива с образованием «бедной» топливовоздушной смеси. Наружный канал каждой горелки содержит входной направляющий аппарат, в стенках которого выполнены отверстия для подачи топлива в сносящий поток воздуха, лопаточный завихритель, установленный на выходе из канала, и проницаемый элемент с заданной пористостью, установленный между входным направляющим аппаратом и лопаточным завихрителем. Направление закрутки потока в горелках с помощью лопаточных завихрителей чередуется на противоположное при переходе от одной горелки к другой соседней горелке в пределах каждого кольца. Каждая горелка содержит, кроме того, кольцевой топливный ресивер, расположенный над входным направляющим аппаратом. Внутренние каналы горелок внутреннего и наружного колец объединены соответственно во внутренний и наружный коллектора пилотного топлива. Кольцевые топливные ресиверы горелок внутреннего и наружного колец объединены соответственно во внутренний и наружный коллектора основного топлива. На входе в магистралях пилотного и основного топлива установлено по одному регулятору расхода топлива. Перед входами во внутренние коллектора пилотного и основного топлива в подводящих топливных магистралях установлено по одному клапану. Изобретение позволяет уменьшить потери полного давления, повысить надежность работы кольцевой камеры сгорания, диапазон устойчивого горения «бедной» топливовоздушной смеси и равномерность температурных полей в радиальном и окружном направлениях при снижении эмиссии оксидов азота и оксида углерода. 2 н. и 5 з.п. ф-лы, 5 ил.

Трубчатая камера сгорания для газотурбинного двигателя, работающая на газообразном топливе, содержит цилиндрический кожух, имеющий внутреннюю полость, ось и закрытый осевой конец, цилиндрический вкладыш камеры сгорания, смесительное устройство, рукав ударного охлаждения и каналирующее устройство. Цилиндрический вкладыш камеры сгорания размещен коаксиально внутри полости кожуха и выполнен так, что в комбинации с кожухом задает границы радиально внешнего канала для потока воздуха для горения. Цилиндрический вкладыш также задает границы соответствующих радиально внутренних полостей для зоны горения и зоны разбавления. Зона разбавления удалена по направлению оси от закрытого конца кожуха относительно зоны горения, а зона горения размещена по направлению оси со стороны закрытого конца кожуха. Смесительное устройство размещено на закрытом конце кожуха с сообщением по потоку с каналом для воздуха для горения, включает в себя множество лопаток для смешивания газообразного топлива, подлежащего сжиганию, по меньшей мере, с частью воздуха для горения и выпускное отверстие смесительного устройства для обеспечения поступления полученной смеси топлива/воздуха в зону горения. Рукав ударного охлаждения коаксиально размещен в канале для воздуха для горения между кожухом и вкладышем, снабжен множеством отверстий. Отверстия имеют такой размер и распределены так, что позволяют направлять воздух для горения к радиально внешней поверхности участка вкладыша камеры сгорания, задающего границы зоны горения, для ударного охлаждения этого участка вкладыша. Каналирующее устройство размещено в канале для воздуха для горения для каналирования воздуха для горения от выходной области рукава ударного охлаждения до впускного отверстия смесительного устройства. Каналирующее устройство выполнено с возможностью предотвращения разделения потока и включает в себя секцию диффузора с проходным сечением впускного отверстия и проходным сечением выпускного отверстия, причем отношение проходного сечения выпускного отверстия к проходному сечению впускного отверстия находится в интервале значений 1,3-1,5. Изобретение обеспечивает равномерное течение воздушного потока, устойчивое горение, минимизирует температурные отклонения в продуктах сгорания, направляемые на турбину, и повышает эффективность охлаждения камеры сгорания. 4 н. и 17 з.п. ф-лы, 5 ил.

Камера сгорания, в частности для газотурбинного двигателя, имеет кольцевую форму вокруг оси и содержит внутреннюю кольцевую стенку, наружную кольцевую стенку и кольцевую торцевую стенку камеры, продолжающиеся вокруг указанной оси. Торцевая стенка камеры продолжается в радиальном направлении между внутренней кольцевой стенкой и наружной кольцевой стенкой. Торцевая стенка камеры содержит по меньшей мере одно отверстие для приема топливного инжектора. Отверстие по существу центрировано по кольцевой линии, ограничивающей первую часть торцевой стенки камеры, которая продолжается в радиальном направлении между кольцевой линией и внутренней кольцевой стенкой, и вторую часть торцевой стенки камеры, которая продолжается в радиальном направлении между кольцевой линией и наружной кольцевой стенкой. В камере сгорания образованы множество первых каналов в первой части торцевой стенки камеры и множество вторых каналов во второй части торцевой стенки камеры. Первые и вторые каналы наклонены относительно вектора нормали к торцевой стенке камеры и продолжаются в тангенциальном направлении. Первые каналы располагаются таким образом, чтобы обеспечить возможность протекания воздуха вокруг оси камеры сгорания в первом направлении вращения, а вторые каналы располагаются таким образом, чтобы обеспечить возможность протекания воздуха вокруг оси камеры сгорания во втором направлении вращения, противоположном первому направлению вращения. Изобретение повышает механическую прочность камеры сгорания, уменьшает стоимость ее изготовления и вес. 2 н. и 9 з.п. ф-лы, 6 ил.

Трубчатая камера сгорания для конструкции трубчато-кольцевой камеры сгорания в газовой турбине, по меньшей мере, содержит, по существу, цилиндрический кожух с расположенной в осевом направлении выше по потоку передней панелью и расположенным в осевом направлении ниже по потоку выпускным концом, несколько горелок с предварительным смешением, проходящих в направлении выше по потоку от упомянутой передней панели и имеющих выход горелки, поддерживаемый посредством этой передней панели, для подачи топливо-воздушной смеси в зону сгорания внутри кожуха. До четырех горелок с предварительным смешением прикреплены к передней панели, по существу, в кольцевом расположении. Каждая горелка имеет смесительную трубку для возбуждения вихревого потока упомянутой топливо-воздушной смеси. Центральная горелка не предоставлена. Каждая горелка имеет конический вихревой генератор. Выравнивание центральной продольной оси, по меньшей мере, одной горелки с предварительным смешением, прикрепленной к передней панели, отличается от выравнивания центральной продольной оси, по меньшей мере, одной другой горелки с предварительным смешением в радиальном направлении. Изобретение направлено на обеспечение трубчатой камеры сгорания с усовершенствованными работоспособностью, удобством технического обслуживания и экологическими характеристиками. 6 з.п. ф-лы, 6 ил.
Наверх