Скважинный излучатель нейтронов

Использование: для излучения импульсов нейтронного и рентгеновского излучения. Сущность изобретения заключается в том, что скважинный излучатель нейтронов в охранном кожухе содержит вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, при этом на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные в виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха. Технический результат: увеличение срока службы, повышение стабильности за счет снижения перегрева основных узлов излучателя, в том числе и нейтронной трубки, являющейся основным источником тепла, а также уменьшение габаритов и массы. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения.

Известно устройство для импульсного нейтронного каротажа скважин, состоящее из наземной аппаратуры временного анализа импульсов, блока управления и питания и скважинного прибора, содержащего импульсный источник быстрых нейтронов, выполненный на ускорительной трубке с мишенью, схему управления источником нейтронов, источник питания. Авторское свидетельство СССР №447097, МПК G01V 5/10, 2000 г. Устройство не стабильно, не надежно в работе и громоздко.

В качестве прототипа выбран скважинный прибор (см., например, Сборник материалов, Межотраслевой научно-технической конференции «Портативные генераторы нейтронов и технологии на их основе», Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, с.73, с.253. 2004), состоящий из нейтронного излучателя и блока регистрации, каждый в своем охранном кожухе, соединенные между собой прочной и герметичной муфтой. Нейтронный излучатель включает в себя блок трубки и блок питания, размещенные в отдельных металлических корпусах, соединенные между собой высоковольтным разъемом. Блок трубки залит жидким диэлектриком. В нем расположена вакуумная нейтронная трубка и ее схема питания, состоящая из двух импульсных высоковольтных трансформаторов и накопительного конденсатора, схемы формирования ускоряющего импульса. В блоке питания размещен высоковольтный коммутатор и схема формирования импульса запуска коммутатора.

Срок службы прототипа ограничен из-за неэффективности теплопередачи от корпуса блока трубки к охранному кожуху и связанной с этим деградацией основных узлов излучателя и изоляции.

В известном излучателе тепло от трубки передается сначала через электроизоляционную среду на тонкостенный корпус и далее на охранный кожух через воздушный зазор. Наличие зазора и промежуточного тонкостенного корпуса создает большое тепловое сопротивление, в результате чего перегрев на трубке при потребляемой мощности около 20 Вт достигает значений 30-50°C.

Задачей изобретения является создание скважинного нейтронного излучателя с большим сроком службы, повышение стабильности и уменьшение его габаритов и массы.

Техническим результатом изобретения является увеличение срока службы, повышение стабильности за счет снижения перегрева основных узлов излучателя, в том числе и нейтронной трубки, являющейся основным источником тепла, а также уменьшение габаритов и массы.

Технический результат достигается тем, что в скважинном излучателе нейтронов в охранном кожухе, содержащем вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха, а охранный кожух заполнен газообразным диэлектриком.

Сущность изобретения поясняется на фиг.1, фиг.2.

На фиг.1 схематично представлен продольный разрез блока излучателя, где: 1 - охранный кожух излучателя нейтронов; 2 - нейтронная трубка; 3 - мишенный электрод; 4 - анодный электрод; 5 и 6 - теплопроводящие изоляторы; 7 и 8 - отверстия и прорези в теплопроводящих изоляторах; 9 - высоковольтный трансформатор отрицательной полярности; 10 - высоковольтный трансформатор положительной полярности, 11 - накопительный конденсатор, 12 - блок питания; 13 - коммутатор, 14 - штуцер для подачи газа, 15 - заглушка, 16 - соединительная муфта, 17 - герметичные токовводы, 18 - разъем, 19 - амортизатор.

На фиг.2 представлен разрез по А-А, где: 1 - охранный кожух; 3 или 4 - мишенный или анодный электрод; 5 или 6 - теплопроводящие изоляторы; 7 и 8 - отверстия и прорези в теплопроводящих изоляторах.

Скважинный излучатель нейтронов содержит прочный (охранный) кожух 1, в котором размещена вакуумная нейронная трубка 2 с мишенным 3 и анодным 4 металлическими электродами, на которых коаксиально закреплены теплопроводные изоляторы 5 и 6 с отверстиями 7 и продольными прорезями 8 для прохода транзитных проводов и циркуляции газообразного диэлектрика.

Теплопроводящие изоляторы 5 и 6 выполнены в виде полых цилиндров из керамики с кольцевыми проточками для обеспечения требуемой электрической прочности, отверстиями для циркуляции газообразного диэлектрика и продольными прорезями для прохода транзитных проводов.

Внутренние поверхности керамических изоляторов 5 и 6 плотно прилегают к электродам нейтронной трубки 3, 4, а наружные - к внутренней цилиндрической поверхности охранного кожуха 1. Для снижения теплового сопротивления на контактные поверхности нанесены теплопроводящие покрытия (например, контактол). В качестве теплопроводящих диэлектриков с высокой теплопроводностью применен нитрид алюминия.

Электрическая схема питания нейтронной трубки содержит высоковольтный трансформатор 9 импульсов отрицательной полярности, высоковольтный трансформатор 10 импульсов положительной полярности, накопительный конденсатор 11, блок питания 12 с высоковольтным коммутатором 13. Все элементы схемы закреплены между собой и размещены в охранном кожухе 1, который герметизирован с одной стороны заглушкой 15, а с другой муфтой 16.

Для обеспечения электрической прочности охранный кожух заполнен газообразным диэлектриком, который имеет ряд преимуществ по сравнению с жидкими диэлектриками.

Он не требует применения термокомпенсатора для компенсации объемного расширения жидкого диэлектрика во всем температурном диапазоне (от -50 до 200°C).

Применение газовой изоляции существенно упрощает технологию замены нейтронной трубки с использованием несложного оборудования.

Одним из наиболее подходящих газообразных диэлектриков является гексафторид SF6 (элегаз), обладающий малыми диэлектрическими потерями, высокой термостойкостью (более 800°C) и практически не изменяющий своих свойств в процессе эксплуатации, а электрическая прочность при давлении 4-6 МПа в 2 раза выше, чем у трансформаторного масла.

Внешнее питание и управление излучателем осуществляется через проходные токовводы 17 и разъем 18. Для компенсации линейных перемещений лотка при изменениях температуры и механических нагрузок на заглушке установлен амортизатор 19. Эффективный отвод тепла к охранному кожуху 1 от основных источников тепла обеспечивается за счет высокой теплопроводности изоляторов 5 и 6 и уменьшения теплового сопротивления между нейтронной трубкой и охранным кожухом.

Таким образом, выполнение скважинного излучателя нейтронов в соответствии с предложенным техническим решением позволит увеличить срок службы излучателя по сравнению с прототипом и уменьшить габариты приблизительно на 25%, а также повысить стабильность и интенсивность за счет удаления водородосодержащих изоляционных материалов из области вокруг мишени нейтронной трубки.

1. Скважинный излучатель нейтронов в охранном кожухе, содержащий вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, отличающийся тем, что на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные в виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха.

2. Скважинный излучатель нейтронов по п.1, отличающийся тем, что он заполнен газообразной изоляцией.



 

Похожие патенты:

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном скважинном импульсном нейтронном генераторе трансформаторы (2) и (3) залиты компаундом с диэлектрической проницаемостью, уменьшающейся с ростом температуры, конденсаторы (4), (6) и (7) залиты компаундом с диэлектрической проницаемостью, увеличивающейся с ростом температуры.

Изобретение относится к конструктивным элементам ускорителей заряженных частиц, в частности к изоляторам нейтронных трубок, и может быть использовано при разработке нейтронных трубок и генераторов нейтронов.

Изобретение относится к способу изготовления электродов и мишеней нейтронных трубок для генерации потоков нейтронов и может быть использовано при разработке генераторов нейтронов для исследования геофизических и промысловых скважин.

Изобретение относится к ядерной физике и медицине и может быть применено для нейтронозахватной терапии злокачественных опухолей с использованием источника нейтронов, выполненного на основе ускорителя заряженных частиц.

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке импульсных генераторов нейтронов для исследования нефтегазовых и урановых скважин методом импульсного нейтронного каротажа.

Изобретение относится к области создания ускоренных ионов в нейтронных трубках, применяемых в медицине, системах идентификации ядерных материалов, устройствах каротажа нефтегазовых скважин и в других областях.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для применения в аппаратуре элементного анализа вещества на основе нейтронно-радиационных методов.

Изобретение относится к нейтронной технике, к средствам формирования потоков нейтронов высокой плотности и может быть использовано в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе, и в других областях ядерной техники и технологии.

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей.

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенным для проведения геофизических исследований нефтяных, газовых и рудных скважин.

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на металлическую основу мишени и насыщают его тритием, подают газовую среду к мишени и проводят в ней термическую обработку мишени и удаляют газовую среду от мишени. При этом термическую обработку мишени проводят в камере термической обработки при температуре 200-250°C в течение 1-2 часов, давление газовой среды в камере термической обработки определяют из условия, что при максимальном нагреве камеры оно составит 80-90 кПа, в качестве газовой среды используют осушенный воздух с содержанием влаги не более 13 мг/кг. Техническим результатом является повышение термической стойкости титано-тритиевой мишени, повышение ресурса и надежности работы нейтронной трубки. 1 табл.

Изобретение относится к фотонейтронным источникам. Фотонейтронный источник включает канал для ввода пучка электронов, облучаемый пучком электронов с энергией 6-8 МэВ, е-γ-конвертер из вольфрама толщиной 0,1 см, две фотонейтронные мишени из бериллия, полость для облучения образцов, замедлитель быстрых нейтронов из полиэтилена и биологическую защиту из борированного полиэтилена для поглощения тепловых и замедления и поглощения быстрых нейтронов, вылетающих наружу из источника. В биологической защите выполнена полость, заполненная замедлителем. В центре замедлителя также выполнена полость, в которой установлены симметрично относительно ее центра первая и вторая фотонейтронные мишени. Пространство между мишенями служит полостью для облучения образцов. На внешней поверхности первой фотонейтронной мишени размещен е-γ-конвертер, который сопряжен с каналом для ввода пучка электронов. По боковым сторонам полости для облучения образцов могут быть дополнительно размещены боковые фотонейтронные мишени из бериллия толщиной не менее 1 см. Фотонейтронный источник дополнительно содержит канал для помещения образцов внутрь полости для облучения образцов и канал для вывода нейтронов из центра источника, причем первая и вторая фотонейтронные мишени выполнены подвижными с возможностью перемещения в центр источника. Техническим результатом является упрощение конструкции и технологии изготовления фотонейтронного источника, повышение эффективности и надежности его функционирования, повышение защиты от нейтронного облучения в процессе функционирования. 15 з.п. ф-лы, 7 ил., 3 пр.
Наверх