Способ получения фотокаталитически активного нанокристаллического диоксида титана анатазной модификации



Способ получения фотокаталитически активного нанокристаллического диоксида титана анатазной модификации
Способ получения фотокаталитически активного нанокристаллического диоксида титана анатазной модификации
Способ получения фотокаталитически активного нанокристаллического диоксида титана анатазной модификации

 


Владельцы патента RU 2551677:

Федеральное государственное бюджетное учреждение науки Институт проблем химической физики российской академии наук (ИПХФ РАН) (RU)
Федеральное государственное бюджетное учреждение науки Научный центр российской академии наук в Черноголовке (НЦЧ РАН) (RU)

Изобретение относится к способам получения порошков нанокристаллического диоксида титана, которые могут быть использованы для фотокаталитической очистки и обеззараживания воздуха и воды, создания фотоэлектрических преобразователей энергии, новых композиционных и каталитических материалов. Способ получения нанокристаллического диоксида титана анатазной модификации включает: 1) приготовление сернокислотного раствора с титансодержащим реагентом и окислителем; 2) нагревание сернокислотного раствора до заданной температуры; 3) отделение осажденного нанокристаллического диоксида титана от раствора любым известным методом. В качестве исходного титансодержащего реагента используют нитрид титана преимущественно в виде порошка с удельной поверхностью от 1 до 20 м2/г, а в раствор дополнительно вводят окислитель, в качестве которого используют преимущественно азотную кислоту или триоксид хрома. Технический результат нового способа: сокращение времени проведения реакции гидролиза; формирование кристаллической структуры анатаза непосредственно в результате кристаллизации из раствора при температуре, не превышающей температуру кипения при атмосферном давлении без применения дополнительной термообработки осадка. 2 з.п. ф-лы, 3 ил., 4 пр.

 

Изобретение относится к способам получения порошков нанокристаллического диоксида титана, которые могут быть использованы для фотокаталитической очистки и обеззараживания воздуха и воды, создания фотоэлектрических преобразователей энергии, новых композиционных и каталитических материалов. Фотокатализ на диоксиде титана является перспективным методом уничтожения органических загрязнителей и патогенной микрофлоры в воздухе и воде. Диоксид титана, используемый в качестве фотокатализатора, должен обладать кристаллической структурой анатаза, высокой удельной поверхностью (желательно более 200 м2/г), малым размером кристаллитов, высокой адсорбционной способностью.

Значительная часть способов получения порошков диоксида титана основана на реакциях гидролиза солей титана в растворах, приводящих к выпадению в осадок гидратированных форм диоксида титана с последующим их выделением и высокотемпературной обработкой до получения кристаллического диоксида титана преимущественно рутильной модификации. Широко известны сульфатные способы, когда в качестве гидролизующейся соли используют титанилсульфат, выщелачиваемый серной кислотой из титансодержащего сырья (руды, титансодержащих шлаков и т.п.) (патент РФ №2317345 от 17.10.2003). Помимо титанилсульфата возможно использование для гидролиза других соединений титана(IV), например, тетрахлорида титана (патент РФ №2435733 от 20.07.2010, патент 2281913 от 14.10.2004), фтортитаната аммония (патент РФ №2392229 от 16.01.2006), тетралкоксида титана (патент РФ №2291839 от 10.11.2004).

Во всех перечисленных способах, основанных на гидролизе солей титана(IV), присутствует стадия высокотемпературной (500-1000°С) обработки выделенного осадка гидратированного оксида (гидроксида титана) для перевода его в кристаллический диоксид титана. Необходимость такой обработки усложняет аппаратное оформление процесса, кроме того, отжиг приводит к укрупнению частиц получаемого диоксида титана, снижению величины удельной поверхности материала в результате спекания, ограничивает возможности технологии получением только рутильной формы диоксида титана.

Известно, что получение кристаллической формы диоксида титана возможно непосредственно кристаллизацией из раствора, если гидролиз проводить в гидротермальных условиях. В способах по патентам №2408427 от 20.07.2009 и №2408428 от 20.07.2009 получение фотокатализатора на основе мезопористых частиц диоксида титана с высокой удельной поверхностью осуществляют гидротермальным гидролизом кислого водного раствора сульфата титанила при температуре в диапазоне 100-250°С в течение 0,5-24 часа. Во втором случае раствор во время термообработки дополнительно облучают микроволновым излучением. Способы позволяют получать высокоактивный нанокристаллический порошок диоксида титана непосредственно из раствора, однако требуют сложного оборудования для работы под избыточным давлением.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ получения наноразмерных частиц диоксида титана, включающий гидролиз водного раствора, содержащего ионы титана Ti3+ в присутствии кислоты при нагревании. При этом водный раствор, содержащий ионы титана Ti3+, получают растворением гидрида титана или металлического титана в 37% соляной или 96% серной кислоте, разбавленной водой, соответственно 1:2 или 1:3,4 до получения соотношения Ti3+:Cl-, равного 1:6, либо T i 3 + : S O 4 2 , равного 1:3. Полученный раствор, содержащий ионы трехвалентного титана, нагревают до температуры 100-150°C и выдерживают при этой температуре 15-20 часов, после чего охлаждают до комнатной температуры. Осадок отфильтровывают, промывают водой и этанолом и сушат при 80°C в течение 2 часов. По данным фазового анализа продукт представляет собой диоксид титана со структурой анатаза и согласно электронно-микроскопическим исследованиям состоит из частиц в форме нанопрутков диаметром 5-15 нм и длиной до 500 нм. Как установили авторы изобретения, ионы трехвалентного титана в растворе играют роль катализатора гидролиза и обеспечивают получение диоксида титана анатазной модификации в виде нанопрутков.

К недостатком описанного способа следует отнести большую длительность процесса гидролиза (15-20 часов), необходимость нагревания раствора при этом до высокой температуры (вплоть до 150°C). Все это технически усложняет процесс и снижает его производительность.

Задачей предлагаемого изобретения является разработка нового способа получения фотокаталитически активного нанокристаллического диоксида титана анатазной модификации, для которого характерны:

- сокращение времени проведения реакции гидролиза;

- формирование кристаллической структуры анатаза непосредственно в результате кристаллизации из раствора при температуре, не превышающей температуру кипения при атмосферном давлении без применения дополнительной высокотемпературной термообработки осадка.

Задача достигается тем, что в качестве исходного титансодержащего реагента используют нитрид титана преимущественно в виде порошка с удельной поверхностью от 1 до 20 м2/г, а в раствор дополнительно вводят окислитель, в качестве которого используют преимущественно азотную кислоту или триоксид хрома.

Способ получения фотокаталитически активного нанокристаллического диоксида титана включает:

- приготовление сернокислотного раствора с титансодержащим реагентом - нитридом титана и окислителем - азотной кислотой или триоксидом хрома;

- нагревание сернокислотного раствора до заданной температуры (не более температуры кипения при атмосферном давлении) и выдерживание при этой температуре от 0,5 до 10 часов;

- отделение осажденного нанокристаллического диоксида титана от раствора любым известным методом.

При нагревании сернокислотного раствора происходит растворение нитрида титана, сопровождающееся изменением валентного состояния Ti3+ в Ti4+ под действием окислителя. Одновременно происходит гидролиз образующейся соли титана с выпадением из раствора нанокристаллов диоксида титана. Применение окислителя в сочетании с высокой удельной поверхностью используемого порошка нитрида титана (1 до 20 м2/г) позволяет значительно ускорить растворение нитрида титана и существенно сократить общее время процесса. Применение более высокодисперсных порошков возможно, но нецелесообразно из-за их малой доступности, высокой стоимости и склонности к самовоспламенению на воздухе. Использование порошков с удельной поверхностью менее 1 м2/г приводит к замедлению их растворения и увеличению времени процесса.

Присутствие в растворе ионов Ti3+, возникающих при растворении нитрида титана, способствует получению непосредственно из раствора кристаллических частиц диоксида титана анатазной модификации без применения дополнительной термообработки осадка, обеспечивая тем самым получение порошка с малым размером кристаллитов и высокой удельной поверхностью.

По данным рентгеновской дифрактометрии получаемые по описанному способу порошки нанокристаллического диоксида титана имеют кристаллическую структуру анатаза (фиг.1 - дифрактограмма полученного нанопорошка диоксида титана анатазной модификации). На электронных микрофотографиях частиц порошка (фиг.2) видно, что он состоит из частиц размером 100-200 нм, каждая из которых, в свою очередь, представляет собой агломерат из частиц размером 5-10 нм. Для полученных порошков характерна высокая удельная поверхность - до 300 м2/г.

Для оценки фотокаталитической активности синтезированных порошков диоксида титана применялся модифицированный экспресс-метод - родаминовый тест, основанный на измерении скорости обесцвечивания нанесенного на испытуемый порошок красителя в результате фотокаталитической реакции, инициируемой ультрафиолетовым светом. Исследуемый порошок наносился на стандартное предметное стекло и окрашивался красителем родамин Б. Образцы освещались на оптическом микроскопе с ртутной лампой высокого давления и набором интерференционных фильтров с максимумом пропускания 365 нм. Световой поток составлял около 210 мВт/см2. Образцы облучались на воздухе от 5 секунд до 20 минут. Для сравнения испытаниям были подвергнуты коммерческие образцы диоксида титана известных марок Hombifine N и Degussa Р25. Результаты представлены на фиг.3, где скорость фотокаталитической деградации порошков диоксида титана Degussa Р25 (1), Hombifine N (2) и синтезированного порошка (3).

Пример 1.

Готовят раствор серной кислоты добавлением 80 мл 98%-ой серной кислоты к 1 л воды, затем в раствор добавляют 50 г порошка нитрида титана с удельной поверхностью 20 м2/г. В полученную смесь вводят окислитель в виде 70 мл 68%-ой азотной кислоты. Смесь нагревают при перемешивании и выдерживают при температуре кипения в течение 0,5 часа. Выделившийся осадок отделяют от раствора и высушивают при температуре 100°C. По данным рентгеновской дифрактометрии получаемый порошок диоксида титана имеет кристаллическую структуру анатаза (рис.1). Удельная поверхность порошка составляет 140 м2/г.

Пример 2.

Готовят раствор серной кислоты добавлением 80 мл 98%-ой серной кислоты к 1 л воды, затем в раствор добавляют 50 г порошка нитрида титана с удельной поверхностью 20 м2/г. В полученную смесь вводят окислитель - триоксид хрома в количестве 215 г. Смесь нагревают при перемешивании и выдерживают при температуре кипения в течение 1 часа. Выделившийся осадок отделяют от раствора и высушивают при температуре 100°C. Получаемый порошок диоксида титана имеет кристаллическую структуру анатаза и удельную поверхность 250 м2/г.

Пример 3.

Готовят раствор серной кислоты добавлением 80 мл 98%-ой серной кислоты к 1 л воды, затем в раствор добавляют 50 г порошка нитрида титана с удельной поверхностью 6 м2/г. В полученную смесь вводят окислитель - триоксид хрома в количестве 215 г. Смесь нагревают при перемешивании и выдерживают при температуре кипения в течение 4 часов. Выделившийся осадок отделяют от раствора и высушивают при температуре 100°C. Получаемый порошок диоксида титана имеет кристаллическую структуру анатаза и удельную поверхность 120 м2/г.

Пример 4.

Готовят раствор серной кислоты добавлением 10 мл 98%-ой серной кислоты к 1 л воды, затем в раствор добавляют 8 г порошка нитрида титана с удельной поверхностью 20 м2/г. В полученную смесь вводят окислитель - триоксид хрома в количестве 35 г. Смесь нагревают при перемешивании и выдерживают при температуре кипения в течение 1,5 часа. Выделившийся осадок отделяют от раствора и высушивают при температуре 100°C. Получаемый порошок диоксида титана имеет кристаллическую структуру анатаза и удельную поверхность 200 м2/г. Полученный порошок обладает высокой фотокаталитической активностью: кривая 3 на фиг.3.

1. Способ получения нанокристаллического диоксида титана анатазной модификации осаждением из сернокислотного раствора с титансодержащим реагентом, отличающийся тем, что в качестве титансодержащего реагента используют нитрид титана, а в сернокислотный раствор с титансодержащим реагентом дополнительно вводят окислитель.

2. Способ по п.1, отличающийся тем, что нитрид титана используют преимущественно в виде порошка с удельной поверхностью от 1 до 20 м2/г.

3. Способ по п.1, отличающийся тем, что в качестве окислителя используют преимущественно азотную кислоту или триоксид хрома.



 

Похожие патенты:

Изобретение относится к способу приготовления фотокатализатора на основе диоксида титана. Способ включает сенсибилизацию диоксида титана введением активизирующей добавки (органические красители и окрашенные координационные соединения).

Предложен обогащенный титаном остаток после выщелачивания ильменита соляной кислотой как сырье для получения титансодержащего пигмента при помощи сернокислотного способа.

Изобретение может быть использовано в химической промышленности. Представлена дисперсия частиц оксида титана со структурой рутила, в которой частицы оксида титана со структурой рутила имеют D50 в интервале от 1 до 15 нм и D90 40 нм или менее в распределении частиц по размеру при его определении методом динамического рассеяния света; удельную поверхность в интервале от 120 до 180 м2/г при определении методом по БЭТ; и степень потери массы 5% или менее при ее определении нагреванием частиц оксида титана со структурой рутила от 105°C до 900°C.
Изобретение может быть использовано в производстве плотной износостойкой керамики, твердых электролитов. Способ получения нанопорошка сложного оксида циркония, иттрия и титана включает приготовление исходного раствора солей нитратов, введение в него органической кислоты и титансодержащего соединения и последующую термообработку.

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов.
Изобретение относится к области пирогидрометаллургии, в частности к технологии получения диоксида титана из титансодержащего сырья, предназначено для усовершенствования технологических процессов переработки и растворения титановых руд, и может быть использовано в лакокрасочной промышленности для получения белого пигмента, в производстве катализаторов, пластмасс, диэлектриков и других отраслях промышленностиИзвестен способ переработки титансодержащего сырья, основанный на увеличении растворимости минерала за счет спекания его с фторидным реагентом с последующей термообработкой профторированной массы для разделения продуктов фторирования путем возгонки (RU 2365647 С2, 2009 г.), недостатком которого является использование агрессивных фторидных сред и дорогостоящих реагентов, таких как фторид аммония.

Изобретение относится к способу получения нанодисперсного диоксида титана, используемого в качестве фотокатализатора. .
Изобретение относится к технологии получения диоксида титана, в частности нанодисперсного порошка ТO2, и может быть использовано при получении катализаторов на основе диоксида титана для фотокаталитической очистки воды и воздуха от органических соединений, в качестве адсорбентов, в качестве наполнителей в лакокрасочной промышленности, для производства многих видов композиционных керамических материалов, а также в качестве сырья для получения титана и титанатов металлов.

Изобретение относится к области способов получения наноразмерных образцов диоксида титана и может применяться для приготовления основного компонента ряда сорбентов, фотокатализаторов, преобразователей солнечной энергии в химическую и т.д.

Изобретение относится к области способов получения наноразмерных образцов диоксида титана и может применяться в качестве адсорбента для эффективной очистки водных систем от вредных и нерастворимых ионов и их соединений, в частности для извлечения ионов висмута.

Изобретение относится к химической промышленности. Способ разделения фуллеренов включает растворение фуллеренов в о-ксилоле, высокотемпературную обработку полученного раствора при 70-90°C 60-120 минут с получением концентрата С60 и раствора, направляемого на низкотемпературную обработку при (-15)÷(-25)°C в течение 10-30 часов.

Изобретение относится к получению термостойких нанокомпозитов. В качестве исходного материала для матрицы используют гранулированный материал или тонкоразмолотый порошок диоксида титана, или диоксида циркония, или диоксида олова, или их смесь.

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АIIIBV, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и длинноволновых лазерах, а также в солнечных элементах.
Изобретение может быть использовано в области порошковой металлургии. Способ получения карбида титана включает нагрев шихты, состоящей из диоксида титана и порошка нановолокнистого углерода с удельной поверхностью 138…160 м2/г, взятых в массовом соотношении диоксида титана к порошку нановолокнистого углерода 68,5:31,5, при температуре 2250°C.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении катализаторов и сорбентов. Графеновая пемза состоит из графенов, расположенных параллельно на расстояниях больше 0,335 нм, и аморфного углерода в качестве связующего по их краям, при соотношении графена и связующего от 1:0,1 до 1:1 по массе.
Изобретение относится к области производства керамических конструкционных и функциональных материалов. Для получения керамического композитного материала на основе оксидов алюминия и циркония проводят стабилизацию в тетрагональной фазе диоксида циркония механическим способом: смешивают в активаторе соль циркония и стабилизатор (соль редкоземельного элемента), затем смесь термообрабатывают при температуре 500-600°C в течение 1-3 часов.

Изобретение относится к процессам нефтепереработки. Изобретение касается способа получения высокоочищенных твердых нефтяных парафинов путем гидрооблагораживания парафина-сырца при температуре 240-380°C и давлении 20-35 кгс/см2 в присутствии каталитической системы, состоящей из катализаторов защитного и основного слоев с последующим разделением газопродуктовой смеси на жидкую и газообразную фазу и стабилизацией жидкой фазы.

Изобретение может быть использовано в производстве катодного материала химических источников тока, а также термисторов, резисторов, устройств для записи и хранения информации.

Изобретение относится к области химии и может быть использовано при изготовлении приборов наноэлектроники, оптоэлектроники, сенсоров, фотовольтаики, а также для хранения энергии.

Изобретение может быть использовано в химической промышленности, косметике и медицине при изготовлении косметических средств, лекарств, антиоксидантов, антимикробных средств, радиопротекторов, соединений для доставки генного материала.

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде.
Наверх