Устойчивый к окислению никелевый сплав



Устойчивый к окислению никелевый сплав
Устойчивый к окислению никелевый сплав
Устойчивый к окислению никелевый сплав
Устойчивый к окислению никелевый сплав

 


Владельцы патента RU 2551744:

АЛЬСТОМ ТЕКНОЛОДЖИ ЛТД (CH)

Изобретение относится к области металлургии, в частности к стойким к окислению сплавам на основе никеля. Стойкий к окислению сплав никеля содержит, мас.%: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-0,2 Mg, 0,1-0,2 Hf, Ni и неизбежные примеси - остальное. Сплав может быть использован в качестве материала оболочки термопар N-типа, так как имеет улучшенные свойства ползучести при высоких температурах. 7 з.п. ф-лы, 3 ил., 1 табл.

 

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к оболочке термопар N-типа, подвергнутой воздействию окислительной атмосферы при очень высоких температурах, приблизительно 1100°C.

Такие жесткие эксплуатационные требования предъявляются, например, при измерении температуры в современных газовых турбинах. В частности, настоящее изобретение относится к сплаву никеля, стойкому к окислению с улучшенными свойствами ползучести.

ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ

Тип GT24/GT26 газовых турбин заявителя, которые известны из предшествующего уровня техники, работают на основе последовательного принципа сгорания. Это означает, что сжатый воздух нагревается в первой камере сгорания с помощью добавления около 50% от общего объема топлива (при базовой нагрузке). После этого продукты горения расширяются, проходя через первую турбину (одноступенчатая турбина высокого давления), где давление снижается примерно в два раза. Затем оставшееся топливо добавляется во вторую камеру сгорания, где продукты горения нагреваются второй раз до максимальной температуры на входе в турбину, и, наконец, расширяются в турбине низкого давления. Вторая камера сгорания предназначена для самовоспламенения, то есть температура выхлопных газов из первой турбины должна позволить возникнуть самовозгоранию в сочетании с топливом, инжектированным в упомянутую камеру. По этой причине необходимо вести мониторинг и измерять температуру потока горячего газа. Для этих целей заявитель использует термопары, снабженные оболочкой.

Известными сплавами для оболочки термопар являются, например, IN600, IN617 и так называемый HAYNES®-214®. Это - Y'-усиленный сплав Ni с 4,5% Al, с хорошей прочностью при растяжении и стойкостью к механическому разрушению, который показывает, к сожалению, неудовлетворительную работу в отношении стойкости к окислению и рассогласование по коэффициенту теплового расширения со сплавами термоэлектродов.

Другими коммерческими сплавами оболочки являются, например, Nicrobell® и Pyrosil®D, все они являются сплавами на основе Ni с различными дополнительными элементами в разных количествах, например, Si, Y, Mo. Они не показывают удовлетворительную стойкость к окислению в течение долгосрочных высокотемпературных применений.

Кроме того, хорошо известно использование Ni сплавов торговых марок Nisil (никель-кремний) и Nicrosil (никель-хром - кремний) в качестве электродов для термопары N-типа. Эти сплавы обладают улучшенной характеристикой окисления и показывают повышенную термоэлектрическую стабильность при температурных измерениях до 1200°C по сравнению с другими стандартными сплавами термопары на основе обычного металла, потому что их химический состав снижает термоэлектрическую неустойчивость. Это достигается путем повышения концентраций хрома и кремния в основном никеле, чтобы вызвать переход от внутреннего к внешнему режиму окисления, и путем выбора дополнительных элементов, например Mg, который окисляется с образованием диффузионного барьера и, следовательно, пленок, ингибирующих окисление. При этом использовании Nisil служит как отрицательный проводник термопары, а Nicrosil как положительный проводник термопары N-типа.

К сожалению, эти материалы показывают присущую им низкую сопротивляемость ползучести и обладают относительно низкой прочностью при растяжении и свойствами механического разрушения, которые требуют внимания при производстве и выборе совместимого материала оболочки.

Известный преждевременный отказ в работе электродов термопары N-типа особенно Nisil проводника был приписан несоответствию коэффициентов термического расширения между сплавами оболочки, такими как HAYNES®-214®, IN600 или ss316, и сплавами Nisil и Nicrosil электродов термопары. Токопроводящие электроды термопары могут выйти из строя механически из-за знакопеременных деформаций, возникающих при термоциклировании. Деформации вызваны, прежде всего, продольными натяжениями, которые возникают из-за различных температурных коэффициентов линейного расширения термоэлементов и разнородных сплавов оболочки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является устранение недостатков предшествующего уровня техники, которые были упомянуты.

В основу настоящего изобретения положена задача нахождения материала, подходящего для использования в качестве материала оболочки для электродов термопары N-типа, которые могут использоваться без каких-либо проблем в окислительной атмосфере газовых турбин при экстремально высоких температурах. При этих температурах материал оболочки должен обладать достаточной стойкостью к окислению и относительно хорошей стойкостью к механическому разрушению (хорошая долгосрочная надежность) и хорошей термоэлектрической стабильностью.

Согласно настоящему изобретению эта задача достигается с помощью никелевого сплава следующего химического состава, мас. %: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-2 Mg, 0,1-0,2 Hf, остальное Ni и неизбежные примеси.

Предпочтительным вариантом осуществления настоящего изобретения представляется сплав следующего химического состава, мас. %: 6 Cr, 4,4 Si, 0,1 Y, 0,15 Mg, 0,1 Hf, остальное Ni и неизбежные примеси.

Сплав согласно настоящему изобретению показывает улучшенную стойкость к окислению при высоких температурах по сравнению с известными коммерческими материалами оболочки, такими как HAYNES®-214®, Nicrobell® или Pyrosil®D для электродов термопары N-типа, поэтому он может использоваться с преимуществом, как материал оболочки для термопар N-типа при очень высоких температурах в атмосфере окисления.

Здесь не существует значительного несоответствия в коэффициентах теплового расширения между представленным сплавом и электродами термопар N.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Примерные варианты осуществления настоящего изобретения иллюстрируются на чертежах, в которых:

на фиг.1 показаны результаты испытаний на растяжение при комнатной температуре для сплава согласно настоящему изобретению и для разных коммерческих сплавов;

на фиг.2 показаны результаты испытаний ползучести при температуре 800°C/50 MПa для сплава согласно настоящему изобретению и для разных коммерческих сплавов; и

на фиг.3 показаны характеристики окисления при температуре 1100°C для сплава согласно настоящему изобретению и для разных коммерческих сплавов.

ПОДРОБНОЕ ОПИСАНИЕ РАЗЛИЧНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Настоящее изобретение более подробно поясняется ниже на основании примерного варианта осуществления и графиков.

В таблице 1 приведен список соответствующих химических составов испытуемых сплавов. Легирующие компоненты приводятся в мас. %.

Сплав Nisil-M1 является сплавом согласно настоящему изобретению, в то время как другие 5 сплавов являются коммерчески доступными технологическими материалами. Это своего рода разновидность микролегированного Nisil с добавлением 0,1 Y, 0,1 Hf и значительным содержанием хрома (Cr6%). Большое преимущество Nisil-M1 состоит в том, что нет никакого изменения в поведении теплового расширения по сравнению с Nisil.

Образцы размером с кнопку для испытаний различных материалов с номинальным составом в соответствии с таблицей 1 (без HAYNES®-214®) были приготовлены плавлением в дуговой печи. Химический состав Nisil-M1 был разработан так, чтобы одновременно обладать улучшенной стойкостью к окислению и коэффициентом теплового расширения, близким к коэффициенту теплового расширения электродов термопары, сделанных из Nisil или Nicrosil. Приготовленные образцы размером с пуговицу были в значительной степени холоднокатаными при комнатной температуре со степенью деформации приблизительно 70%.

Холоднокатаные образцы были термически обработаны при температуре 800°C в течение 1 часа для того, чтобы достигнуть полностью рекристаллизованной структуры. Образцы для испытания мини-размеров были изготовлены путем машинной обработки заготовок, прошедших термическую обработку.

На фиг.1 показаны результаты испытаний на растяжение при комнатной температуре для этих сплавов, а также соответствующие свойства HAYNES®-214®, как описано в литературе (смотри HAYNES®214® ALLOY, HD-3008D, Haynes International, Inc. 2008).

Как ожидалось, HAYNES®-214® показал высокий предел прочности при растяжении по сравнению с другими сплавами, но сплав согласно настоящему изобретению Nisil-M1 показал улучшенную прочность при растяжении по сравнению с Nisil и Nicrosil. Это результат различного химического состава, а именно Cr и Hf. Оба элемента повышают предел ползучести и стойкость к окислению.

Результаты механического разрушения при температуре 800°C/50 MПa представлены на фиг.2. Сплав в соответствии с настоящим изобретением Nisil-M1 имеет высокое относительное удлинение (почти 45%) и намного лучший характер изменения механического разрушения, чем у Nisil, но ниже по сравнению с Nicrosil и оболочкой коммерческих сплавов Nicrobell® или Pyrosil®D.

Плоские образцы для испытаний упомянутых сплавов, включая HAYNES®-214®, были испытаны окислением на воздухе при температуре 1000°C в течение более чем 1500 часов. На фиг.3 представлены результаты окисления как привес массы на cм2 этих сплавов.

Как можно видеть на этой фигуре, Nisil-m1 показывает улучшенную стойкость к окислению по сравнению с Nicrosil и оболочной коммерческих сплавов Nicrobell® или Pyrosil®D, но лишь незначительно хуже, чем Nisil и HAYNES®- 214®.

Термопары N-типа сплавов (Nisil и Nicrosil) обладают относительно низким пределом прочности при растяжении и механическом разрушении. Эти характеристики требуют внимания при производстве и выборе совместимого материала оболочки. Это поможет избежать механического нарушения электродов термопары из-за несоответствия коэффициентов теплового расширения между электродами термопары и материалом оболочки. Хотя коммерческие материалы оболочки Nicrobell® или Pyrosil®D обладают близкими коэффициентами теплового расширения, что и у материалов электродов термопар (Nisil, Niscrosil), они не удовлетворяют требованиям относительно стойкости к окислению в течение длительного времени при высоких температурах применения. Это может быть достигнуто с помощью сплава согласно настоящему изобретению.

1. Стойкий к окислению сплав никеля, характеризующийся тем, что он имеет следующий химический состав, мас.%: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-0,2 Mg, 0,1-0,2 Hf, остальное Ni и неизбежные примеси.

2. Сплав по п.1, отличающийся тем, что содержание Cr составляет 5-6 мас. %.

3. Сплав по п.2, отличающийся тем, что содержание Cr составляет 6 мас. %.

4. Сплав п.1, отличающийся тем, что содержание Si составляет 4,4 мас. %.

5. Сплав по п.1, отличающийся тем, что содержание Y составляет 0,1 мас. %.

6. Сплав по п.1, отличающийся тем, что содержание Mg составляет 0,15 мас. %.

7. Сплав по п.1, отличающийся тем, что содержание Hf составляет 0,1 мас. %.

8. Сплав по любому из пп.1-7, отличающийся тем, что он предназначен для изготовления оболочки электродов термопары N-типа.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля для изготовления механических компонентов турбомашин. Суперсплав на основе никеля для механических компонентов турбомашин содержит, мас.%: хром - от 3 до 7, вольфрам - от 3 до 15, тантал - от 4 до 6, алюминий - от 4 до 8, углерод менее 0,8, никель и примеси - остальное.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах.

Изобретение относится к области металлургии, в частности, к дисперсионно-упрочненным жаропрочным сплавам на основе никеля и может быть использовано в качестве материала для трубчатой оболочки тепловыделяющего элемента реакторов на быстрых нейтронах.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионно-стойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-900°C.

Изобретение относится к металлургии, к коррозионно-стойким жаропрочным сплавам на основе никеля и может быть использовано для изготовления деталей горячего тракта газотурбинных установок, работающих в агрессивных средах.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок (ГТУ), работающих в агрессивных средах природного газа при температурах 600-890°C.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное.
Изобретение относится к области металлургии, в частности к высокопрочным прецизионным сплавам на основе никеля для получения покрытий микроплазменным или холодным сверхзвуковым напылением.

Изобретение относится к жаропрочному сплаву на основе никеля. Сплав содержит, мас.
Изобретение относится к металлургии жаропрочных сплавов для сварочной проволоки и может быть использовано для сварки деталей из высоконикелевых сплавов высокотемпературных установок с температурой эксплуатации до 950оC. Сварочная проволока содержит, мас.%: углерод 0,01-0,05, кремний 0,05-0,2, марганец 1,3-2,0, хром 14,0-16,0, молибден 6,0-7,0, вольфрам 2,5-3,5, железо 17,0-20,0, азот 0,01-0,04, иттрий 0,01-0,1, цирконий 0,05-0,15, кальций 0,001-0,1, сера менее 0,010, фосфор менее 0,015, никель - остальное. Сварочная проволока характеризуется повышенными технологической прочностью и высокими кратковременными механическими свойствами и длительной прочностью при температурах до 950оC. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, имеющим высокие значения горячей обрабатываемости, ударной вязкости и пластичности после долговременного использования. Жаропрочный сплав на Ni-основе состоит из, % по массе: С≤0,15, Si≤2, Mn≤3%, Р≤0,03, S≤0,01, Cr 15 или более и менее 28, Mo от 3 до 15, Со более 5 и не более 25, Al от 0,2 до 2, Ti от 0,2 до 3, Nd от f1 до 0,08 и О≤0,4Nd. При этом нижний предел содержания Nd определен следующим выражением f1=1,7×10-5d+0,05{(Al/26,98)+(Ti/47,88)}, где d - средний размер зерна, мкм, и каждый символ элемента означает содержание в % по массе. Сплав характеризуется повышенной пластичностью после долговременной эксплуатации при высоких температурах, при этом может быть предотвращено SR-растрескивание. 2 н. и 1 з.п. ф-лы, 3 табл.

Изобретение может быть использовано в двигателестроении. Выпускной клапан (1) предназначен для использования в двигателе внутреннего сгорания. Выпускной клапан (1) содержит стержень (14) и клапанный диск (11) на нижнем конце стержня (14). Клапанный диск (11) на своей верхней поверхности имеет посадочную фаску (10). Клапанный диск (11) выполнен из основного материала, посадочная фаска состоит из материала посадочной фаски, который отличается от основного материала. Материал посадочной фаски представляет собой сплав на основе никеля. Сплав, с указанием состава в процентах по весу и без учета обычных примесей и неизбежных остаточных количеств компонентов раскислителей, включает по меньшей мере от 34,0 до 44,0% Cr, совокупное количество Nb и Та в диапазоне по меньшей мере от 2,8 до 6,1%, от 0,3 до 2,0% Ti, не более 0,2% Al, не более 0,04% В, не более 0,8% Fe, не более 0,04% С, не более 0,4% Si и остальное количество Ni, где количество Ti+Nb+0,5×Ta варьирует в диапазоне от 3,4 до 6,6%, при этом количество Nb+0,5×Ta составляет менее 3,0%, если количество Ti составляет свыше 1,5%. Раскрыт способ изготовления выпускного клапана. Технический результат заключается в улучшении механических свойств клапана в сочетании с повышением устойчивости к высокотемпературной коррозии. 2 н. и 14 з.п. ф-лы, 4 табл., 7 ил.

Изобретение относится к области металлургии, а именно к припоям на основе никеля, которые могут использоваться при изготовлении паяных деталей горячего тракта турбин газотурбинных двигателей. Припой на основе никеля содержит, мас.%: хром 8,0-15,0; бор 2,0-3,5; алюминий 3,0-5,0; ниобий 3,0-5,0; кобальт 12,0-17,5; титан 1,5-3,7; никель - остальное. Припой может быть использован для пайки деформируемых и интерметаллидных никелевых жаропрочных сплавов с температурой пайки не выше 1220°C, при этом обеспечивается прочность паяных соединений на уровне 0,8 от прочности соединяемых материалов. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе системы никель-хром, работающих в широком диапазоне температур и предназначенных для реализации микрометаллургических процессов получения функциональных покрытий на основе порошковых материалов и литых микропроводов с высокой микротвердостью. Сплав системы никель-хром содержит, мас. %: Cr 12,0-18,0, Mn 7,0-10,5, Sn 2,0-3,0, Si 1,0-1,5, W 0,8-2,5, Re 0,9-1,8, Се 0,2-0,6, La 0,1-0,5, Y 0,3-0,7, Ni остальное. Сплав получен при введении марганца, кремния и олова в виде интерметаллидов Mn2Si и Mn2Sn, причем соотношение марганца и кремния в интерметаллиде Mn2Si составляет 5:1. Изобретение позволяет получать порошковые композиции, функциональные покрытия, микропровода с более высокой микротвердостью. 1 табл., 2 пр.

Изобретение относится к металлургии и может быть использовано для изготовления рабочих лопаток газотурбинных установок. Шихтовая заготовка содержит, мас.%: углерод 0,07-0,12, хром 12,9-13,5, кобальт 5,3-5,9, вольфрам 6,7-7,3, молибден 0,8-1,2, алюминий 3,2-3,5, титан 4,4-4,7, бор 0,010-0,015, медь ≤0,04, сера ≤0,005, фосфор ≤0,005, азот ≤15 ppm, кислород ≤15 ppm, кальций 0,00-0,02, магний 0,00-0,02, марганец 0,01-0,3, по меньшей мере два элемента, выбранные из группы: железо, кремний и барий, ≤0,2 каждого и по меньшей мере два элемента, выбранные из группы: иттрий, лантан, неодим, самарий, 0,005-0,05 каждого, никель - остальное. Обеспечивается повышение структурной однородности и длительной прочности лопаток с равноосной структурой, полученных литьем с использованием шихтовой заготовки, повышение сопротивления окислению и коррозионным воздействиям, повышение структурной стабильности на ресурс, повышение прочности и пластичности. 2 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по меньшей мере один элемент из скандия и/или редкоземельных элементов, в частности иттрий, 0,1-0,7, тантал 0,1-3, необязательно кремний 0,05-0,6, никель - остальное. Защитное покрытие выполнено из заявленного сплава. Конструкционная деталь, в частности, конструкционная деталь (120, 130, 155) газовой турбины (100), содержащая подложку (4) из сплава на основе никеля или на основе кобальта, защитное покрытие и керамический термобарьерный слой (10), причем упомянутый керамический термобарьерный слой (10) нанесен, в частности, на защитное покрытие (7). Защитное покрытие имеет высокую устойчивость к высокотемпературной коррозии и окислению, имеет долговременную стабильность. 3 н. и 9 з.п. ф-лы, 5 ил.
Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксид металла с его объемным содержанием 1-3,5 %, 7,5-8,5 мас. % алюминия, 4-5 мас. % хрома, 2-2,5 мас. % вольфрама, 2,5-3,5 мас. % кобальта, 0,8-1,5 мас. % титана, Ni - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в защитной атмосфере в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C и с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C и коэффициенте деформации 15-20% за один проход. Обеспечивается получение композиционного материала на основе никелевой матрицы, упрочненного оксидом алюминия, с прочностью на растяжение при комнатной температуре не менее 900 МПа и плотностью ≤8,0 г/см3. 3 з.п. ф-лы, 3 пр.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта дефектов поверхности изделия, возникающих в результате литья или эксплуатации. Сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок содержит, мас. %: углерод 0,04-0,06, хром 13,5-14,1, кобальт 14,9-15,5, вольфрам 1,7-2,1, молибден 1,8-2,2, алюминий 2,6-2,8, гафний 0,1-0,2, церий 0,02±0,005, иттрий 0,02±0,005, кремний 0,1±0,03, бор 0,01±0,002, цирконий 0,05±0,01, титан 5,55-6,05, ниобий 0,1-0,2, марганец 0,07-0,13 и никель остальное. Сплав характеризуется повышенными характеристиками длительной прочности, сопротивления окислению и коррозии. Обеспечиваются повышенная структурная стабильность на ресурс, стабильность технологических характеристик сплава и ремонтного покрытия. 4 табл.

Изобретение относится к металлургии. Литая рабочая лопатка с монокристаллической структурой содержит перо, полку замка и замковую часть и состоит из двух фрагментов, соединенных зоной сплавления. Зона сплавления двух фрагментов высотой 5-30 мм размещена между полкой замка и замковой частью лопатки. Один фрагмент - замковая часть - выполнен из сплава с повышенной кратковременной прочностью, а другой фрагмент - перо лопатки и полка замка - из сплава с повышенной жаропрочностью. Разница температур полного растворения упрочняющей γ′- фазы двух жаропрочных сплавов TSOLγ′ составляет не более 20°C, а разница плотностей сплавов ~8%. Жаропрочный сплав на основе никеля для изготовления замковой части рабочей лопатки по изобретению содержит, мас. %: углерод 0,001-0,12; хром 6,5-9,8; кобальт 4,0-7,2; молибден 1,6-3,7; вольфрам 2,0-4,2; титан 3,0-4,5; алюминий 4,8-6,2; ниобий 0,08-0,22; марганец 0,002-0,12; кремний 0,005-0,2; никель остальное. Способ термообработки литой лопатки включает гомогенизирующий отжиг при температуре 1250±10°C в течение 2-3 часов с последующим охлаждением со скоростью 25-40°C/мин до температуры 690-710°C, последующий нагрев лопатки до температуры старения, выдержку в течение 16-24 часов и охлаждение со скоростью 20-40°C/мин до температуры 500°C, выдержку в течение 5-30 мин и охлаждение на воздухе. Обеспечивается повышение прочностных характеристик лопатки и надежности работы турбины. 3 н. и 2 з.п. ф-лы, 1 ил., 2 табл.
Наверх